Research Article

Tight Representations of 0-E-Unitary Inverse Semigroups

Bahman Tabatabaie Shourijeh and Asghar Jokar

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

Correspondence should be addressed to Asghar Jokar, jokar@shirazu.ac.ir

Received 3 June 2011; Revised 11 August 2011; Accepted 5 September 2011

Academic Editor: Detlev Buchholz

Copyright © 2011 B. Tabatabaie Shourijeh and A. Jokar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the tight representation of a semilattice in $\{0,1\}$ by some examples. Then we introduce the concept of the complex tight representation of an inverse semigroup S by the concept of the tight representation of the semilattice of idempotents E of S in $\{0,1\}$. Specifically we describe the tight representation of a 0-E-unitary inverse semigroup and prove that if σ is a tight semilattice representation of the 0-E-unitary inverse semigroup S in $\{0,1\}$, then σ is a complex tight representation.

1. Introduction

A semigroup is a set equipped with an associative binary operation. A monoid is a semigroup with an identity. A semigroup S is said to be an inverse semigroup, provided there exists, for each s in S, a unique element s^* in S such that

$$s = ss^*s, \quad s^* = s^*ss^* \quad (1.1)$$

Good references for inverse semigroups are [1–3].

For a given set X, let $I(X)$ be the set of all bijective functions $f : A \to B$, where A and B are subsets of X. The multiplication on $I(X)$ is by composition of functions, defined on the largest possible domain. More precisely, for $f, g \in I(X)$, let fg be the function with $\text{dom}(fg) = g^{-1}(\text{ran}(g) \cap \text{dom}(f))$, and $f(g(x)) = f(g(x))$. The involution on $I(X)$ sends a function to its inverse. $I(X)$ is called the inverse semigroup of partial bijections on X.

By the Wagner-Preston representation theorem, (see [1, 1.5.1]) every inverse semigroup is an inverse semigroup of partial bijection.
Let S be an inverse semigroup. An idempotent is an element $e \in S$ such that $e^2 = e$. The set of idempotents of S is usually denoted by $E(S)$, or just E. A partial bijection is idempotent if and only if it is the identity function on its domain.

The natural partial order \leq on S is defined by

$$s \leq t \text{ iff } s = te \text{ for some idempotent } e.$$ (1.2)

The natural partial order induces a semilattice structure on the set $E(S)$ of idempotents by

$$e \leq f \text{ iff } e = ef.$$ (1.3)

So, one often refers to $E(S)$ as the semilattices of idempotents of S. For f, g in $I(X)$, $f \leq g$ if and only if g restricted to $\text{dom}(f)$ is f.

Let $B_n = \{(i,j) : 1 \leq i, j \leq n\} \cup \{0\}$. Define a multiplication on B_n by

$$(i,j)(k,l) = \begin{cases} (i,l), & i = j, \\ 0, & \text{otherwise}, \end{cases}$$ (1.4)

and $(i,j)0 = 0(i,j) = 0$. Define the involution on B_n by $(i,j)^* = (j,i)$. The inverse semigroup B_n in called a Brandt semigroup.

2. Tight Representations of Semilattices

In this section we define the tight representation of a semilattice E on $\{0,1\}$ and introduce two characteristic functions on E that are tight representations. One can see more about representations and semilattices in [4–7].

Definition 2.1. Let E be a partially ordered set. A subset $F \subseteq E$ is said to be connected if, for every f_1 and f_2 in F, there exists an element f in F such that

$$f \leq f_1, \quad f \leq f_2.$$ (2.1)

A component of E is a maximal connected subset of E. For a partially ordered set E with the minimum element 0, we denote by E_{min} the set of all minimal elements of $E^* = E \setminus \{0\}$.

Definition 2.2. Given a partially ordered set E with smallest element 0, we say that two elements s and t in E are disjoint, in symbols $s \perp t$, if there is no nonzero $u \in E$ such that $u \leq s, t$. Otherwise we say that s and t intersect, in symbols $s \cap t \neq \emptyset$.

For any subset U of E, we say that a subset $V \subseteq U$ is a cover for U if, for every nonzero $u \in U$, there exists $v \in V$ such that $u \cap v \neq \emptyset$.

A semilattice is a partially ordered set E such that for every $s, t \in E$, the set $\{u \in E : u \leq s, t\}$ contains a maximum element.

From now on we will fix a semilattice E.
Definition 2.3. For a finite subset \(F \subseteq E \), define \([0, F]\) to be the subset of \(E \) given by
\[
[0, F] = \{ e \in E : e \leq f, \, \forall f \in F \},
\]
and denote by \(F^\perp \) the subset of \(E \) given by
\[
F^\perp = \{ e \in E : e \perp f, \, \forall f \in F \}.
\]

It is obvious that \(0 \in [0, F] \) and if \(F \) is not contained in a component of \(E^* \), then \([0, F] = \{0\} \).

If \(F \) and \(G \) are finite subsets of \(E \), we denote by \(E^\perp \) the subset \([0, F] \cap G^\perp \) of \(E \).

Notice that if \(F = G = \emptyset \), then \(E^\perp = E \), if \(F = \emptyset \), \(E^\perp = G^\perp \) and if \(G = \emptyset \), \(E^\perp = [0, F] \).

If \(e \leq f \), then \(E^{[e, \{f\}]} = \{0\} \) and \(E^{[e, \{f\}]} = \emptyset \). However \(E^{[f], \{e\}} \) is not necessarily zero. Note that if \(e \) and \(f \) belong to different components of \(E^* \), then \(E^{[f], \{e\}} = (0, e] \). For elements \(e \) and \(f \) in \(E \) such that \(e \leq f \), \(e \) is said to be dense in \(f \) if \(E^{[f], \{e\}} = \{0\} \).

Definition 2.4. A map \(\sigma : E \to \{0, 1\} \) is said to be a representation of \(E \) in \(\{0, 1\} \), if \(\sigma(0) = 0 \) and \(\sigma(x \land y) = \sigma(x) \cdot \sigma(y) \), for all \(x, y \in E \). We say that \(\sigma \) is tight if for all finite subsets \(F, G \subseteq E \), and for all finite cover \(H \) for \(E^\perp \), one has that
\[
\text{sgn} \left(\sum_{h \in H} \sigma(h) \right) = \prod_{f \in F} \sigma(f) \prod_{g \in G} (1 - \sigma(g)).
\]

Proposition 2.5. Let \(e \) and \(f \) be in \(E \) with \(e \) being dense in \(f \). Then \(\sigma(e) = \sigma(f) \) for every tight representation \(\sigma \) of \(E \) in \(\{0, 1\} \).

Proof. Suppose that \(\sigma \) is a tight representation of \(E \) in \(\{0, 1\} \) and choose \(e, f \) in \(E \) such that \(E^{[f], \{e\}} = \{0\} \). Then \(\emptyset \) is a cover for \(E^{[f], \{e\}} \). So by the definition of tight representation we have \(\sigma(f)(1 - \sigma(e)) = 0 \). Therefore \(\sigma(f) \leq \sigma(e) \). On the other hand, since \(e \leq f \), then \(\sigma(e) \leq \sigma(f) \).

Theorem 2.6. Let \(E \) be a semilattice with minimum element 0. If \(e \in E_{\text{min}} \), then \(E_{[e, \infty]} \) is a tight representation of \(E \) in \(\{0, 1\} \).

Proof. Set \(\sigma = E_{[e, \infty]} \). If \(x, y \in E \) are such that \(x \leq y \), then \(\sigma(x) \leq \sigma(y) \). On the other hand if \(x \) and \(y \) are disjoint, then \(\sigma(x) \) and \(\sigma(y) \) are disjoint too. So \(\sigma(x) \leq 1 - \sigma(y) \). More generally, if \(F \) and \(G \) are finite subsets of \(E \), and \(h \in E \) is such that \(h \leq f \) for every \(f \in F \), and \(h \perp g \), for every \(g \in G \), then
\[
\sigma(h) \leq \prod_{f \in F} \sigma(f) \prod_{g \in G} (1 - \sigma(g)).
\]

Conversely, let \(F, G \) be finite subsets of \(E \), and let \(H \) be a cover for \(E^\perp \). To prove the inequality
\[
\text{sgn} \left(\sum_{h \in H} \sigma(h) \right) \geq \prod_{f \in F} \sigma(f) \prod_{g \in G} (1 - \sigma(g)),
\]
we see that if the right-hand side is 0, then the inequality holds obviously. So suppose that the right-hand side is 1. Then we show that the left-hand side is 1 too. Since $\sigma = \chi_{[e,\infty)}$, we have $F \subseteq [e,\infty)$ and $G \cap [0,\infty) = \emptyset$. Also $e \in E^c G$. Then there exists $h \in H$ such that $h \cap e \neq \emptyset$. This means that there exists a nonzero $t \in E$ such that $t \leq h, e$. Since $e \in E_{\min}$, then $e \leq h$ and so $h \in [0,\infty)$ and $\sigma(h) = 1$. Therefore the left-hand side is 1 too.

By the definition of E_{\min}, one can show that every element of E_{\min} is the minimum element of some component of E^\ast. But it may happen that some component of E^\ast does not have a minimum element. So the following theorem holds.

Theorem 2.7. If F is a component of E^\ast, then χ_F is a tight representation of E in $[0,1]$.

3. Complex Tight Representations of 0-E-Unitary Inverse Semigroups

The class of E-unitary inverse semigroups is one of the most important in inverse semigroup theory. When an inverse semigroup contains a zero, then every element of E must be idempotent. Thus motivated by Szendrei [8], we define the class of 0-E-unitary inverse semigroups (although she called them E^\ast-unitary). The term 0-E-unitary appears to be due to Meakin and Sapir [9]. More references for 0-E-unitary inverse semigroups are [10–12].

Throughout this section we define complex tight representations of inverse semigroups and prove that every semilattice tight representation on a 0-E-unitary inverse semigroup is a complex tight representation.

Definition 3.1. An inverse semigroup S with semilattice of idempotent E is E-unitary if, for every $e \in E$, $e \leq s$ for some $s \in S$ implies that s is idempotent.

Proposition 3.2 (see [1]). Let S be an inverse semigroup. For $s, t \in S$, the following are equivalent:

- (i) $s \leq t$,
- (ii) there exists $f \in E$ such that $s = ft$,
- (iii) $s = ts^*s$,
- (iv) $s = ss^*t$,
- (v) $s^* \leq t^*$.

Proposition 3.3. Let S be an inverse semigroup and e is an idempotent in E. If $s \in S$ such that $s \leq e$, then s is also an idempotent.

Proof. If $s \leq e$, then by the previous proposition there exists an idempotent $f \in E$ such that $s = ef$. Since the semilattice of idempotents is closed under multiplication, we have $s \in E$. \square

Definition 3.4. An inverse semigroup S is said to be a 0-E-unitary if, for every nonzero idempotent e, $e \leq s$ for some $s \in S$ implies s is idempotent. The components of E^\ast are in the form $[s,\infty)$ or (s,∞) for some nonzero element $s \in S$. By Proposition 3.3, if F is any component of $S^* = S \setminus \{0\}$, then $F \subseteq E$ or $F \cap E = \emptyset$.

Lemma 3.5 (see [4]). If S is a 0-E-unitary inverse semigroup and $s, t \in S$ are such that $s^*s = t^*t$ and $se = te$ for some nonzero idempotent $e \leq s^*s$, then $s = t$.

Proposition 3.6. If S is a 0-E-unitary inverse semigroup with zero, then S is a semilattice with respect to natural order.

Proof. Let $s, t \in S$. If there is no nonzero $u \in S$ such that $u \leq s, t$, then $st = 0$. So 0 is the infimum of s, t. Now suppose that there exists a nonzero element u such that $u \leq s, t$. By [1], $u \leq s, t$. Then $u^*u \leq f$. Setting $s_1 = s, t_1 = t$, we have

$$s_1^*s_1 = f s^*s f = f = ft^* tf = t_1^*t_1.$$ \hspace{1cm} (3.1)$$

Since

$$s_1u^*u = sf u^*u = su^*u = u = tu^*u = tf u^*u = t_1u^*u,$$ \hspace{1cm} (3.2)$$

by Lemma 3.5 we have $s_1 = t_1$. So

$$st^*t = ss^*st^*t = sf = s_1 = t_1 = tf = ts^*s.$$ \hspace{1cm} (3.3)$$

Since $0 \neq u_1 \leq s_1, t_1$ we may apply the above argument to s_1, u_1, t_1 in order to prove that $s^*tt^* = t^*ss^*$, which implies that $tt^*s = ss^*t$. The fact that $u \leq s, t$ implies that $su^*u = u = tu^*u$. So

$$t^*su^*u = t^*tu^*u = u^*u.$$ \hspace{1cm} (3.4)$$

Since S is 0-E-unitary, t^*s is an idempotent. Also we can prove similarly that ts^* is an idempotent. Thus $st^*t = ts^*t = tt^*s$. Therefore

$$st^*t = ts^*t = tt^*s = ss^*t.$$ \hspace{1cm} (3.5)$$

We claim that st^*t is the infimum of s, t. It is obvious that $st^*t \leq s, t$. Since

$$u = su^*u = sf u^*u = ss^*st^*tu^*u = st^*tu^*u,$$ \hspace{1cm} (3.6)$$

then $u \leq st^*t$.

Note that if σ is a representation of an inverse semigroup S in the complex plane (as a Hilbert space), then $\sigma(e) = 0$ or 1, for every idempotent element $e \in E(S)$. Such representations are called complex representations.

Now we will fix an inverse semigroup S with 0.

Definition 3.7. A complex representation σ of S on the complex plane is said to be tight if the restriction of σ to $E(S)$ is a tight representation of $E(S)$ in $[0, 1]$. From the definition one can show that if s_0 is a minimum element of $S^* = S \setminus \{0\}$, then $\chi_{[s_0, \infty)}$ is a complex tight representation on S. Also if T is a component of S^*, then χ_T is a complex tight representation on S.

Since every 0-E-unitary inverse semigroup is a semilattice with zero, a representation of S in $\{0,1\}$ is both a representation of the semilattice S in $\{0,1\}$ and a complex representation of the inverse semigroup S.

Theorem 3.8. Let S be a 0-E-unitary inverse semigroup and let σ be a representation of S in $\{0,1\}$. If σ is tight as a semilattice representation, then it is tight as a complex representation.

Proof. Suppose that σ is a semilattice tight representation of S in $\{0,1\}$. Let F and G be finite subsets of E and H a cover for E^F, G. Since $E \subseteq S$, then $E^F, G \subseteq S^F, G$. Since H is a cover of E^F, G, then there is a cover K of S^F, G such that $H \subseteq K$. Therefore

$$\sum_{h \in H} \sigma(h) \leq \sum_{k \in K} \sigma(k),$$

and hence

$$\text{sgn} \left(\sum_{k \in K} \sigma(k) \right) \geq \prod_{f \in F} \sigma(f) \prod_{g \in G} (1 - \sigma(g)).$$

(3.8)

Then $\sigma|_E$ is a tight representation of E in $\{0,1\}$ and therefore σ is a complex tight representation of S in $\{0,1\}$.

References
