Necessary and Sufficient Conditions for the Boundedness of Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces

Emin Guliyev, 1 Ahmet Eroglu, 2 and Yagub Mammadov 1, 3

1 Institute of Mathematics and Mechanics, AZ 1141 Baku, Azerbaijan
2 Department of Mathematics, Nigde University, 51100 Nigde, Turkey
3 Nakhchivan Teacher-Training Institute, AZ 7003 Nakhchivan, Azerbaijan

Correspondence should be addressed to Yagub Mammadov, yagubmammadov@yahoo.com

Received 15 April 2010; Revised 13 June 2010; Accepted 23 June 2010

Copyright © 2010 Emin Guliyev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the generalized shift operator, associated with the Dunkl operator
\[\Lambda_\alpha(f)(x) = (d/dx)f(x) + ((2\alpha + 1)/x)((f(x) - f(-x))/2), \]
where \(\alpha > -1/2 \). We study the boundedness of the Dunkl-type fractional maximal operator \(M_\beta \) in the Dunkl-type Morrey space \(L_{p,1,\lambda}(\mathbb{R}) \), \(0 \leq \lambda < 2\alpha + 2 \). We obtain necessary and sufficient conditions on the parameters for the boundedness \(M_\beta \), \(0 \leq \beta < 2\alpha + 2 \) from the spaces \(L_{p,1,\lambda}(\mathbb{R}) \) to the spaces \(L_{q,1,\lambda}(\mathbb{R}) \), \(1 < q < \infty \), and from the spaces \(L_{1,1,\lambda}(\mathbb{R}) \) to the weak spaces \(WL_{q,1,\lambda}(\mathbb{R}) \), \(1 < q < \infty \). As an application of this result, we get the boundedness of \(M_\beta \) from the Dunkl-type Besov-Morrey spaces \(B^s_{p,q,1,\lambda}(\mathbb{R}) \) to the spaces \(B^s_{q,1,1,\lambda}(\mathbb{R}) \), \(1 < p \leq q < \infty \), \(0 \leq \lambda < 2\alpha + 2 \), \(1/p - 1/q = \beta/(2\alpha + 2 - \lambda) \), \(1 \leq \theta \leq \infty \), and \(0 < s < 1 \).

1. Introduction

On the real line, the Dunkl operators \(\Lambda_\alpha \) are differential-difference operators introduced in 1989 by Dunkl [1]. For a real parameter \(\alpha > -1/2 \), we consider the Dunkl operator, associated with the reflection group \(\mathbb{Z}_2 \) on \(\mathbb{R} \):
\[\Lambda_\alpha(f)(x) = \frac{d}{dx}f(x) + \frac{2\alpha + 1}{x}\left(\frac{f(x) - f(-x)}{2}\right). \] (1.1)

In the theory of partial differential equations, together with weighted \(L_{p,w}(\mathbb{R}^n) \) spaces, Morrey spaces \(L_{p,1}(\mathbb{R}^n) \) play an important role. Morrey spaces were introduced by Morrey in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations (see [2]).
The Hardy-Littlewood maximal function, fractional maximal function, and fractional integrals are important technical tools in harmonic analysis, theory of functions, and partial differential equations. In the works [3–5], the maximal operator and in [6, 7] the fractional maximal operator associated with the Dunkl operator on \mathbb{R} were studied. In this work, we study the boundedness of the fractional maximal operator M_β (Dunkl-type fractional maximal operator) in Morrey spaces $L_{p,1,\alpha}(\mathbb{R})$ (Dunkl-type Morrey spaces) associated with the Dunkl operator on \mathbb{R}. We obtain the necessary and sufficient conditions for the boundedness of the operator M_β from the spaces $L_{p,1,\alpha}(\mathbb{R})$ to $L_{q,1,\alpha}(\mathbb{R})$, $1 < p \leq q < \infty$, and from the spaces $L_{1,1,\alpha}(\mathbb{R})$ to the weak spaces $WL_{q,1,\alpha}(\mathbb{R})$, $1 < q < \infty$.

The paper is organized as follows. In Section 2, we present some definitions and auxiliary results. In Section 3, we give our main result on the boundedness of the operator M_β in $L_{p,1,\alpha}(\mathbb{R})$. We obtain necessary and sufficient conditions on the parameters for the boundedness of the operator M_β from the spaces $L_{p,1,\alpha}(\mathbb{R})$ to the spaces $L_{q,1,\alpha}(\mathbb{R})$, $1 < p \leq q < \infty$, and from the spaces $L_{1,1,\alpha}(\mathbb{R})$ to the weak spaces $WL_{q,1,\alpha}(\mathbb{R})$, $1 < q < \infty$. As an application of this result, in Section 4 we prove the boundedness of the operator M_β from the Dunkl-type Besov-Morrey spaces $B^s_{p0,1,\alpha}(\mathbb{R})$ to the spaces $B^s_{q0,1,\alpha}(\mathbb{R})$, $1 < p \leq q < \infty$, $0 \leq \lambda < 2\alpha + 2$, $1/p - 1/q = \beta/(2\alpha + 2 - \lambda)$, $1 \leq \theta \leq \infty$, and $0 < s < 1$.

Finally, we mention that, C will be always used to denote a suitable positive constant that is not necessarily the same in each occurrence.

2. Preliminaries

Let $\alpha > -1/2$ be a fixed number and μ_α be the weighted Lebesgue measure on \mathbb{R}, given by

$$d\mu_\alpha(x) := \left(2^{\alpha+1}\Gamma(\alpha + 1)\right)^{-1}|x|^{2\alpha+1}dx.$$ \hfill (2.1)

For every $1 \leq p \leq \infty$, we denote by $L_{p,\alpha}(\mathbb{R}) = L_p(d\mu_\alpha)(\mathbb{R})$ the spaces of complex-valued functions f, measurable on \mathbb{R} such that

$$\|f\|_{p,\alpha} := \left(\int_{\mathbb{R}} |f(x)|^p d\mu_\alpha(x)\right)^{1/p} < \infty \quad \text{if } p \in [1, \infty),$$

$$\|f\|_{\infty,\alpha} := \text{ess sup}_{x \in \mathbb{R}} |f(x)| \quad \text{if } p = \infty.$$ \hfill (2.2)

For $1 \leq p < \infty$ we denote by $WL_{p,\alpha}(\mathbb{R})$, the weak $L_{p,\alpha}(\mathbb{R})$ spaces defined as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}$ with the finite norm

$$\|f\|_{WL_{p,\alpha}} := \sup_{r > 0} r^{\alpha} \mu_\alpha\{x \in \mathbb{R} : |f(x)| > r\}^{1/p}.$$ \hfill (2.3)

Note that

$$L_{p,\alpha} \subset WL_{p,\alpha}, \quad \|f\|_{WL_{p,\alpha}} \leq \|f\|_{p,\alpha} \quad \forall f \in L_{p,\alpha}(\mathbb{R}).$$ \hfill (2.4)
For all $x, y, z \in \mathbb{R}$, we put

$$W_{\alpha}(x, y, z) := (1 - \sigma_{x,y,z} + \sigma_{z,x,y} + \sigma_{z,y,x}) \Delta_{\alpha}(x, y, z),$$

(2.5)

where

$$\sigma_{x,y,z} := \begin{cases} \frac{x^2 + y^2 - z^2}{2xy} & \text{if } x, y \in \mathbb{R} \setminus 0, \\ 0 & \text{otherwise} \end{cases}$$

(2.6)

and Δ_{α} is the Bessel kernel given by

$$\Delta_{\alpha}(x, y, z) := \begin{cases} d_{\alpha} \left(\frac{[(|x| + |y|)^2 - z^2][z^2 - (|x| - |y|)^2]}{|xyz|^{2\alpha}} \right)^{\alpha^{-1}/2} & \text{if } |z| \in A_{x,y}, \\ 0 & \text{otherwise}, \end{cases}$$

(2.7)

where $d_{\alpha} = (\Gamma(\alpha + 1))^2 / (2^{n-1}\sqrt{\pi} \Gamma(\alpha + 1/2))$ and $A_{x,y} = [|x| - |y|, |x| + |y|]$. In the sequel we consider the signed measure $\nu_{x,y}$ on \mathbb{R}, given by

$$\nu_{x,y} := \begin{cases} W_{\alpha}(x, y, z)d\mu_{\alpha}(z) & \text{if } x, y \in \mathbb{R} \setminus 0, \\ d\delta_{x}(z) & \text{if } y = 0, \\ d\delta_{y}(z) & \text{if } x = 0. \end{cases}$$

(2.8)

For $x, y \in \mathbb{R}$ and f being a continuous function on \mathbb{R}, the Dunkl translation operator τ_x is given by

$$\tau_x f(y) := \int_{\mathbb{R}} f(z) d\nu_{x,y}(z).$$

(2.9)

Using the change of variable $z = \Psi(x,y,\theta) = \sqrt{x^2 + y^2 - 2xy \cos \theta}$, we have also (see [8])

$$\tau_x f(y) = C_\alpha \int_0^{\pi} \left[f(\Psi) + f(-\Psi) + \frac{x+y}{\Psi} \left(f(\Psi) - f(-\Psi) \right) \right] d\nu_{\alpha}(\theta),$$

(2.10)

where $d\nu_{\alpha}(\theta) = (1 - \cos \theta) \sin^{2\alpha} \theta d\theta$ and $C_\alpha = \Gamma(\alpha + 1)/2\sqrt{\pi} \Gamma(\alpha + 1/2)$.

Proposition 2.1 (see Soltani [9]). For all $x \in \mathbb{R}$ the operator τ_x extends to $L_{p,\alpha}(\mathbb{R})$, $p \geq 1$ and we have for $f \in L_{p,\alpha}(\mathbb{R})$,

$$\|\tau_x f\|_{L_{p,\alpha}} \leq 4\|f\|_{L_{p,\alpha}}.$$

(2.11)
Let $B(x,r) = \{ y \in \mathbb{R} : |y| \leq \max\{0,|x|-r\}, |x| + r \geq 0 \}$, and $b_\alpha = [2^{\alpha+1}(\alpha + 1) \Gamma(\alpha + 1)]^{-1}$. Then $B(0,r) =]-r,r[$. Then $b_\alpha B(0,r) = b_\alpha r^{2\alpha+2}$.

Now we define the Dunkl-type fractional maximal function (see [3–5]) by

$$M_\beta f(x) = \sup_{r>0} (b_\alpha B(0,r))^{-1+\beta/(2\alpha+2)} \int_{B(0,r)} \tau_x |f(y)| \, d\mu_\alpha(y), \quad 0 \leq \beta < 2\alpha + 2. \quad (2.12)$$

If $\beta = 0$, then $M = M_0$ is the Dunkl-type maximal operator.

In [3–5] was proved the following theorem (see also [10]).

Theorem 2.2. (1) If $f \in L_{1,\alpha}(\mathbb{R})$, then for every $\beta > 0$

$$\mu_\alpha \{ x \in \mathbb{R} : Mf(x) > \beta \} \leq \frac{C}{\beta} \| f \|_{L_{1,\alpha}}, \quad (2.13)$$

where $C > 0$ is independent of f.

(2) If $f \in L_{p,\alpha}(\mathbb{R})$, $1 < p \leq \infty$, then $Mf \in L_{p,\alpha}(\mathbb{R})$ and

$$\| Mf \|_{L_{p,\alpha}} \leq C_p \| f \|_{L_{p,\alpha}}, \quad (2.14)$$

where $C_p > 0$ is independent of f.

Definition 2.3. Let $1 \leq p < \infty$, $0 \leq \lambda \leq 2\alpha + 2$. We denote by $L_{p,\lambda,\alpha}(\mathbb{R})$ Morrey space (equiv. Dunkl-type Morrey space), associated with the Dunkl operator as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}$, with the finite norm

$$\| f \|_{p,\lambda,\alpha} = \sup_{x \in \mathbb{R}, r > 0} \left(r^{-1} \int_{B(0,r)} \tau_x |f(y)|^p \, d\mu_\alpha(y) \right)^{1/p}. \quad (2.15)$$

Note that $L_{p,0,\alpha}(\mathbb{R}) = L_{p,\alpha}(\mathbb{R})$, and if $\lambda < 0$ or $\lambda > 2\alpha + 2$, then $L_{p,\lambda,\alpha}(\mathbb{R}) = \emptyset$, where \emptyset is the set of all functions equivalent to 0 on \mathbb{R} (see also [7]).

Definition 2.4. Let $1 \leq p < \infty$ and $0 \leq \lambda \leq 2\alpha + 2$. We denote by $WL_{p,\lambda,\alpha}(\mathbb{R})$ a weak Dunkl-type Morrey space as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}$ with finite norm

$$\| f \|_{WL_{p,\lambda,\alpha}} = \sup_{t > 0} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-1} \int_{\{ y \in B(0,r) : \tau_x |f(y)| > t \}} d\mu_\alpha(y) \right)^{1/p}. \quad (2.16)$$

We note that

$$L_{p,\lambda,\alpha}(\mathbb{R}) \subset WL_{p,\lambda,\alpha}(\mathbb{R}), \quad \| f \|_{WL_{p,\lambda,\alpha}} \leq \| f \|_{p,\lambda,\alpha}. \quad (2.17)$$
Abstract and Applied Analysis

3. Main Results

The following theorem is our main result in which we obtain the necessary and sufficient conditions for the Dunkl-type fractional maximal operator M_β to be bounded from the spaces $L_{p,\lambda,\alpha}(\mathbb{R})$ to $L_{q,\lambda,\alpha}(\mathbb{R})$, $1 < p < q < \infty$ and from the spaces $L_{1,\lambda,\alpha}(\mathbb{R})$ to the weak spaces $WL_{q,\lambda,\alpha}(\mathbb{R})$, $1 < q < \infty$.

Theorem 3.1. Let $0 \leq \beta < 2\alpha + 2$, $0 \leq \lambda < 2\alpha + 2$, and $1 \leq p \leq (2\alpha + 2 - \lambda)/\beta$.

1. If $p = 1$, then the condition $1 - 1/q = \beta/(2\alpha + 2 - \lambda)$ is necessary and sufficient for the boundedness of M_β from $L_{1,\lambda,\alpha}(\mathbb{R})$ to $WL_{q,\lambda,\alpha}(\mathbb{R})$.

2. If $1 < p < (2\alpha + 2 - \lambda)/\beta$, then the condition $(1/p) - (1/q) = \beta/(2\alpha + 2 - \lambda)$ is necessary and sufficient for the boundedness of M_β from $L_{p,\lambda,\alpha}(\mathbb{R})$ to $L_{q,\lambda,\alpha}(\mathbb{R})$.

3. If $p = (2\alpha + 2 - \lambda)/\beta$, then M_β is bounded from $L_{p,\lambda,\alpha}(\mathbb{R})$ to $L_{\infty}(\mathbb{R})$.

For $1 \leq p \leq \infty$, $0 \leq \lambda < 2\alpha + 2$, and $0 < s < 2$, the Dunkl-type Besov-Morrey $B^s_{p\theta,\lambda,\alpha}(\mathbb{R})$ consists of all functions f in $L_{p,\lambda,\alpha}(\mathbb{R})$ so that

$$
\|f\|_{B^s_{p\theta,\lambda,\alpha}} = \|f\|_{L_{p,\lambda,\alpha}} + \left(\int_\mathbb{R} \left(\frac{\|\tau_x f(\cdot) - f(\cdot)\|_{L_{p,\lambda,\alpha}}}{|x|^{2\alpha + 2 + s\theta}} \right) d\mu_\alpha(x) \right)^{1/\theta} < \infty. \quad (3.1)
$$

Besov spaces in the setting of the Dunkl operators were studied by Abdelkefi and Sifi [11], Bouguila et al. [12], Guliyev and Mammadov [10], and Kamoun [13]. In the following theorem, we prove the boundedness of the Dunkl-type fractional maximal operator in the Dunkl-type Besov-Morrey spaces.

Theorem 3.2. For $1 < p \leq q < \infty$, $0 \leq \lambda < 2\alpha + 2$, $(1/p) - (1/q) = \beta/(2\alpha + 2 - \lambda)$, $1 \leq \theta \leq \infty$, and $0 < s < 1$, the Dunkl-type fractional maximal operator M_β is bounded from $B^s_{p\theta,\lambda,\alpha}(\mathbb{R})$ to $B^s_{q\theta,\lambda,\alpha}(\mathbb{R})$. More precisely, there is a constant $C > 0$ such that

$$
\|M_\beta f\|_{B^s_{q\theta,\lambda,\alpha}} \leq C \|f\|_{B^s_{p\theta,\lambda,\alpha}} \quad (3.2)
$$

hold for all $f \in B^s_{p\theta,\lambda,\alpha}(\mathbb{R})$.

Remark 3.3. Note that Theorem 3.2 in the case $\lambda = 0$ was proved in [10].

4. Boundedness of the Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces

In the following theorem, we obtain the boundedness of the Dunkl-type fractional maximal operator M_β in the Dunkl-type Morrey spaces $L_{p,\lambda,\alpha}(\mathbb{R})$.
Theorem 4.1. Let $0 \leq \beta < 2\alpha + 2$, $0 \leq \lambda < 2\alpha + 2$, $f \in L_{p,\lambda,\alpha}(\mathbb{R})$, and $1 \leq p \leq (2\alpha + 2 - \lambda)/\beta$.

1. If $p = 1$ and $1 - 1/q = \beta/(2\alpha + 2 - \lambda)$, then $M_\beta f \in WL_{q,\lambda,\alpha}(\mathbb{R})$ and

$$
\|M_\beta f\|_{WL_{q,\lambda,\alpha}} \leq C\|f\|_{1,\lambda,\alpha'},
$$

where $C > 0$ is independent of f.

2. If $1 < p < (2\alpha + 2 - \lambda)/\beta$ and $(1/p) - (1/q) = \beta/(2\alpha + 2 - \lambda)$, then $M_\beta f \in L_{q,\lambda,\alpha}(\mathbb{R})$ and

$$
\|M_\beta f\|_{q,\lambda,\alpha} \leq C\|f\|_{p,\lambda,\alpha'},
$$

where $C > 0$ is independent of f.

3. If $p = (2\alpha + 2 - \lambda)/\beta$ and $q = \infty$, then $M_\beta f \in L_{\infty}(\mathbb{R})$ and

$$
\|M_\beta f\|_{\infty} \leq b_\alpha^{-1/p(2\alpha+2)}\|f\|_{p,\lambda,\alpha'}.
$$

Proof. The maximal function $Mf(x)$ may be interpreted as a maximal function defined on a space of homogeneous type. By this we mean a topological space X equipped with a continuous pseudometric ρ and a positive measure μ satisfying

$$
\mu(E,2r) \leq C_0 \mu(E,r)
$$

with a constant C_0 being independent of x and $r > 0$. Here $E(x,r) = \{y \in X : \rho(x,y) < r\}$, $\rho(x,y) = |x - y|$. Let (X,ρ,μ) be a space of homogeneous type, where $X = \mathbb{R}$, $\rho(x,y) = |x - y|$, and $d\mu(x) = d\mu_\alpha(x)$. It is clear that this measure satisfies the doubling condition (4.4).

Define

$$
M_\mu f(x) = \sup_{r>0} (\mu E(x,r))^{-1} \int_{E(x,r)} |f(y)| d\mu(y).
$$

It is well known that the maximal operator M_μ is bounded from $L_{1,\lambda}(X,\mu)$ to $WL_{1,\lambda}(X,\mu)$ and is bounded on $L_{p,\lambda}(X,\mu)$ for $1 < p < \infty$, $0 \leq \lambda < 2\alpha + 2$ (see [14, 15]).

The following inequality was proved in [6]

$$
Mf(x) \leq CM_\mu f(x),
$$

where $C > 0$ is independent of f.

Then from (4.6) we get the boundedness of the operator M from $L_{1,\lambda,\alpha}(\mathbb{R})$ to $WL_{1,\lambda,\alpha}(\mathbb{R})$ and on $L_{p,\lambda,\alpha}(\mathbb{R})$, $1 < p < \infty$. Thus in the case $\beta = 0$ we complete the proof of (1) and (2).
Let $t > 0$, $0 < \beta < 2\alpha + 2$, $f \in L_{p,\lambda,\alpha}(\mathbb{R})$, $1 \leq p \leq (2\alpha + 2 - \lambda)/\beta$ and $(1/p) - (1/q) = \beta/(2\alpha + 2 - \lambda)$. Applying the Hölders inequality we have

$$
M_\beta f(x) = \max \left\{ \sup_{r \geq t} (\mu_B(0, r))^{\beta/(2\alpha+2)-1} \int_{B(0, r)} \tau_x |f(y)| \, d\mu_\alpha(y), \sup_{r < t} (\mu_B(0, r))^{\beta/(2\alpha+2)-1} \int_{B(0, r)} \tau_x |f(y)| \, d\mu_\alpha(y) \right\}
$$

(4.7)

$$
\leq b_\alpha^{\beta/(2\alpha+2)} \max \left\{ b_\alpha^{1-1/p} \beta^{(2\alpha+2-\lambda)/p} f \|_{p,\lambda,\alpha} \| \right\}.$$

Therefore, for all $t > 0$, we get

$$
M_\beta f(x) \leq b_\alpha^{\beta/(2\alpha+2)} \left(b_\alpha^{1-1/p} \beta^{(2\alpha+2-\lambda)/p} + f \|_{p,\lambda,\alpha} \right) Mf(x).
$$

(4.8)

The minimum value of the right-hand side (4.8) is attained at

$$
t = \left(\frac{2\alpha + 2 - \lambda}{p} \beta^{1-1/p} f \|_{p,\lambda,\alpha} \right)^{p/(2\alpha+2-\lambda)}
$$

(4.9)

and hence

$$
M_\beta f(x) \leq b_\alpha^{\beta/(2\alpha+2) - \beta/(2\alpha+2-\lambda)} \| f \|_{p,\lambda,\alpha}^{1-p/q} (Mf(x))^{p/q}.
$$

(4.10)

Then for $1 < p \leq (2\alpha + 2 - \lambda)/\beta$ from (4.10), we have

$$
\| M_\beta f \|_{q,\lambda,\alpha} = \sup_{r > 0} \left(r^{-1} \int_{B(0, r)} \tau_x (M_\beta f(y))^q d\mu_\alpha(y) \right)^{1/q}
$$

(4.11)

$$
\leq b_\alpha^{\beta/(2\alpha+2) - \beta/(2\alpha+2-\lambda)} \| f \|_{p,\lambda,\alpha}^{1-p/q} \left(r^{-1} \int_{B(0, r)} \tau_x (Mf(y))^p d\mu_\alpha(y) \right)^{1/q}
$$

$$
\leq b_\alpha^{\beta/(2\alpha+2) - \beta/(2\alpha+2-\lambda)} \| f \|_{p,\lambda,\alpha}^{1-p/q} Mf \|_{p,\lambda,\alpha}^{p/q}
$$

$$
\leq C \| f \|_{p,\lambda,\alpha},
$$

where $C > 0$ is independent of f.

Abstract and Applied Analysis
Also for \(p = 1 \) from (4.10) we have

\[
\|M_\beta f\|_{WL_{L,q,\lambda}} = \sup_{t > 0} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-1} \int_{y \in B(0,r) : \tau_x M_\beta f(y) > t} d\mu_\alpha(y) \right)^{1/q}
\]

\[
\leq \sup_{t > 0} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-1} \int_{y \in B(0,r) : \tau_x Mf(y) > b_\alpha^{-\beta/(2\alpha+2)} \|f\|_{1,\lambda,\alpha}^{q/(2\alpha+2)-1} \|f\|_{1,\lambda,\alpha}^{-q/(2\alpha+2)} d\mu_\alpha(y) \right)^{1/q}
\]

\[
\leq b_\alpha^{\beta/(2\alpha+2) - \beta/(2\alpha+2)} \|f\|_{1,\lambda,\alpha} \|Mf\|_{WL_{L,q,\lambda}}^{1/q}
\]

\[
\leq C \|f\|_{1,\lambda,\alpha},
\]

(4.12)

where \(C > 0 \) is independent of \(f \).

Therefore, the case \(\beta > 0 \) complete the proof of (1) and (2).

(3) Let \(p = (2\alpha + 2 - \lambda)/\beta, f \in L_{p,\lambda,\alpha}(\mathbb{R}) \); then applying Hölder's inequality, we obtain

\[
\left(\mu_\alpha B(0, r) \right)^{-1+\beta/(2\alpha+2)} \int_{B(0,r)} \tau_x |f(y)| d\mu_\alpha(y)
\]

\[
\leq \left(\mu_\alpha B(0, r) \right)^{-1+\beta/(2\alpha+2)+1/p} \left(\int_{B(0,r)} \tau_x |f(y)|^p d\mu_\alpha(y) \right)^{1/p}
\]

\[
= b_\alpha^{\beta/(2\alpha+2)-1/p(2\alpha+2)} \left(r^{-1} \int_{B(0,r)} \tau_x |f(y)|^p d\mu_\alpha(y) \right)^{1/p}
\]

\[
\leq b_\alpha^{\beta/(2\alpha+2)-1/p(2\alpha+2)} \|f\|_{p,\lambda,\alpha}.
\]

Thus the case \(\beta > 0 \) completes the proof of (3).

Theorem 4.1 has been proved. \(\square \)

Proof of Theorem 3.1. Sufficiency part of the proof follows from Theorem 4.1.

Necessity. (1) Let \(1 < p \leq (2\alpha + 2 - \lambda)/\alpha \) and \(M_\beta \) be bounded from \(L_{p,\lambda,\alpha}(\mathbb{R}) \) to \(L_{q,\lambda,\alpha}(\mathbb{R}) \).

Define \(f_t(x) := f(tx), t > 0 \). Then

\[
\|f_t\|_{p,\lambda,\alpha} = t^{-(2\alpha+2)/p} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-1} \int_{B(0,tr)} \tau_{tx} |f(y)|^p d\mu_\alpha(y) \right)^{1/p}
\]

\[
= t^{-(2\alpha+2-1)/p} \|f\|_{p,\lambda,\alpha}
\]

(4.14)
and $M_\beta f_i(x) = t^{-\beta} M_\beta f(tx)$,

$$\|M_\beta f f_i\|_{L_{q,\lambda,\alpha}} = t^{-\beta} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-\lambda} \int_{B(0,r)} \tau(x) |M_\beta f(y)|^q \, d\mu_\alpha(y) \right)^{1/q}$$

$$= t^{-\beta(2\alpha + 2\lambda)/q} \sup_{x \in \mathbb{R}, r > 0} \left(r^{-\lambda} \int_{B(0,t_\lambda r)} \tau(x) |M_\beta f(y)|^q \, d\mu_\alpha(y) \right)^{1/q}$$

$$= t^{-\beta(2\alpha + 2\lambda)/q} \|M_\beta f f\|_{L_{q,\lambda,\alpha}}$$

(4.15)

By the boundedness of M_β from $L_{p,\lambda,\alpha}(\mathbb{R})$ to $L_{q,\lambda,\alpha}(\mathbb{R})$,

$$\|M_\beta f\|_{L_{q,\lambda,\alpha}} = r^{(2\alpha + 2\lambda)/q} \|M_\beta f f_r\|_{L_{q,\lambda,\alpha}}$$

$$\leq C r^{(2\alpha + 2\lambda)/q} \|f_r\|_{L_{p,\lambda,\alpha}}$$

$$= C r^{(2\alpha + 2\lambda)/q - (2\alpha + 2\lambda)/p} \|f\|_{L_{p,\lambda,\alpha}}$$

(4.16)

where C depends only on p, β, λ, and α.

If $1/p > 1/q + \beta/(2\alpha + 2\lambda)$, then for all $f \in L_{p,\lambda,\alpha}(\mathbb{R})$ we have $\|M_\beta f\|_{L_{q,\lambda,\alpha}} = 0$ as $r \to 0$, which is impossible. Similarly, if $1/p < 1/q + \beta/(2\alpha + 2\lambda)$, then for all $f \in L_{p,\lambda,\alpha}(\mathbb{R})$ we obtain $\|M_\beta f\|_{L_{q,\lambda,\alpha}} = 0$ as $r \to \infty$, which is also impossible.

Therefore, we get $1/p = 1/q + \beta/(2\alpha + 2\lambda)$.

Necessity. Let M_β be bounded from $L_{1,\lambda,\alpha}(\mathbb{R})$ to $WL_{q,\lambda,\alpha}(\mathbb{R})$. We have

$$\|M_\beta f f_r\|_{WL_{q,\lambda,\alpha}} = r^{-\beta(2\alpha + 2\lambda)/q} \|M_\beta f\|_{WL_{q,\lambda,\alpha}}$$

(4.17)

By the boundedness of M_β from $L_{1,\lambda,\alpha}(\mathbb{R})$ to $WL_{q,\lambda,\alpha}(\mathbb{R})$ it follows that

$$\|M_\beta f\|_{WL_{q,\lambda,\alpha}} = r^{(2\alpha + 2\lambda)/q} \|M_\beta f f_r\|_{WL_{q,\lambda,\alpha}}$$

$$\leq C r^{(2\alpha + 2\lambda)/q} \|f_r\|_{L_{1,\lambda,\alpha}}$$

$$= C r^{(2\alpha + 2\lambda)/q - (2\alpha + 2\lambda)/p} \|f\|_{L_{1,\lambda,\alpha}}$$

(4.18)

where C depends only on β, λ, and α.

If $1 < 1/q + \beta/(2\alpha + 2\lambda)$, then for all $f \in L_{1,\lambda,\alpha}(\mathbb{R})$ we have $\|M_\beta f\|_{WL_{q,\lambda,\alpha}} = 0$ as $r \to 0$. Similarly, if $1 > 1/q + \beta/(2\alpha + 2\lambda)$, then for all $f \in L_{1,\lambda,\alpha}(\mathbb{R})$ we obtain $\|M_\beta f\|_{WL_{q,\lambda,\alpha}} = 0$ as $r \to \infty$.

Hence we get $1 = 1/q + \beta/(2\alpha + 2\lambda)$. Thus the proof of Theorem 3.1 is completed. □
Proof of Theorem 3.2. For $x \in \mathbb{R}$, let τ_x be the generalized translation by x. By definition of the Besov spaces, it suffices to show that

$$\|\tau_x M_\beta f - M_\beta f\|_{L^q_{\lambda,\alpha}} \leq C_2 \|\tau_x f - f\|_{L^p_{\lambda,\alpha}}. \quad (4.19)$$

It is easy to see that τ_x commutes with M_β, that is, $\tau_x M_\beta f = M_\beta (\tau_x f)$. Hence we have

$$|\tau_x M_\beta f - M_\beta f| = |M_\beta (\tau_x f) - M_\beta f| \leq M_\beta(|\tau_x f - f|). \quad (4.20)$$

Taking $L^p_{\lambda,\alpha}(\mathbb{R})$ norm on both ends of the above inequality, by the boundedness of M_β from $L^p_{\lambda,\alpha}(\mathbb{R})$ to $L^q_{\lambda,\alpha}(\mathbb{R})$, we obtain the desired result. Theorem 3.2 is proved. \qedema

Acknowledgment

The authors express their thanks to the referee for careful reading, and helpful comments and suggestions on this manuscript of this paper.

References

