Research Article

Toeplitz Operators on the Weighted Pluriharmonic Bergman Space with Radial Symbols

Zhi Ling Sun1,2 and Yu Feng Lu1

1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
2 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028000, China

Correspondence should be addressed to Zhi Ling Sun, yusinmg@126.com

Received 3 June 2011; Revised 20 July 2011; Accepted 21 July 2011

Academic Editor: Natig Atakishiyev

Copyright \textcopyright{} 2011 Z. L. Sun and Y. F. Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct an operator R whose restriction onto weighted pluriharmonic Bergman Space $b^2_\mu(B^n)$ is an isometric isomorphism between $b^2_\mu(B^n)$ and l^2. Furthermore, using the operator R we prove that each Toeplitz operator T_u with radial symbols is unitary to the multiplication operator $\gamma_a I$. Meanwhile, the Wick function of a Toeplitz operator with radial symbol gives complete information about the operator, providing its spectral decomposition.

1. Introduction

Let B^n be the open unit ball in the complex vector space \mathbb{C}^n. For any $z = (z_1, \ldots, z_n)$ and $\xi = (\xi_1, \ldots, \xi_n)$ in \mathbb{C}^n, let $z \cdot \xi = \sum_{j=1}^n z_j \overline{\xi_j}$, where $\overline{\xi_j}$ is the complex conjugate of ξ_j and $|z| = \sqrt{z \cdot \overline{z}}$.

For a multi-index $a = (a_1, \ldots, a_n)$ and $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, we write $z^a = z_1^{a_1} \cdots z_n^{a_n}$, where $a_k \in \mathbb{Z} \cup \{0\}$, and $|a| = a_1 + \cdots + a_n$ is its length, $a! = a_1! \cdots a_n!$.

The weighted pluriharmonic Bergman space $b^2_\mu(B^n)$ is the subspace of the weighted space $L^2_\mu(B^n)$ consisting of all pluriharmonic functions on B^n. A pluriharmonic function in the unit ball is the sum of a holomorphic function and the conjugate of a holomorphic functions. It is known that $b^2_\mu(B^n)$ is a closed subspace of $L^2_\mu(B^n)$ and hence is a Hilbert space. Let $Q^\mu_{B^n}$ be the Hilbert space orthogonal projection from $L^2_\mu(B^n)$ onto $b^2_\mu(B^n)$. For a function $u \in L^2_\mu(B^n)$, the Toeplitz operator $T_u : b^2_\mu(B^n) \to b^2_\mu(B^n)$ with symbol u is the linear operator defined by

$$T_u f = Q^\mu_{B^n} (uf), \quad f \in b^2_\mu(B^n).$$

T_u is densely defined and not bounded in general.
The boundedness and compactness of Toeplitz operators on Bergman type spaces have been studied intensively in recent years. The fact that the product of two harmonic functions is no longer harmonic adds some mystery in the study of Toeplitz operators on harmonic Bergman space. Many methods which work for the operator on analytic Bergman spaces lost their effectiveness on harmonic Bergman space. Therefore new ideas and methods are needed. We refer to [1–3] for references about the results of Toeplitz operator on harmonic Bergman space. The paper [3] characterizes compact Toeplitz operators in the case of the unit disk \(\mathbb{D} \). In [2], the authors consider Toeplitz operators acting on the pluriharmonic Bergman space and study the problem of when the commutator or semicommutator of certain Toeplitz operators is zero. Lee [1] proved that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbols and pluriharmonic symbol, respectively, commute only in an obvious case.

The authors in [4] analyze the influence of the radial component of a symbol to spectral, compactness and Fredholm properties of Toeplitz operators on Bergman space on unit disk \(\mathbb{D} \). In [5], they are devoted to study Toeplitz operators with radial symbols on the weighted Bergman spaces on the unit ball in \(\mathbb{C}^n \).

In this paper, we will be concerned with the question of Toeplitz operators with radial symbols on the weighted pluriharmonic Bergman space. Based on the techniques in [4–6], we construct an operator \(R \) whose restriction onto weighted pluriharmonic Bergman space \(b^2_{\mu}(\mathbb{B}^n) \) is an isometric isomorphism between \(b^2_{\mu}(\mathbb{B}^n) \) and \(l^2_n \), and

\[
RR^* = I : l^2_n \rightarrow l^2_n,
\]

\[
R^*R = Q^\mu_{\mathbb{B}^n} : L^2_{\mu}(\mathbb{B}^n) \rightarrow b^2_{\mu}(\mathbb{B}^n);
\]

where \(l^2_n \) is the subspace of \(l_2 \). Using the operator \(R \) we prove that each Toeplitz operator \(T_a \) with radial symbols is unitary to the multiplication operator \(\gamma_{a,\mu}I \) acting on \(l^2_n \). Next, we use the Berezin concept of Wick and anti-Wick symbols. It turns out that in our particular (radial symbols) case the Wick symbols of a Toeplitz operator give complete information about the operator, providing its spectral decomposition.

2. Pluriharmonic Bergman Space and Orthogonal Projection

We start this section with a decomposition of the space \(L^2_{\mu}(\mathbb{B}^n) \). Consider a nonnegative measurable function \(\mu(r), r \in (0, 1) \), such that \(\text{mes}\{r \in (0, 1) : \mu(r) > 0\} = 1 \), and

\[
\int_{\mathbb{B}^n} \mu(|z|)dv(z) = \left| S^{2n-1} \right| \int_0^1 \mu(r)r^{2n-1}dr < \infty,
\]

where \(|S^{2n-1}| = 2\pi^{n-(1/2)}\Gamma^{-1}(n - (1/2)) \) is the surface area of unit sphere \(S^{2n-1} \) and \(\Gamma(z) \) is the Gamma function.

Introduce the weighted space

\[
L^2_{\mu}(\mathbb{B}^n) = \left\{ f : \|f\|_{L^2_{\mu}(\mathbb{B}^n)}^2 = \int_{\mathbb{B}^n} |f(z)|^2\mu(|z|)dv(z) < \infty \right\},
\]
where $dv(z)$ is the usual Lebesgue volume measure and $L_2(S^{2n-1})$ is the space with the usual Lebesgue surface measure.

The space $L_2(S^{2n-1})$ is the direct sum of mutually orthogonal spaces \mathcal{H}_k, that is,

$$L_2(S^{2n-1}) = \bigoplus_{k=0}^{\infty} \mathcal{H}_k,$$

(2.3)

where \mathcal{H}_k denotes the space of spherical harmonics of order k. Meanwhile, each space \mathcal{H}_k is the direct sum (under the identification $C^n = \mathbb{R}^{2n}$) of the mutually orthogonal spaces $\mathcal{H}_{p,q}$ (see, e.g., [7]):

$$\mathcal{H}_k = \bigoplus_{p+q=k, p,q \in \mathbb{Z}} H_{p,q}, \quad k \in \mathbb{Z}_+,$$

(2.4)

where $H_{p,q}$, for each $p, q = 0, 1, \ldots$, is the space of harmonic polynomials (their restrictions to the unit sphere) of complete order p in the variable z and complete order q in the conjugate variable $\overline{z} = (\overline{z}_1, \ldots, \overline{z}_n)$. Thus, we can get

$$L_2(S^{2n-1}) = \bigoplus_{p,q \in \mathbb{Z}_+} H_{p,q}.$$

(2.5)

The Hardy space $H^2(\mathbb{B}^n)$ in the unit ball \mathbb{B}^n is a closed subspace of $L_2(S^{2n-1})$. Denote by $P_{S^{2n-1}}$ the Szegő orthogonal projection of $L_2(S^{2n-1})$ onto the Hardy space $H^2(\mathbb{B}^n)$. It is well known that $H^2(\mathbb{B}^n) = \bigoplus_{p=0}^{\infty} H_{p,0}$. The standard orthonormal base in $H^2(\mathbb{B}^n)$ has the form

$$e_{\alpha}(\omega) = d_{n,\alpha} \omega^{\alpha}, \quad d_{n,\alpha} = \sqrt{\frac{(n-1+|\alpha|)!}{|S^{2n-1}|(n-1)!|\alpha|!}} \quad \text{for } |\alpha| = 0, 1, \ldots$$

(2.6)

Fix an orthonormal basis $\{e_{\alpha,\beta}(\omega)\}_{\alpha,\beta}, \alpha, \beta \in \mathbb{Z}_+^n$, in the space $L_2(S^{2n-1})$ so that $e_{\alpha,0}(\omega) \equiv e_{\alpha}(\omega)$,

$$e_{0,\alpha}(\omega) \equiv e_{\alpha,0}(\omega) \equiv e_{\alpha}(\omega), |\alpha| = 0, 1, \ldots$$

Passing to the spherical coordinates in the unit ball we have

$$L^2_\mu(\mathbb{B}^n) = L_2((0, 1), \mu(r)r^{2n-1}dr) \otimes L_2(S^{2n-1}).$$

(2.7)

For any function $f(z) \in L^2_\mu(\mathbb{B}^n)$ have the decomposition

$$f(z) = \sum_{|\alpha|+|\beta|=0}^{\infty} c_{\alpha,\beta}(r)e_{\alpha,\beta}(\omega), \quad r = |z|, \ \omega = \frac{z}{r},$$

(2.8)
with the coefficients $c_{\alpha,\beta}(r)$ satisfying the condition

$$
\|f\|_{L^2_{e}(\mathbb{B}^n)}^2 = \sum_{|\alpha|+|\beta|=0}^{\infty} \int_{0}^{1} \|c_{\alpha,\beta}(r)\|^2 r^{2n-1} dr < \infty. (2.9)
$$

According to the decomposition (2.7), (2.8) together with Parseval’s equality, we can define the unitary operator

$$
U_1 : L_2((0,1), \mu(r) r^{2n-1} dr) \otimes L_2(S^{2n-1}) \to L_2((0,1), \mu(r) r^{2n-1} dr) \otimes l_2
\equiv l_2 \left(L_2((0,1), \mu(r) r^{2n-1} dr) \right),
$$

by the rule $U_1 : f(z) \to \{c_{\alpha,\beta}(r)\}$, and

$$
\|f\|_{L^2_{e}(\mathbb{B}^n)}^2 = \|c_{\alpha,\beta}(r)\|_{l_2(\mathbb{B}^n, \mu(r) r^{2n-1} dr)}^2 = \sum_{|\alpha|+|\beta|=0}^{\infty} \|c_{\alpha,\beta}(r)\|_{l_2((0,1), \mu(r) r^{2n-1} dr)}^2. (2.11)
$$

Let $f(z)$ be a pluriharmonic in the unit ball \mathbb{B}^n and write $f = g + \overline{h}$, where the functions g, h are holomorphic in \mathbb{B}^n. Suppose

$$
g(z) = \sum_{|\alpha|=0}^{\infty} c_\alpha z^\alpha, \quad h(z) = \sum_{|\beta|=0}^{\infty} c_\beta z^\beta \quad (2.12)
$$

are their power series representations of g and h, respectively. We have

$$
f(z) = \sum_{|\alpha|=0}^{\infty} c_\alpha z^\alpha + \sum_{|\beta|=0}^{\infty} c_\beta z^\beta = \sum_{|\alpha|=0}^{\infty} c_\alpha(r) e_\alpha(\omega) + \sum_{|\beta|=0}^{\infty} c_\beta(r) e_\beta(\omega), \quad (2.13)
$$

where $c_\alpha(r) = c_\alpha d_{n,\alpha}^{-1} r^{|\alpha|}$, $c_\beta(r) = c_\beta d_{n,\beta}^{-1} r^{|\beta|}$, $r = |z|$, $\omega = (z/r)$.

Let $b^e_\mu(\mathbb{B}^n)$ be the pluriharmonic Bergman space in \mathbb{B}^n from $L^2_\mu(\mathbb{B}^n)$. Denote by $Q^\mu_{\mathbb{B}^n}$ the pluriharmonic Bergman orthogonal projection of $L^2_\mu(\mathbb{B}^n)$ onto the Bergman space $b^2_\mu(\mathbb{B}^n)$. From the above it follows that to characterize a function $f(z) \in b^2_\mu(\mathbb{B}^n)$ and considering its decomposition according to (2.13), one can restrict to the function having the representation

$$
f(z) = g(z) + \overline{h(z)} = \sum_{|\alpha|=0}^{\infty} c_{\alpha,0}(r) e_{\alpha,0}(\omega) + \sum_{|\beta|=0}^{\infty} c_{0,\beta}(r) e_{0,\beta}(\omega). \quad (2.14)
$$
Now let us take an arbitrary \(f(z) \) from \(b^2_{1,\mu}(\mathbb{B}^n) \) in the form (2.14). It will satisfy the Cauchy-Riemann equations, that is,

\[
\frac{\partial}{\partial z_k} g(z) = \frac{1}{2} \left(\frac{\partial}{\partial x_k} + i \frac{\partial}{\partial y_k} \right) g(z) = 0, \quad k = 1, \ldots, n, \; z \in \mathbb{B}^n,
\]

\[
\frac{\partial}{\partial z_k} h(z) = \frac{1}{2} \left(\frac{\partial}{\partial x_k} - i \frac{\partial}{\partial y_k} \right) h(z) = 0, \quad k = 1, \ldots, n, \; z \in \mathbb{B}^n.
\]

(2.15)

Applying \(\partial/\partial z_k, \partial/\partial z_k \) to \(g \) and \(h \), respectively, we have

\[
\frac{\partial}{\partial z_k} \sum_{|\alpha|=0}^{\infty} c_{\alpha,0}(r) e_{\alpha,0}(\omega) = \frac{z_k}{2r} \sum_{|\alpha|=0}^{\infty} \left(\frac{d}{dr} c_{\alpha,0}(r) - \frac{|\alpha|}{r} c_{\alpha,0}(r) \right) e_{\alpha,0}(\omega),
\]

\[
\frac{\partial}{\partial z_k} \sum_{|\beta|=0}^{\infty} c_{0,\beta}(r) e_{0,\beta}(\omega) = \frac{z_k}{2r} \sum_{|\beta|=0}^{\infty} \left(\frac{d}{dr} c_{0,\beta}(r) - \frac{|\beta|}{r} c_{0,\beta}(r) \right) e_{0,\beta}(\omega),
\]

(2.16)

where \(k = 0, \ldots, n \), and we come to the infinite system of ordinary linear differential equations

\[
\frac{d}{dr} c_{\alpha,0}(r) - \frac{|\alpha|}{r} c_{\alpha,0}(r) = 0, \quad |\alpha| = 0, 1, \ldots
\]

\[
\frac{d}{dr} c_{0,\beta}(r) - \frac{|\beta|}{r} c_{0,\beta}(r) = 0, \quad |\beta| = 0, 1, \ldots
\]

(2.17)

Their general solution has the form \(c_{\alpha,0} = b_{\alpha} r^{|\alpha|} = \lambda(n, |\alpha|) c_{\alpha,0} r^{|\alpha|}, c_{0,\beta} = b_{\beta} r^{|\beta|} = \lambda(n, |\beta|) c_{0,\beta} r^{|\beta|} \), with \(\lambda(n, m) = (\int_0^1 t^{2m+2n-1} \mu(t) dt)^{-1/2} \). Hence, for any \(f(z) \in b^2_{1,\mu}(\mathbb{B}^n) \) we have

\[
f(z) = \sum_{|\alpha|=0}^{\infty} c_{\alpha,0} \lambda(n, |\alpha|) r^{|\alpha|} e_{\alpha,0} + \sum_{|\beta|=0}^{\infty} c_{0,\beta} \lambda(n, |\beta|) r^{|\beta|} e_{0,\beta}.
\]

(2.18)

And, it is easy to verify \(||f||^2_{L_2(\mathbb{S}^1)} = \sum_{|\alpha|=0}^{\infty} |c_{\alpha,0}|^2 + \sum_{|\beta|=0}^{\infty} |c_{0,\beta}|^2 \). Thus the image \(b^2_{1,\mu}(\mathbb{B}^n) = U_1(b^2_{1,\mu}(\mathbb{B}^n)) \) is characterized as the closed subspace of

\[
L_2 \left((0, 1), \mu(r) r^{2n-1} dr \right) \otimes L_2 \left(L_2 \left((0, 1), \mu(r) r^{2n-1} dr \right) \right)
\]

(2.19)

which consists of all sequences \(\{c_{\alpha,\beta}(r)\} \) of the form

\[
c_{\alpha,\beta}(r) = \begin{cases}
\lambda(n, |\alpha|) c_{\alpha,0} r^{|\alpha|}, & |\beta| = 0 \\
\lambda(n, |\beta|) c_{0,\beta} r^{|\beta|}, & |\alpha| = 0 \\
0, & |\alpha| \neq 0, \; |\beta| \neq 0.
\end{cases}
\]

(2.20)
For each \(m \in \mathbb{Z}_+ \) introduce the function

\[
\varphi_m(\rho) = \lambda(n,m)^{1/n} \left(\int_0^\rho r^{2m+2n-1} \mu(r)dr \right)^{1/2n}, \quad \rho \in [0,1].
\]

(2.21)

Obviously, there exists the inverse function for the function \(\varphi_m(\rho) \) on \([0,1]\), which we will denote by \(\phi_m(\rho) \). Introduce the operator

\[
(u_m f)(r) = \frac{\sqrt{2n}}{\lambda(n,m)} \phi_m^{-m}(r) f(\phi_m(r)).
\]

(2.22)

By Proposition 2.1 in [5], the operator \(u_m \) maps unitary \(L_2((0,1), \mu(r)r^{2n-1}) \) onto \(L_2((0,1), r^{2n-1}dr) \) in such a way that

\[
u_m(\lambda(n,m)r^{m}) = \sqrt{2n}, \quad m \in \mathbb{Z}_+.
\]

(2.23)

Introduce the unitary operator

\[
U_2 : l_2 \left(L_2((0,1), \mu(r)r^{2n-1}dr) \right) \rightarrow l_2 \left(L_2((0,1), r^{2n-1}dr) \right),
\]

where

\[
U_2 : \{ c_{\alpha,\beta}(r) \} \rightarrow \{ (u_{|\alpha|+|\beta|} c_{\alpha,\beta})(r) \}.
\]

(2.25)

By (2.23), we can get the space \(b_{2,n}^2 = U_2(b_{1,\mu}^2) \) coincides with the space of all sequences \(\{ k_{\alpha,\beta} \} \) for which

\[
k_{\alpha,\beta} = \begin{cases}
\sqrt{2n} c_{\alpha,0}, & |\beta| = 0 \\
\sqrt{2n} c_{0,\beta}, & |\alpha| = 0 \\
0, & |\alpha| \neq 0, |\beta| \neq 0.
\end{cases}
\]

(2.26)

Let \(l_0(r) = \sqrt{2n} \). We have \(l_0(r) \in L_2((0,1), r^{2n-1}dr) \) and \(||l_0||_{L_2((0,1), r^{2n-1})} = 1 \). Denote by \(L_0 \) the one-dimensional subspace of \(L_2((0,1), r^{2n-1}dr) \) generated by \(l_0(r) \). The orthogonal projection \(P_0 \) of \(L_2((0,1), r^{2n-1}dr) \) onto \(L_0 \) has the form

\[
(P_0 f)(r) = \langle f, l_0 \rangle l_0 \sqrt{2n} \int_0^1 f(\rho) \sqrt{2n} \rho^{2n-1} d\rho.
\]

(2.27)

Let \(d_{\alpha,\beta} = k_{\alpha,\beta}(\sqrt{2n})^{-1} \). Denote by \(l_2^0 \) the subspace of \(l_2 \) consisting of all sequences \(\{ d_{\alpha,\beta} \} \). And let \(p^\perp \) be the orthogonal projections of \(l_2 \) onto \(l_2^0 \), then \(p^\perp = \chi_+(\alpha,\beta)I \) where \(\chi_+(\alpha,\beta) = 0 \), if \(|\alpha||\beta| > 0 \) and \(\chi_+(\alpha,\beta) = 1 \), if \(|\alpha||\beta| = 0 \).
Observe that $b_{2,\mu}^2 = L_0 \otimes l_2^\mu$ and the orthogonal projection B_2 of

$$l_2 \left(L_2 \left((0,1), r^{2n-1} \, dr \right) \right) = L_2 \left((0,1), r^{2n-1} \, dr \right) \otimes l_2$$

onto $b_{2,\mu}^2$ has the form $B_2 = P_0 \otimes p^\#$. This leads to the following theorem.

Theorem 2.1. The unitary operator $U = U_1 U_2$ gives an isometric isomorphism of the space $L_2^\mu(B^n)$ onto $l_2(L_2((0,1), r^{2n-1} \, dr)) \equiv L_2((0,1), r^{2n-1} \, dr) \otimes l_2$ such that

1. the pluriharmonic Bergman space $b_{2,\mu}^2$ is mapped onto $L_0 \otimes l_2^\mu$.

2. the pluriharmonic Bergman projection Q_{2n}^μ is unitary equivalent to

$$U Q_{2n}^\mu U^{-1} = P_0 \otimes p^\#,$$

where P_0 is the one-dimensional projection (2.27) of $L_2((0,1), r^{2n-1} \, dr)$ onto L_0.

Introduce the operator

$$R_0 : l_2^\mu \rightarrow L_2 \left((0,1), r^{2n-1} \, dr \right) \otimes l_2$$

by the rule

$$R_0 : \{ d_{\alpha,\beta} \} \rightarrow l_0(r) \{ d_{\alpha,\beta} \}. \tag{2.32}$$

The mapping R_0 is an isometric embedding, and the image of R_0 coincides with the space $b_{2,\mu}^2$. The adjoint operator

$$R_0^* : L_2 \left((0,1), r^{2n-1} \, dr \right) \otimes l_2 \rightarrow l_2^\mu$$

is given by

$$R_0^* : \{ c_{\alpha,\beta}(r) \} \rightarrow \left\{ \chi_\beta(\alpha, \beta) \int_0^1 c_{\alpha,\beta}(\rho) \sqrt{2n\rho 2^{n-1}} \, d\rho \right\},$$

$$R_0^* R_0 = I : l_2^\mu \rightarrow l_2^\mu, \tag{2.34}$$

$$R_0 R_0^* = B_2 : L_2 \left((0,1), r^{2n-1} \, dr \right) \otimes l_2 \rightarrow b_{2,\mu}^2.$$
Meanwhile the operator $R = R'_0 |U$ maps the space $L^2_\mu(B^n)$ onto l^b_2, and its restriction

$$R | b^2_\mu(B^n) : b^2_\mu(B^n) \longrightarrow l^b_2$$

is an isometric isomorphism. The adjoint operator

$$R^* = U^* R_0 : l^b_2 \longrightarrow b^2_\mu(B^n) \subset L^2_\mu(B^n)$$

is isometric isomorphism of l^b_2 onto the subspace $b^2_\mu(B^n)$ of $L^2_\mu(B^n)$.

Remark 2.2. We have

$$RR^* = I : l^b_2 \longrightarrow l^b_2, \quad R^* R = Q^{\mu}_y : L^2_\mu(B^n) \longrightarrow b^2_\mu(B^n).$$

Theorem 2.3. The isometric isomorphism $R^* = U^* R_0 : l^b_2 \rightarrow b^2_\mu(B^n)$ is given by

$$R^* : \{d_{\alpha,\beta}\} \longrightarrow \sum_{|\alpha|=0}^\infty \lambda(n,|\alpha|)c_{\alpha,0}r^{||\alpha||}e_{\alpha,0}(\omega) + \sum_{|\beta|=1}^\infty \lambda(n,|\beta|)c_{0,\beta}r^{||\beta||}e_{0,\beta}(\omega).$$

Proof. Let $\{d_{\alpha,\beta}\} \in l^b_2$, we can get

$$R^* = U^* U_2^* R_0 : \{d_{\alpha,\beta}\} \longrightarrow U^*_2 \left(\left\{ \sqrt{|n|}d_{\alpha,\beta} \right\} \right)$$

$$= U^*_2 \left(\left\{ \lambda(n,|\alpha|)c_{\alpha,0}r^{||\alpha||} \right\} + \left\{ \lambda(n,|\beta|)c_{0,\beta}r^{||\beta||} \right\} \right)$$

$$= \sum_{|\alpha|=0}^\infty \lambda(n,|\alpha|)c_{\alpha,0}r^{||\alpha||}e_{\alpha,0}(\omega) + \sum_{|\beta|=1}^\infty \lambda(n,|\beta|)c_{0,\beta}r^{||\beta||}e_{0,\beta}(\omega).$$

Corollary 2.4. The inverse isomorphism $R : b^2_\mu(B^n) \rightarrow l^b_2$ is given by

$$R : \varphi(z) \longmapsto \{d_{\alpha,\beta}\} = \left\{ (\sqrt{2n})^{-1}k_{\alpha,\beta} \right\},$$

where $c_{\alpha,0} = \langle \varphi, \tilde{e}_{\alpha,0} \rangle = \lambda(n,|\alpha|)d_{\alpha,0} \int_{B^n} \varphi(z)z^\alpha \, dv(z)$, $c_{0,\beta} = \langle \varphi, \tilde{e}_{0,\beta} \rangle = \lambda(n,|\beta|)d_{0,\beta} \int_{B^n} \varphi(z)z^\beta \, dv(z)$, $|\alpha|, |\beta| \in \mathbb{Z}_+$, and $\{e_{\alpha,0}^\mu\}_{|\alpha|=0}^\infty \cup \{e_{0,\beta}^\mu\}_{|\beta|=1}^\infty$ is the standard basis for the pluriharmonic Bergman space $b^2_\mu(B^n)$; that is,

$$\tilde{e}_{\alpha,0}^\mu = d_{\alpha,0} \lambda(n,|\alpha|)z^\alpha, \quad \tilde{e}_{0,\beta}^\mu = d_{0,\beta} \lambda(n,|\beta|)z^\beta.$$
3. Toeplitz Operator with Radial Symbols on $b^2_\mu(\mathbb{B}^n)$

In this section we will study the Toeplitz operators $T_a = Q^\mu_{\mathbb{B}^n} a : \varphi \in b^2_\mu(\mathbb{B}^n) \mapsto Q^\mu_{\mathbb{B}^n} a \varphi \in b^2_\mu(\mathbb{B}^n)$ with radial symbols $a = a(r)$.

Theorem 3.1. Let $a(r)$ be a measurable function on the segment $[0,1]$. Then the Toeplitz operator T_a acting on $b^2_\mu(\mathbb{B}^n)$ is unitary equivalent to the multication operator $\gamma_{a,\mu}I$ acting on l^2_z. The sequence $\gamma_{a,\mu} = \{ \chi_+(\alpha,\beta)\gamma_{a,\mu}(|\alpha| + |\beta|) \}$ is given by

$$
\gamma_{a,\mu}(m) = \lambda^2(n,m) \int_0^1 a(r)r^{2m+2n-1} \mu(r) dr, \quad m \in \mathbb{Z}_+.
$$

Proof. By means of Remark 2.2, the operator T_a is unitary equivalent to the operator

$$
RT_aR^* = RQ^\mu_{\mathbb{B}^n} a Q^\mu_{\mathbb{B}^n} R^* = R(R^* R) a(R^* R) R^* = (R R^*) RaR^* = RaR^*
$$

$$
= R_0^* U_2 U_1 a(r) U_1^{-1} U_2^{-1} R_0 = R_0^* U_2 a(r) U_2^{-1} R_0
$$

$$
= R_0^* \{ \chi_+(\alpha,\beta) a(\phi_{|\alpha|+|\beta|}(r)) \} R_0.
$$

Further, let $\{ d_{\alpha,\beta} \}$ be a sequence from l^2_z. By (2.21), we have

$$
R_0^* \{ \chi_+(\alpha,\beta) a(\phi_{|\alpha|+|\beta|}(r)) \} R_0 \{ d_{\alpha,\beta} \}
$$

$$
= R_0^* \{ \sqrt{2n} d_{\alpha,\beta} \chi_+(\alpha,\beta) a(\phi_{|\alpha|+|\beta|}(r)) \}
$$

$$
= \left\{ \int_0^1 \chi_+(\alpha,\beta) a(\phi_{|\alpha|+|\beta|}(r)) 2 n d_{\alpha,\beta} \mu^{2n-1} dr \right\}
$$

$$
= \left\{ \chi_+(\alpha,\beta) d_{\alpha,\beta} \int_0^1 a(y) d\phi_{|\alpha|+|\beta|}^2(y) \right\}
$$

$$
= \left\{ \chi_+(\alpha,\beta) d_{\alpha,\beta} \lambda^2(n,|\alpha| + |\beta|) \int_0^1 a(y) y^{2(|\alpha|+|\beta|)+2n-1} \mu(y) dy \right\}
$$

$$
= \{ \chi_+(\alpha,\beta) d_{\alpha,\beta} \gamma_{a,\mu}(|\alpha| + |\beta|) \}. \quad \Box
$$

Corollary 3.2. (i) The Toeplitz operator T_a with measurable radial symbol $a(r)$ is bounded on $b^2_\mu(\mathbb{B}^n)$ if and only if $\sup_{m \in \mathbb{Z}_+} |\gamma_{a,\mu}(m)| < \infty$. Moreover,

$$
||T_a|| = \sup_{m \in \mathbb{Z}_+} |\gamma_{a,\mu}(m)|.
$$
(ii) The Toeplitz operator T_a is compact if and only if $\lim_{m \to \infty} \gamma_{a,\mu}(m) = 0$. The spectrum of the bounded operator T_a is given by

$$\text{sp} T_a = \{\gamma_{a,\mu}(m) : m \in \mathbb{Z}_+\},$$

and its essential spectrum $\text{ess-sp} T_a$ coincides with the set of all limits points of the sequence $\{\gamma_{a,\mu}(m)\}_{m \in \mathbb{Z}_+}$.

Let H be a Hilbert space and $\{\varphi_g\}_{g \in G}$ a subset of elements of H parameterized by elements g of some set G with measure $d\mu$.

Then $\{\varphi_g\}_{g \in G}$ is called a system of coherent states, if for all $\varphi \in H$,

$$\|\varphi\|^2 = (\varphi, \varphi) = \int_G |(\varphi, \varphi_g)|^2 d\mu,$$

or equivalently, if for all $\varphi_1, \varphi_2 \in H$,

$$(\varphi_1, \varphi_2) = \int_G (\varphi_1, \varphi_g) \overline{(\varphi_2, \varphi_g)} d\mu.$$

We define the isomorphic inclusion $V : H \to L_2(G)$ by the rule

$$V : \varphi \in H \mapsto f = f(g) = (\varphi, \varphi_g) \in L_2(G).$$

By (3.7) we have $(\varphi_1, \varphi_2) = (f_1, f_2)$, where (\cdot, \cdot) and (\cdot, \cdot) are the scalar products on H and $L_2(G)$, respectively, and $f_h(g) = f_g(h)$. Let $H_2(G) = V(H) \subset L_2(G)$. A function $f \in L_2(G)$ is an element of $H_2(G)$ if and only if for all $h \in G$, $(f, f_h) = f(h)$. The operator $(Pf)(g) = \int_G (\varphi_h, \varphi_g) f(t) d\mu(t)$ is the orthogonal projection of $L_2(G)$ onto $H_2(G)$.

The function $a(g)$, $g \in G$, is called the anti-Wick (or contravariant) symbol of an operator $T : H \to H$ if

$$VTV^{-1} | H_2(G) = Pa(g)P = Pa(g)I | H_2(G) : H_2(G) \to H_2(G),$$

or, in other terminology, the operator $VAV^{-1} | H_2(G)$ is the Toeplitz operator

$$T_{a(g)} = Pa(g)I | H_2(G) : H_2(G) \to H_2(G)$$

with the symbols $a(g)$.

Given an operator $T : H \to H$, introduce the (Wick) function

$$\tilde{a}(g, h) = \frac{(T\varphi_h, \varphi_g)}{(\varphi_h, \varphi_g)} , \quad g, h \in G.$$
If the operator T has an anti-Wick symbols, that is, $VTV^{-1} = T_{a(g)}$ for some function $a = a(g)$, then

$$
\widetilde{a}(g, h) = \frac{T_{a(h)}f_{g}}{\langle f_{h}, f_{g} \rangle}, \quad g, h \in G.
$$

(3.12)

And the operator T_{a} admits the following representation in terms of its Wick function:

$$(T_{a}f)(g) = \int_{G} a(t)f(t)f_{i}(g)d\mu(t) = \int_{G} a(t)f_{i}(g)d\mu(t) \int_{G} f(h)f_{h}(t)d\mu(h)$$

$$= \int_{G} f(h)d\mu(h) \int_{G} a(t)f_{i}(g)f_{h}(t)d\mu(t)$$

$$= \int_{G} f(h)d\mu(h) \frac{f_{h}(g)}{\langle f_{h}, f_{g} \rangle} \int_{G} a(t)f_{h}(t)f_{g}(t)d\mu(t)$$

$$= \int_{G} \tilde{a}(g, h)f(h)f_{h}(g)d\mu(h).$$

(3.13)

Interchanging the integrals above, we understand them in a weak sense.

The restriction of the function $\tilde{a}(g, h)$ onto the diagonal

$$
\tilde{a}(g) = \tilde{a}(g, g) = \frac{T_{\varphi_{g}, \varphi_{g}}}{\langle \varphi_{g}, \varphi_{g} \rangle}, \quad g \in G,
$$

(3.14)

is called the Wick (or covariant or Berezin) symbols of the operator $T : H \to H$.

The Wick and anti-Wick symbols of an operator $T : H \to H$ are connected by the Berezin transform

$$
\tilde{a}(g) = \tilde{a}(g, g) = \frac{T_{\varphi_{g}, \varphi_{g}}}{\langle \varphi_{g}, \varphi_{g} \rangle} = \frac{T_{a(h)}f_{g}}{\langle f_{h}, f_{g} \rangle} = \int_{G} a(t)|f_{g}(t)|^{2}d\mu(t)$$

$$= \int_{G} |f_{g}(t)|^{2}d\mu(t).$$

(3.15)

The pluriharmonic Bergman reproducing kernel in the space $b_{\mu}^{2}(\mathbb{B}^{n})$ has the form

$$
R_{z}(w) = K_{z}(w) + K_{-\lambda_{0}^{2}}(w) - d_{n,0}^{2}(n, 0) = \sum_{|\alpha| = 0}^{\infty} \overline{c_{\alpha}^{(\mu)}(w)}c_{\alpha}^{(\mu)}(z) + \sum_{|\alpha| = 0}^{\infty} \overline{c_{\alpha}^{(\mu)}(z)}c_{\alpha}^{(\mu)}(w) - d_{n,0}^{2}(n, 0),
$$

(3.16)

where $\alpha = 0 = (0, \ldots, 0)$. For $f \in b_{\mu}^{2}(\mathbb{B}^{n})$, the reproducing property

$$
f(z) = (Q_{\mu}f)(z) = \int_{\mathbb{B}^{n}} f(w)R_{z}(w)\mu(|w|)d\nu(w)
$$

(3.17)
shows that the system of functions $R_z(w)$, $w \in \mathbb{B}^n$, forms a system of coherent states in the space $B^2_{\mu}(\mathbb{B}^n)$. In our context, we have $G = \mathbb{B}^n$, $d\mu = \mu(|z|)dx dy$, $H = H_2(G) = B^2_{\mu}(\mathbb{B}^n)$, $L_2(G) = L^2_{\mu}(\mathbb{B}^n)$, $\varphi_g = f_g = R_g$, where $g = z \in \mathbb{B}^n$.

Lemma 3.3. Let T_α be the Toeplitz operator with a radial symbol $a = a(r)$. Then the corresponding Wick function (3.11) has the form

$$\tilde{a}(z, w) = R^{-1}_w(z) \left(\sum_{|\alpha| = 0}^\infty e^{\alpha\mu}_{a}(w) \bar{e}^{\alpha\mu}_{a}(z) \gamma_{a,\mu}(|\alpha|) + \sum_{|\alpha| = 0}^\infty e^{\alpha\mu}_{a}(z) \bar{e}^{\alpha\mu}_{a}(w) \gamma_{a,\mu}(|\alpha|) - d^2_{n,0} \lambda^2(n,0) \gamma_{a,\mu}(0) \right).$$

(3.18)

Proof. By (3.11) and (3.16), we have

$$\tilde{a}(z, w) = \frac{(T_\alpha R_w, R_z)}{(R_w, R_z)} = R^{-1}_w(z) (a R_w, R_z)$$

$$= R^{-1}_w(z) \left((a K_w, K_z) + \left< a K_w, K_z \right> - d^4_{n,0} \lambda^4(n,0) \left< a, 1 \right> \right)$$

$$= R^{-1}_w(z) \left(\sum_{|\alpha| = 0}^\infty \bar{e}^{\alpha\mu}_{a}(w) e^{\alpha\mu}_{a}(z) \left< a e^{\alpha\mu}_{a}, e^{\alpha\mu}_{a} \right> + \sum_{|\alpha| = 0}^\infty \bar{e}^{\alpha\mu}_{a}(z) e^{\alpha\mu}_{a}(w) \left< a e^{\alpha\mu}_{a}, e^{\alpha\mu}_{a} \right> - d^4_{n,0} \lambda^4(n,0) \left< a, 1 \right> \right)$$

(3.19)

Denote by L^μ_{α} the one-dimensional subspace of $B^2_{\mu}(\mathbb{B}^n)$ generated by the base element $e^{\alpha\mu}_{a}(z)$, $|\alpha| \in \mathbb{Z}_+$. Then the one-dimensional projection P^μ_{α} of $b^2_{\mu}(\mathbb{B}^n)$ onto L^μ_{α} has obviously the form

$$P^\mu_{\alpha} f = \left< f, e^{\alpha\mu}_{a} \right> e^{\alpha\mu}_{a}(z) \int_{\mathbb{B}^n} f(w) e^{\alpha\mu}_{a}(w) \mu(|w|) dw.$$

(3.20)

In the similar method, $\overline{L}^\mu_{\alpha}$ denote the one-dimensional subspace of $b^2_{\mu}(\mathbb{B}^n)$ generated by the base element $\overline{e}^{\alpha\mu}_{a}(z)$. Let $\overline{P}^\mu_{\alpha}$ be the projection from $b^2_{\mu}(\mathbb{B}^n)$ onto $\overline{L}^\mu_{\alpha}$, and the projection can be rewritten as

$$\overline{P}^\mu_{\alpha} f(z) = \left< f, \overline{e}^{\alpha\mu}_{a} \right> \overline{e}^{\alpha\mu}_{a}(z) = \overline{e}^{\alpha\mu}_{a}(z) \int_{\mathbb{B}^n} f(w) e^{\alpha\mu}_{a}(w) \mu(|w|) dw.$$

(3.21)
Theorem 3.4. Let T_a be a bounded Toeplitz operator having radial symbol $a(r)$. Then one can get the spectral decomposition of the operator T_a:

$$T_a = \sum_{|\alpha|=0}^{\infty} \gamma_{a,\mu}(|\alpha|) P_{a}^{|\alpha|} + \sum_{|\alpha|=0}^{\infty} \gamma_{a,\mu}(|\alpha|) \overline{P_{a}^{|\alpha|}} - \gamma_{a,\mu}(0) P_{0}^{|\alpha|}. \tag{3.22}$$

Proof. According to (3.13), (3.20), (3.21), and Lemma 3.3, we get

$$(T_a f)(z) = \int_{\mathbb{B}^n} \tilde{a}(z, w) f(w) R_w(z) \mu(|w|) dv(w).$$

$$= \int_{\mathbb{B}^n} \left(\sum_{|\alpha|=0}^{\infty} \tilde{e}_{a}(w) \overline{e}_{a}(z) \gamma_{a,\mu}(|\alpha|) + \sum_{|\alpha|=0}^{\infty} \tilde{e}_{a}(z) \overline{e}_{a}(w) \gamma_{a,\mu}(|\alpha|) \right) f(w) \mu(|w|) dv(w). \tag{3.23}$$

$$= \sum_{|\alpha|=0}^{\infty} \gamma_{a,\mu}(|\alpha|) P_{a}^{|\alpha|} f(z) + \sum_{|\alpha|=0}^{\infty} \gamma_{a,\mu}(|\alpha|) \overline{P_{a}^{|\alpha|}} f(z) - \gamma_{a,\mu}(0) P_{0}^{|\alpha|} f(z). \quad \Box$$

The value $\gamma_{a,\mu}(|\alpha|)$ depends only on $|\alpha|$. Collecting the terms with the same $|\alpha|$ and using the formula

$$(z \cdot \overline{w})^m = \sum_{|\alpha|=m} \frac{m!}{\alpha!} z^a \overline{w}^a \tag{3.24}$$

we obtain

$$\tilde{a}(z, w) = R_{\overline{w}}^{|\alpha|} \left(\sum_{m=0}^{\infty} l(m, n) \gamma_{a,\mu}(m) \left((z \cdot \overline{w})^m + (w \cdot Z)^m \right) - d_{n,0}^2 \lambda^2(n, 0) \gamma_{a,\mu}(0) \right), \tag{3.25}$$

where $(l(m, n) = (m + n - 1)!/|S^{2n-1}|m!(n - 1)! \lambda^2(n, m)$). The orthogonal projection of $b_{\mu}^n(\mathbb{B}^n)$ onto the subspace generated by all element \tilde{e}_{a} with $|\alpha| = m, m \in \mathbb{Z}_+$ can be written as

$$\left(P_{(m)}^{|\alpha|} f \right)(z) = l(m, n) \int_{\mathbb{B}^n} f(w) (z \cdot \overline{w})^m \mu(|w|) dv(w); \tag{3.26}$$

similarly,

$$\left(\overline{P_{(m)}^{|\alpha|}} f \right)(z) = l(m, n) \int_{\mathbb{B}^n} f(w) (w \cdot \overline{Z})^m \mu(|w|) dv(w) \tag{3.27}$$
Corollary 3.5. Let \(\tilde{e}_a^\mu \) denote the orthogonal projection from \(b^2(\mathbb{B}^n) \) onto the subspace generated by all elements \(\tilde{e}_a^\mu \) with \(|\alpha| = m \). Therefore, (3.22) has the form

\[
T_a = \sum_{m=0}^{\infty} Y_{a,\mu}(m) P^\mu_{(m)} + \sum_{m=0}^{\infty} \gamma_{a,\mu}(m) P^\mu_{(m)} - \gamma_{a,\mu}(0) P^\mu_0.
\] (3.28)

In view of (3.25), we can get the following useful corollary.

Corollary 3.5. Let \(T_a \) be a bounded Toeplitz operator having radial symbol \(a(r) \). Then the Wick symbol of the operator \(T_a \) is radial as well and is given by the formula

\[
\tilde{a}(z) = \tilde{a}(r) = R_z^{-1}(z) \left(2 \sum_{m=0}^{\infty} l(m, n) Y_{a,\mu}(m) r^{2m} - d^{2}_{n,0} \lambda^2(n,0) \gamma_{a,\mu}(0) \right),
\] (3.29)

where \(R_z(z) = 2 \sum_{m=0}^{\infty} l(m, n) r^{2m} - d^{2}_{n,0} \lambda^2(n,0) \).

In terms of Wick function the composition formula for Toeplitz operators is quite transparent.

Corollary 3.6. Let \(T_a, T_b \) be the Toeplitz operators with the Wick function

\[
\tilde{a}(z, \omega) = R_z^{-1}(z) \left[\sum_{m=0}^{\infty} l(m, n) Y_{a,\mu}(m) ((z, \bar{\omega})^m + (\omega, \bar{z})^m) - d^{2}_{n,0} \lambda^2(n,0) \gamma_{a,\mu}(0) \right],
\]

\[
\tilde{b}(z, \omega) = R_z^{-1}(z) \left[\sum_{m=0}^{\infty} l(m, n) Y_{b,\mu}(m) ((z, \bar{\omega})^m + (\omega, \bar{z})^m) - d^{2}_{n,0} \lambda^2(n,0) \gamma_{b,\mu}(0) \right],
\] (3.30)

respectively. Then the Wick function \(\tilde{c}(z, \omega) \) of the composition \(T = T_a T_b \) is given by

\[
\tilde{c}(z, \omega) = R_z^{-1}(z) \left[\sum_{m=0}^{\infty} l(m, n) Y_{b,\mu}(m) Y_{a,\mu}(m) ((z, \bar{\omega})^m + (\omega, \bar{z})^m) - d^{2}_{n,0} \lambda^2(n,0) \gamma_{b,\mu}(0) \gamma_{a,\mu}(0) \right].
\] (3.31)
Proof. According to Lemma 3.3 and (3.25), we have

\[
\tilde{c}(z, w) = \frac{\langle T_aT_bR_w, R_z \rangle}{\langle R_w, R_z \rangle} = R_z^{-1}(z) \langle T_bR_w, aR_z \rangle
\]

\[
= R_z^{-1}(z) \int_{\mathbb{S}^1} (T_bR_w)(u) \overline{R_z(u)} a(|u|) \mu(|u|) d\nu(u)
\]

\[
= R_z^{-1}(z) \int_{\mathbb{S}^1} \langle T_bR_w, R_u \rangle \overline{R_z(u)} a(|u|) \mu(|u|) d\nu(u)
\]

\[
= R_z^{-1}(z) \left(\sum_{|\alpha|=0}^{\infty} \overline{e_\alpha}(w) e_\alpha(z) \gamma_{b, \mu}(|\alpha|) \gamma_{a, \mu}(|\alpha|) + \sum_{|\alpha|=0}^{\infty} \overline{e_\alpha}(z) e_\alpha(w) \gamma_{b, \mu}(|\alpha|) \gamma_{a, \mu}(|\alpha|) \right)
\]

\[
- \delta_{n,0}^2 \lambda^2(n, 0) \gamma_{b, \mu}(0) \gamma_{a, \mu}(0)
\]

\[
= R_z^{-1}(z) \left[\sum_{m=0}^{\infty} I(m, n) \gamma_{b, \mu}(m) \gamma_{a, \nu}(m) (|z \cdot \overline{w}|^m + |w \cdot \overline{z}|^m) - \delta_{n,0}^2 \lambda^2(n, 0) \gamma_{b, \nu}(0) \gamma_{a, \mu}(0) \right].
\]

(3.32)

\[\square\]

Acknowledgment

This work was supported by the National Science Foundation of China (Grant no. 10971020).

References
