Research Article

Bounds of Solutions of Integrodifferential Equations

Zdeněk Šmarda

Department of Mathematics, Faculty of Electrical Engineering and Communication, Technická 8, Brno University of Technology, 61600 Brno, Czech Republic

Correspondence should be addressed to Zdeněk Šmarda, smarda@feec.vutbr.cz

Received 20 January 2011; Accepted 24 February 2011

Academic Editor: Miroslava Růžičková

Copyright © 2011 Zdeněk Šmarda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some new integral inequalities are given, and bounds of solutions of the following integrodifferential equation are determined:

\[\frac{dx}{dt} - F(t, x(t), \int_0^t k(t, s, x(s)) \, ds) = h(t), \quad x(0) = x_0, \]

where \(h : \mathbb{R} \to \mathbb{R} \), \(k : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \), \(F : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \) are continuous functions, \(R_+ = [0, \infty) \).

1. Introduction

Ou Yang [1] established and applied the following useful nonlinear integral inequality.

Theorem 1.1. Let \(u \) and \(h \) be nonnegative and continuous functions defined on \(\mathbb{R}_+ \) and let \(c \geq 0 \) be a constant. Then, the nonlinear integral inequality

\[u^2(t) \leq c^2 + 2 \int_0^t h(s)u(s) \, ds, \quad t \in \mathbb{R}_+ \]

implies

\[u(t) \leq c + \int_0^t h(s) \, ds, \quad t \in \mathbb{R}_+. \]

This result has been frequently used by authors to obtain global existence, uniqueness, boundedness, and stability of solutions of various nonlinear integral, differential, and
Theorem 1.1 is also used to obtain inequalities of Gronwall inequality and its nonlinear version to the Bihari type, see inequalities of this type are usually known as Gronwall-Ou Yang type inequalities.

In the last few years there have been a number of papers written on the discrete inequalities of Gronwall inequality and its nonlinear version to the Bihari type, see [13, 16, 20]. Some applications discrete versions of integral inequalities are given in papers [21–23].

In this paper, we present new integral inequalities which come out from above-mentioned inequalities and extend Pachpatte’s results (see [11, 16]) especially. Obtained results are applied to certain classes of integrodifferential equations.

2. Integral Inequalities

Lemma 2.1. Let u, f, and g be nonnegative continuous functions defined on \mathbb{R}_+. If the inequality

$$ u(t) \leq u_0 + \int_0^t f(s) \left(u(s) + \int_0^s g(\tau)(u(s) + u(\tau))d\tau \right)ds $$

holds where u_0 is a nonnegative constant, $t \in \mathbb{R}_+$, then

$$ u(t) \leq u_0 \left[1 + \int_0^t f(s) \exp \left(\int_0^s \left(2g(\tau) + f(\tau) \left(1 + \int_0^\tau g(\sigma)d\sigma \right) \right)d\tau \right)ds \right] $$

for $t \in \mathbb{R}_+$.

Proof. Define a function $v(t)$ by the right-hand side of (2.1)

$$ v(t) = u_0 + \int_0^t f(s) \left(u(s) + \int_0^s g(\tau)(u(s) + u(\tau))d\tau \right)ds. $$

Then, $v(0) = u_0, u(t) \leq v(t)$ and

$$ v'(t) = f(t)u(t) + f(t) \int_0^t g(s)(u(t) + u(s))ds $$

$$ \leq f(t)v(t) + f(t) \int_0^t g(s)(v(t) + v(s))ds. $$
Define a function $m(t)$ by

$$m(t) = v(t) + \int_0^t g(s)v(s)ds + v(t)\int_0^t g(s)ds,$$ \hspace{1cm} (2.5)

then $m(0) = v(0) = u_0$, $v(t) \leq m(t)$,

$$v'(t) \leq f(t)m(t),$$ \hspace{1cm} (2.6)

$$m'(t) = 2g(t)v(t) + v'(t)\left(1 + \int_0^t g(s)ds\right)$$

$$\leq m(t)\left[2g(t) + f(t)\left(1 + \int_0^t g(s)ds\right)\right].$$ \hspace{1cm} (2.7)

Integrating (2.7) from 0 to t, we have

$$m(t) \leq u_0 \exp\left(\int_0^t \left(2g(s) + f(s)\left(1 + \int_0^s g(\sigma)d\sigma\right)\right)ds\right).$$ \hspace{1cm} (2.8)

Using (2.8) in (2.6), we obtain

$$v'(t) \leq u_0 f(t) \exp\left(\int_0^t \left(2g(s) + f(s)\left(1 + \int_0^s g(\sigma)d\sigma\right)\right)ds\right).$$ \hspace{1cm} (2.9)

Integrating from 0 to t and using $u(t) \leq v(t)$, we get inequality (2.2). The proof is complete.

Lemma 2.2. Let u, f, and g be nonnegative continuous functions defined on \mathbb{R}_+, $w(t)$ be a positive nondecreasing continuous function defined on \mathbb{R}_+. If the inequality

$$u(t) \leq w(t) + \int_0^t f(s)\left(u(s) + \int_0^s g(\tau)(u(s) + u(\tau))d\tau\right)ds,$$ \hspace{1cm} (2.10)

holds, where u_0 is a nonnegative constant, $t \in \mathbb{R}_+$, then

$$u(t) \leq w(t)\left[1 + \int_0^t f(s) \exp\left(\int_0^s \left(2g(\tau) + f(\tau)\left(1 + \int_0^\tau g(\sigma)d\sigma\right)\right)d\tau\right)ds\right],$$ \hspace{1cm} (2.11)

where $t \in \mathbb{R}_+$.

Proof. Since the function $w(t)$ is positive and nondecreasing, we obtain from (2.10)

$$
\frac{u(t)}{w(t)} \leq 1 + \int_0^t f(s) \left(\frac{u(s)}{w(s)} + \int_0^s g(\tau) \left(\frac{u(\tau)}{w(\tau)} \right) d\tau \right) ds.
$$

(2.12)

Applying Lemma 2.1 to inequality (2.12), we obtain desired inequality (2.11).

Lemma 2.3. Let u, f, g, and h be nonnegative continuous functions defined on R_+, and let c be a nonnegative constant.

If the inequality

$$
u^2(t) \leq c^2 + 2 \left[\int_0^t f(s) u(s) \left(u(s) + \int_0^s g(\tau)(u(\tau) + u(s)) d\tau \right) + h(s) u(s) \right] ds
$$

(2.13)

holds for $t \in R_+$, then

$$
u(t) \leq p(t) \left[1 + \int_0^t f(s) \exp \left(\int_0^s \left(g(\tau) + f(\tau) \left(1 + \int_0^\tau g(s) ds \right) \right) d\tau \right) ds \right],
$$

(2.14)

where

$$
p(t) = c + \int_0^t h(s) ds.
$$

(2.15)

Proof. Define a function $z(t)$ by the right-hand side of (2.13)

$$
z(t) = c^2 + 2 \left[\int_0^t f(s) u(s) \left(u(s) + \int_0^s g(\tau)(u(\tau) + u(s)) d\tau \right) + h(s) u(s) \right] ds.
$$

(2.16)

Then $z(0) = c^2$, $u(t) \leq \sqrt{z(t)}$ and

$$
z'(t) = 2 \left[f(t) u(t) \left(u(t) + \int_0^t g(s)(u(t) + u(s)) ds \right) + h(t) u(t) \right]
$$

$$
\leq 2 \sqrt{z(t)} \left[f(t) \left(\sqrt{z(t)} + \int_0^t g(s) \left(\sqrt{z(t)} + \sqrt{z(s)} \right) ds \right) + h(t) \right].
$$

(2.17)

Differentiating $\sqrt{z(t)}$ and using (2.17), we get

$$
\frac{d}{dt} \left(\sqrt{z(t)} \right) = \frac{z'(t)}{2 \sqrt{z(t)}}
$$

$$
\leq f(t) \left(\sqrt{z(t)} + \int_0^t g(s) \left(\sqrt{z(t)} + \sqrt{z(s)} \right) ds \right) + h(t).
$$

(2.18)
Integrating inequality (2.18) from 0 to \(t \), we have

\[
\sqrt{z(t)} \leq p(t) + \int_0^t f(s) \left(\sqrt{z(s)} + \int_0^s g(\tau) \left(\sqrt{z(s)} + \sqrt{z(\tau)} \right) d\tau \right) ds,
\]

where \(p(t) \) is defined by (2.15), \(p(t) \) is positive and nondecreasing for \(t \in R_+ \). Now, applying Lemma 2.2 to inequality (2.19), we get

\[
\sqrt{z(t)} \leq p(t) \left[1 + \int_0^t f(s) \exp \left(\int_0^s \left(2g(\tau) + f(\tau) \left(1 + \int_0^\tau g(\sigma)d\sigma \right) \right) d\tau \right) ds \right].
\]

Using (2.20) and the fact that \(u(t) \leq \sqrt{z(t)} \), we obtain desired inequality (2.14). \(\Box \)

3. Application of Integral Inequalities

Consider the following initial value problem

\[
x'(t) = \mathcal{F} \left(t, x(t), \int_0^t k(t, s, x(t), x(s))ds \right) = h(t), \quad x(0) = x_0,
\]

where \(h : R_+ \to R, k : R^2 \times R^2 \to R, \mathcal{F} : R_+ \times R^2 \to R \) are continuous functions. We assume that a solution \(x(t) \) of (3.1) exists on \(R_+ \).

Theorem 3.1. Suppose that

\[
|k(t, s, u_1, u_2)| \leq f(t)g(s)(|u_1| + |u_2|) \quad \text{for} \quad (t, s, u_1, u_2) \in R^2 \times R^2,
\]

\[
|\mathcal{F}(t, u_1, v_1)| \leq f(t)|u_1| + |v_1| \quad \text{for} \quad (t, u_1, v_1) \in R_+ \times R^2,
\]

where \(f, g \) are nonnegative continuous functions defined on \(R_+ \). Then, for the solution \(x(t) \) of (3.1) the inequality

\[
|x(t)| \leq r(t) \left[1 + \int_0^t f(s) \exp \left(\int_0^s \left(2g(\tau) + f(\tau) \left(1 + \int_0^\tau g(\sigma)d\sigma \right) \right) d\tau \right) ds \right],
\]

\[
r(t) = |x_0| + \int_0^t |h(t)|dt
\]

holds on \(R_+ \).

Proof. Multiplying both sides of (3.1) by \(x(t) \) and integrating from 0 to \(t \) we obtain

\[
x^2(t) = x_0^2 + 2 \int_0^t \left[x(s)\mathcal{F} \left(s, x(s), \int_0^s k(s, \tau, x(\tau))d\tau \right) + x(s)h(s) \right] ds.
\]
From (3.2) and (3.4), we get
\[
|x(t)|^2 \leq |x_0|^2 + 2 \int_0^t \left[f(s)|x(s)| \times \left(|x(s)| + \int_0^s g(\tau)(|x(s)| + |x(\tau)|) d\tau \right) + |h(s)||x(s)| \right] ds.
\]
(3.5)

Using inequality (2.14) in Lemma 2.3, we have
\[
|x(t)| \leq r(t) \left[1 + \int_0^t f(s) \exp \left(\int_0^s \left(2g(\tau) + f(\tau) \left(1 + \int_0^\tau g(\sigma) d\sigma \right) \right) d\tau \right) ds \right],
\]
(3.6)

where
\[
r(t) = |x_0| + \int_0^t |h(t)| dt,
\]
(3.7)

which is the desired inequality (3.3).

Remark 3.2. It is obvious that inequality (3.3) gives the bound of the solution \(x(t)\) of (3.1) in terms of the known functions.

Acknowledgment

This author was supported by the Council of Czech Government grant MSM 00216 30503 and MSM 00216 30529 and by the Grant FEKTS-11-2-921 of Faculty of Electrical Engineering and Communication.

References

Abstract and Applied Analysis

Submit your manuscripts at http://www.hindawi.com