Research Article

A New Class of Meromorphically Analytic Functions with Applications to the Generalized Hypergeometric Functions

Firas Ghanim 1 and Maslina Darus 2

1 Faculty of Management, Multimedia University, Cyberjaya, 63100 Selangor, Malaysia
2 School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia

Correspondence should be addressed to Maslina Darus, maslina@ukm.my

Received 27 March 2011; Accepted 7 July 2011

1. Introduction

Let \(\mathcal{A} \) be the class of functions \(f \) which are \emph{analytic} in the open unit disk

\[
U = \{ z \in \mathbb{C} : |z| < 1 \}. \quad (1.1)
\]

As usual, we denote by \(S \) the subclass of \(\mathcal{A} \), consisting of functions which are also \emph{univalent} in \(U \).

Let \(w \) be a fixed point in \(U \) and \(A(w) = \{ f \in H(D) : f(w) = f'(w) - 1 = 0 \} \). In [1], Kanas and Ronning introduced the following classes
\[
S_w = \{ f \in A(w) : f \text{ is univalent in } U \},
\]

\[
ST_w = \{ f \in A(w) : \Re \left(\frac{(z-w)f'(z)}{f(z)} \right) > 0, \, z \in U \},
\]

\[
CV_w = \{ f \in A : 1 + \left(\Re \frac{(z-w)f''(z)}{f'(z)} \right) > 0, \, z \in U \}.
\]

Later, Acu and Owa [2] studied the classes extensively.

The class \(ST_w \) is defined by geometric property that the image of any circular arc centered at \(w \) is starlike with respect to \(f(w) \), and the corresponding class \(S^*_w \) is defined by the property that the image of any circular arc centered at \(w \) is convex. We observed that the definitions are somewhat similar to the ones introduced by Goodman in [3, 4] for uniformly starlike and convex functions except that, in this case, the point \(w \) is fixed.

Let \(\Sigma_w \) denote the subclass of \(A(w) \) consisting of the function of the form

\[
f(z) = \frac{1}{z-w} + \sum_{n=1}^{\infty} a_n (z-w)^n.
\]

The functions \(f \) in \(\Sigma_w \) are said to be starlike functions of order \(\beta \) if and only if

\[
\Re \left\{ -\frac{(z-w)f'(z)}{f(z)} \right\} > \beta \quad ((z-w) \in U),
\]

for some \(0 \leq \beta < 1 \). We denote by \(S^*_w(\beta) \) the class of all starlike functions of order \(\beta \).

Similarly, a function \(f \) in \(S_w \) is said to be convex of order \(\beta \) if and only if

\[
\Re \left(-1 - \frac{(z-w)f''(z)}{f'(z)} \right) > \beta \quad ((z-w) \in U),
\]

for some \(0 \leq \beta < 1 \). We denote by \(C_w(\beta) \) the class of all convex functions of order \(\beta \).

For the function \(f \in \Sigma_w \), we define

\[
I^0_\lambda f(z) = f(z),
\]

\[
I^1_\lambda f(z) = (z-w)f'(z) + \frac{2}{z-w},
\]

\[
I^2_\lambda f(z) = (z-w)\left(I^1_\lambda f(z) \right)' + \frac{2}{z-w},
\]

(1.6)
By applying the above subordination definition, we introduce here a new class \(\Sigma \) if there exists a Schwarz function \(g \) such that:

\[
I_1^k f(z) = (z - w) \left(I_1^{k-1} f(z) \right)' + \frac{2}{z - w} = \frac{1}{z - w} + \sum_{n=1}^{\infty} \left[1 + \lambda(n - 1) \right] a_n(z - w)^n,
\]

where \(\lambda \geq 1, \ k \geq 0 \) and \(z - w \in U \).

The differential operator \(I_1^k \) is studied extensively by Ghanim and Darus [5, 6] and Ghanim et al. [7].

The Hadamard product or convolution of the functions \(f \) given by (1.3) with the function \(g \) and \(h \) given, respectively, by

\[
g(z) = \frac{1}{z - w} + \sum_{n=1}^{\infty} b_n(z - w)^n, \\
h(z) = \frac{1}{z - w} + \sum_{n=1}^{\infty} c_n(z - w)^n,
\]

can be expressed as follows:

\[
(f * g)(z) = \frac{1}{z - w} + \sum_{n=1}^{\infty} a_n b_n(z - w)^n, \\
(f * h)(z) = \frac{1}{z - w} + \sum_{n=1}^{\infty} a_n c_n(z - w)^n.
\]

Suppose that \(f \) and \(g \) are two analytic functions in the unit disk \(U \). Then, we say that the function \(g \) is subordinate to the function \(f \), and we write

\[
g(z) < f(z) \quad (z \in U),
\]

if there exists a Schwarz function \(\varpi(z) \) with \(\varpi(0) = 0 \) and \(|\varpi(z)| < 1 \) such that

\[
g(z) = f(\varpi(z)) \quad (z \in U).
\]

By applying the above subordination definition, we introduce here a new class \(\Sigma_\varpi(A, B, k, \alpha, \lambda) \) of meromorphically functions, which is defined as follows:

Definition 1.1. A function \(f \in \Sigma_\varpi \) of the form (1.3) is said to be in the class \(\Sigma_\varpi(A, B, k, \alpha, \lambda) \) if it satisfies the following subordination property:

\[
\frac{I_1^k(f * g)(z)}{I_1^k(f * h)(z)} < \frac{A - B}{1 + B(z - w)} \quad ((z - w) \in U),
\]

where \(-1 \leq B < A \leq 1, \ k \geq 0, \ \alpha > 0, \ \lambda \geq 1 \), with condition \(I_1^k(f * h)(z) \neq 0 \).
2. Characterization and Other Related Properties

In this section, we begin by proving a characterization property which provides a necessary and sufficient condition for a function \(f \in \Sigma_w \) of the form (1.3) to belong to the class \(\Sigma_w(A, B, k, \alpha, \lambda) \) of meromorphically analytic functions.

Theorem 2.1. The function \(f \in \Sigma_w \) is said to be a member of the class \(\Sigma_w(A, B, k, \alpha, \lambda) \) if it satisfies

\[
\sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k (ab_n(1 + B) - c_n(\alpha(1 + B) + A - B)) a_n \leq A - B.
\]

The equality is attained for the function \(f_n(z) \) given by

\[
f_n(z) = \frac{1}{z - w} + \frac{(A - B)}{[1 + \lambda(n - 1)]^k (ab_n(1 + B) - c_n(\alpha(1 + B) + A - B))} (z - w)^n.
\]

Proof. Let \(f \in \Sigma_w(A, B, k, \alpha, \lambda) \), and suppose that

\[
\frac{I^k_{\lambda}(f * g)(z)}{I^k_{\lambda}(f * h)(z)} = \frac{a - (A - B)(z - w)}{1 + B(z - w)}.
\]

Then, in view of (2.2), we have

\[
\left| \frac{\alpha \sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k a_n(b_n - c_n)(z - w)^{n+1}}{(A - B) - \sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k a_n(\alpha B b_n + (A - B - aB) c_n)(z - w)^{n+1}} \right| \leq \frac{\alpha \sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k a_n(b_n - c_n) |z - w|^{n+1}}{(A - B) - \sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k a_n(\alpha B b_n + (A - B - aB) c_n) |z - w|^{n+1}} \leq 1.
\]

Letting \((z - w) \to 1 \), we get

\[
\sum_{n=1}^{\infty} [1 + \lambda(n - 1)]^k (ab_n(1 + B) - c_n(\alpha(1 + B) + A - B)) a_n \leq (A - B),
\]

which is equivalent to our condition of the theorem, so that \(f \in \Sigma_w(A, B, k, \alpha, \lambda) \). Hence we have the theorem.
Abstract and Applied Analysis

Theorem 2.1 immediately yields the following result.

Corollary 2.2. If the function \(f \in \Sigma \) belongs to the class \(\Sigma / (A,B,k,\alpha,\lambda) \), then

\[
a_n \leq \frac{(A - B)}{[1 + \lambda(n - 1)]^k (ab_n(1 + B) - c_n(\alpha(1 + B) + A - B))},
\]

(2.6)

\(n \geq 1 \), where the equality holds true for the functions \(f_n(z) \) given by (2.2).

We now state the following growth and distortion properties for the class \(\Sigma / (A,B,k,\alpha,\lambda) \).

Theorem 2.3. If the function \(f \) defined by (1.3) is in the class \(\Sigma / (A,B,k,\alpha,\lambda) \), then for \(0 < |z - w| = r < 1 \), one has

\[
\frac{1}{r} - \frac{(A - B)}{(ab_1(1 + B) - c_1(\alpha(1 + B) + A - B))} \leq |f(z)| \leq \frac{1}{r} + \frac{(A - B)}{(ab_1(1 + B) - c_1(\alpha(1 + B) + A - B))} r,
\]

(2.7)

\[
\frac{1}{r^2} - \frac{(A - B)}{(ab_1(1 + B) - c_1(\alpha(1 + B) + A - B))} \leq |f'(z)| \leq \frac{1}{r^2} + \frac{(A - B)}{(ab_1(1 + B) - c_1(\alpha(1 + B) + A - B))}.
\]

Proof. Since \(f \in \Sigma / (A,B,k,\alpha,\lambda) \), Theorem 2.1 readily yields the inequality

\[
\sum_{n=1}^{\infty} a_n \leq \frac{(A - B)}{(ab_1(1 + B) - c_1(\alpha(1 + B) + A - B))}.
\]

(2.8)

Thus, for \(0 < |z - w| = r < 1 \) and utilizing (2.8), we have
\[|f(z)| \leq \frac{1}{|z-w|} + \sum_{n=1}^{m} a_n |z-w|^n \]
\[\leq \frac{1}{r} + r \sum_{n=1}^{m} a_n \]
\[\leq \frac{1}{r} + \left(\frac{A-B}{(ab_1(1+B) - c_1(\alpha(1+B) + A-B))} \right)^r \]
\[|f(z)| \geq \frac{1}{|z-w|} - \sum_{n=1}^{m} a_n |z-w|^n \]
\[\geq \frac{1}{r} - \left(\frac{A-B}{(ab_1(1+B) - c_1(\alpha(1+B) + A-B))} \right)^r. \]

Also, from Theorem 2.1, we get
\[\sum_{n=1}^{\infty} n a_n \leq \frac{(A-B)}{(ab_1(1+B) - c_1(\alpha(1+B) + A-B))}. \]

Hence
\[|f'(z)| \leq \frac{1}{|z-w|^2} + \sum_{n=1}^{m} n a_n |z-w|^{n-1} \]
\[\leq \frac{1}{r^2} + \sum_{n=1}^{m} n a_n \]
\[\leq \frac{1}{r^2} + \left(\frac{A-B}{(ab_1(1+B) - c_1(\alpha(1+B) + A-B))} \right)^r \]
\[|f'(z)| \geq \frac{1}{|z-w|^2} - \sum_{n=1}^{m} n a_n |z-w|^{n-1} \]
\[\geq \frac{1}{r^2} - \sum_{n=1}^{m} n a_n \]
\[\geq \frac{1}{r^2} - \left(\frac{A-B}{(ab_1(1+B) - c_1(\alpha(1+B) + A-B))} \right)^r. \]

This completes the proof of Theorem 2.3.
We next determine the radius of meromorphically starlikeness of the class \(\Sigma_\omega(A, B, k, \alpha, \lambda) \), which is given by Theorem 2.4.

Theorem 2.4. If the function \(f \) defined by (1.3) is in the class \(\Sigma_\omega(A, B, k, \alpha, \lambda) \), then \(f \) is meromorphically starlike of order \(\delta \) in the disk \(|z - w| < r_1\), where

\[
 r_1 = \inf_{n \geq 1} \left\{ \left(1 - \frac{\left(1 - \delta\right)(ab_n(1 + B) - c_n(\alpha(1 + B) + A - B))}{(n + 2 - \delta)(A - B)} \right)^{1/(n+1)} \right\}. \tag{2.12}
\]

The equality is attained for the function \(f_n(z) \) given by (2.2).

Proof. It suffices to prove that

\[
 \left| \frac{(z - w)(I^k f(z))'}{I^k f(z)} + 1 \right| \leq 1 - \delta. \tag{2.13}
\]

For \(|z - w| < r_1\), we have

\[
 \left| \frac{(z - w)(I^k f(z))'}{I^k f(z)} + 1 \right| = \left| \frac{\sum_{n=1}^{\infty} (n + 1)[1 + \lambda(n-1)]^k a_n(z - w)^n}{1/(z - w) + \sum_{n=1}^{\infty} (n + 1)[1 + \lambda(n-1)]^k a_n(z - w)^n} \right| \leq \frac{\sum_{n=1}^{\infty} (n + 1)[1 + \lambda(n-1)]^k a_n|z - w|^{n+1}}{1 - \sum_{n=1}^{\infty} (1 + \lambda(n-1))^k a_n|z - w|^{n+1}}. \tag{2.14}
\]

Hence (2.14) holds true for

\[
 \sum_{n=1}^{\infty} (n + 1)[1 + \lambda(n-1)]^k a_n|z - w|^{n+1} \leq (1 - \delta) \left(1 - \sum_{n=1}^{\infty} (1 + \lambda(n-1))^k a_n|z - w|^{n+1} \right), \tag{2.15}
\]

or

\[
 \sum_{n=1}^{\infty} (n + 2 - \delta)[1 + \lambda(n-1)]^k a_n|z - w|^{n+1} \leq 1. \tag{2.16}
\]

With the aid of (2.1) and (2.16), it is true to say that for fixed \(n \)

\[
 \frac{(n + 2 - \delta)[1 + \lambda(n-1)]^k|z - w|^{n+1}}{(1 - \delta)} \leq \frac{[1 + \lambda(n-1)]^k(ab_n(1 + B) - c_n(\alpha(1 + B) + A - B))}{(A - B)} \quad (n \geq 1). \tag{2.17}
\]
Solving (2.17) for $|z - w|$, we obtain

$$|z - w| < \left\{ \frac{(1 - \delta)(a_{n+1} + B) - c_n(a_{n+1} + A - B))}{(n + 2 - \delta)(A - B)} \right\}^{1/(n+1)}. \quad (2.18)$$

This completes the proof of Theorem 2.4. \qed

3. Applications Involving Generalized Hypergeometric Functions

Let us define the function $\tilde{\phi}(a, c; z)$ by

$$\tilde{\phi}(a, c; z) = \frac{1}{z - w} \sum_{n=0}^{\infty} \frac{(a)_{n+1}}{(c)_{n+1}} a_n (z - w)^n, \quad (3.1)$$

for $c \neq 0, -1, -2, \ldots$, and $a \in \mathbb{C}/\{0\}$, where $(\lambda)n = \lambda(\lambda + 1)n+1$ is the Pochhammer symbol. We note that

$$\tilde{\phi}(a, c; z) = \frac{1}{z - w} 2F_1(1, a; c; z), \quad (3.2)$$

where

$$2F_1(b, a; c; z) = \sum_{n=0}^{\infty} \frac{(b)_n (a)_n (z - w)^n}{(c)_n n!}. \quad (3.3)$$

Corresponding to the function $\tilde{\phi}(a, c; z)$ and using the Hadamard product which was defined earlier in the introduction section for $f(z) \in \Sigma$, we define here a new linear operator $L^*(a, c)$ on Σ by

$$L^*(a, c) f(z) = \tilde{\phi}(a, c; z) * f(z) = \frac{1}{z - w} \sum_{n=0}^{\infty} (a)_{n+1} \left| \frac{(a)_{n+1}}{(c)_{n+1}} a_n (z - w)^n \right|. \quad (3.4)$$

For a function $f \in L^*(a, c) f(z)$, we define

$$I^0(L^*(a, c) f(z)) = L^*(a, c) f(z), \quad (3.5)$$

and, for $k = 1, 2, 3, \ldots$,

$$I^k(L^*(a, c) f(z)) = z \left(I^{k-1} L^*(a, c) f(z) \right) + \frac{2}{z - w} \sum_{n=1}^{\infty} a^n (a)_{n+1} \left| \frac{(a)_{n+1}}{(c)_{n+1}} a_n (z - w)^n \right|. \quad (3.6)$$
We note \(I^k(L^*_n(a,a)f(z))\) studied by Ghanim and Darus [5, 6] and Ghanim et al. [7], and also, \(I^k(L^*_n(a,c)f(z))\) studied by Ghanim and Darus [8, 9] and Ghanim et al. [10].

The subordination relation (1.12) in conjunction with (3.4) and (3.6) takes the following form:

\[
\frac{\alpha I^kL^*_n(a+1,c)f(z)}{I^kL^*_w(a,c)f(z)} = \alpha - \frac{(A-B)(z-w)}{1+B(z-w)}
\]

(0 ≤ B < A ≤ 1, k ≥ 0, \(\alpha > 0\)).

Definition 3.1. A function \(f \in \Sigma_w\) of the form (1.3) is said to be in the class \(\Sigma_w(A,B,k,\alpha,a,c)\) if it satisfies the subordination relation (3.7) above.

Theorem 3.2. The function \(f \in \Sigma_w\) is said to be a member of the class \(\Sigma_w(A,B,k,\alpha,a,c)\) if it satisfies

\[
\sum_{n=1}^{\infty} n^k(ab_n(1+B) - c_n(\alpha(1+B) + A - B))\frac{[(a)_{n+1}]}{[(c)_{n+1}]} a_n \leq (A-B).
\]

The equality is attained for the function \(f_n(z)\) given by

\[
f_n(z) = \frac{1}{z-w} + \sum_{n=1}^{\infty} n^k(ab_n(1+B) - c_n(\alpha(1+B) + A - B))\frac{[(a)_{n+1}]}{[(c)_{n+1}]} (z-w)^n,
\]

\(n \geq 1\).

Proof. By using the same technique employed in the proof of Theorem 2.1 along with Definition 3.1, we can prove Theorem 3.2.

The following consequences of Theorem 3.2 can be deduced by applying (3.8) and (3.9) along with Definition 3.1.

Corollary 3.3. If the function \(f \in \Sigma_w\) belongs to the class \(\Sigma_w(A,B,k,\alpha,a,c)\), then

\[
a_n \leq \frac{(A-B)\frac{[(c)_{n+1}]}{[(a)_{n+1}]} n^k(ab_n(1+B) - c_n(\alpha(1+B) + A - B))}{[(a)_{n+1}]},
\]

\(n \geq 1\), where the equality holds true for the functions \(f_n(z)\) given by (3.9).

Corollary 3.4. If the function \(f\) defined by (1.3) is in the class \(\Sigma_w(A,B,k,\alpha,a,c)\), then \(f\) is meromorphically starlike of order \(\delta\) in the disk \(|z-w| < r_3\), where

\[
r_3 = \inf_{n \geq 1} \left\{ \left(\frac{(1-\delta)(ab_n(1+B) - c_n(\alpha(1+B) + A - B))\frac{[(c)_{n+1}]}{[(a)_{n+1}]}}{(n+2-\delta)(A-B)\frac{[(a)_{n+1}]}{[(a)_{n+1}]}^{1/(n+1)}} \right) \right\}.
\]

The equality is attained for the function \(f_n(z)\) given by (3.9).
A slight background related to the formation of the present operator can be found in [11], and other work can be tackled using this type of operator. Also, the meromorphic functions with the generalized hypergeometric functions were considered recently by Dziok and Srivastava [12, 13], Liu [14], Liu and Srivastava [15], and Cho and Kim [16].

Acknowledgment

The work presented here was fully supported by UKM-ST-06-FRGS0244-2010.

References

