Asymptotic Dichotomy in a Class of Third-Order Nonlinear Differential Equations with Impulses

Kun-Wen Wen, Gen-Qiang Wang, and Sui Sun Cheng

1 Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China
2 Department of Mathematics, Tsing Hua University, Hsinchu 30043, Taiwan

Correspondence should be addressed to Sui Sun Cheng, sscheng@math.nthu.edu.tw

Received 15 November 2009; Revised 26 January 2010; Accepted 25 February 2010

1. Introduction

It has been observed that the solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero (see, e.g., the recent paper [1] in which a third order nonlinear delay differential equation with damping is considered). Such a dichotomy may yield useful information in real problems (see, e.g., [2] in which implications of this dichotomy are applied to the deflection of an elastic beam). Thus it is of interest to see whether similar dichotomies occur in different types of functional differential equations.

One such type consists of impulsive differential equations which are important in simulation of processes with jump conditions (see, e.g., [3–22]). But papers devoted to the study of asymptotic behaviors of third-order equations with impulses are quite rare. For this reason, we study here the third-order nonlinear differential equation with impulses of the form

\[(r(t)x''(t))' + f(t, x) = 0, \quad t \geq t_0, \quad t \neq t_k, \]

\[x^{(i)}(t_k^-) = g^{[i]}_k \left(x^{(i)}(t_k) \right), \quad i = 0, 1, 2; \quad k = 1, 2, \ldots, \]

\[x^{(i)}(t_0^+) = x^{[i]}_0, \quad i = 0, 1, 2, \]

where
The main results of the paper are as follows.

2. Main Results

where \(x^{(i)}(t) = x(t), 0 \leq t_0 < t_1 < \cdots < t_k < \cdots \) such that \(\lim_{k \to \infty} t_k = +\infty \),

\[
x^{(i)}(t_k) = \lim_{t \to t_k^-} x^{(i)}(t), \quad x^{(i)}(t_k) = \lim_{t \to t_k^+} x^{(i)}(t)
\]

(1.2)

for \(i = 0, 1, 2 \). Here \(g_k^{[i]}, i = 0, 1, 2 \) and \(k = 1, 2, \ldots \), are real functions and \(x_0^{[i]}, i = 0, 1, 2 \), are real numbers.

By a solution of (1.1), we mean a real function \(x = x(t) \) defined on \([t_0, +\infty)\) such that

(i) \(x^{(i)}(t_0^+) = x_0^{[i]} \) for \(i = 0, 1, 2 \);

(ii) \(x^{(i)}(t), i = 0, 1, 2 \), and \((r(t)x''(t))'\) are continuous on \([t_0, +\infty) \setminus \{t_k\}\); for \(i = 0, 1, 2 \), \(x^{(i)}(t_k^+) \) and \(x^{(i)}(t_k^-) \) exist, \(x^{(i)}(t_k^+) = x^{(i)}(t_k) \) and \(x^{(i)}(t_k^-) = g_k^{[i]}(x^{(i)}(t_k)) \) for any \(t_k \);

(iii) \(x(t) \) satisfies \((r(t)x''(t))' + f(t, x) = 0\) at each point \(t \in [t_0, +\infty) \setminus \{t_k\} \).

A solution of (1.1) is said to be nonoscillatory if it is eventually positive or eventually negative. Otherwise, it is said to be oscillatory.

We will establish dichotomous criteria that guarantee solutions of (1.1) that are either oscillatory or zero convergent based on combinations of the following conditions.

(A) \(r(t) \) is positive and continuous on \([t_0, \infty)\), \(f(t, x) \) is continuous on \([t_0, \infty) \times R, xf(t, x) > 0 \) for \(x \neq 0 \), and \(f(t, x)/p(x) \geq p(t) \), where \(p(t) \) is positive and continuous on \([t_0, \infty)\), and \(p \) is differentiable in \(R \) such that \(p'(x) \geq 0 \) for \(x \in R \).

(B) For each \(k = 1, 2, \ldots, g_k^{[i]}(x) \) is continuous in \(R \) and there exist positive numbers \(a_k^{[i]}, t_k^{[i]} \) such that \(a_k^{[i]} \leq g_k^{[i]}(x)/x \leq b_k^{[i]} \) for \(x \neq 0 \) and \(i = 0, 1, 2 \).

(C) One has

\[
\int_{t_0}^{\infty} \prod_{i_k < s} \left(\frac{a_k^{[i]}}{b_k^{[i]}} \right) ds = +\infty,
\]

\[
\int_{t_0}^{\infty} \frac{1}{r(s)} \prod_{i_k < s} \left(\frac{a_k^{[i]}}{b_k^{[i]}} \right) ds = +\infty.
\]

(1.3)

In the next section, we state four theorems to ensure that every solution of (1.1) either oscillates or tends to zero. Examples will also be given. Then in Section 3, we prove several preparatory lemmas. In the final section, proofs of our main theorems will be given.

2. Main Results

The main results of the paper are as follows.
Theorem 2.1. Assume that the conditions (A)–(C) hold. Suppose further that there exists a positive integer k_0 such that for $k \geq k_0$, $a_k^{[0]} \geq 1$,

$$
\sum_{k=1}^{+\infty} (b_k^{[0]} - 1) < +\infty,
$$

(2.1)

$$
\int_{t_0}^{+\infty} \prod_{l_k<s\leq t} \left(\frac{1}{b_k^{[2]}} \right) p(s) ds = +\infty.
$$

(2.2)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.2. Assume that the conditions (A)–(C) hold. Suppose further that there exists a positive integer k_0 such that for $k \geq k_0$, $b_k^{[0]} \leq 1$, $a_k^{[1]} \geq 1$,

$$
\prod_{l_k<s<+\infty} a_k^{[0]} \geq \sigma > 0,
$$

(2.3)

$$
\int_{t_0}^{+\infty} \frac{1}{r(s)} \left(\int_{s}^{+\infty} \prod_{s<d\leq u} \frac{1}{b_k^{[2]}} p(u) du \right) ds = +\infty.
$$

(2.4)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.3. Assume that the conditions (A)–(C) hold and that $\varphi(ab) \geq \varphi(a)\varphi(b)$ for any $ab > 0$. Suppose further that there exists a positive integer k_0 such that for

$$
k \geq k_0, b_k^{[0]} \leq 1, \quad b_k^{[2]} \leq 1, \quad b_k^{[2]} \leq \varphi(a_k^{[0]}),
$$

(2.5)

$$
\int_{t_0}^{+\infty} p(s) ds = +\infty.
$$

(2.6)

Then every solution of (1.1) either oscillates or tends to zero.

Theorem 2.4. Assume that the conditions (A)–(C) hold and that $\varphi(ab) \geq \varphi(a)\varphi(b)$ for any $ab > 0$. Suppose further that $b_k^{[2]} \leq a_k^{[0]}$, $(\prod_{k=1}^{n} b_k^{[0]})$ is bounded, that

$$
\sum_{k=1}^{+\infty} \max \left\{ |a_k^{[0]} - 1|, |b_k^{[0]} - 1| \right\} < +\infty,
$$

(2.7)

$$
\sum_{k=1}^{+\infty} |b_k^{[2]} - 1| < +\infty,
$$

$$
\int_{t_0}^{+\infty} p(s) ds = +\infty.
$$

(2.8)

Then every solution of (1.1) either oscillates or tends to zero.
Before giving proofs, we first illustrate our theorems by several examples.

Example 2.5. Consider the equation

\[
(tx''(t))' + e^t x(t) = 0, \quad t \geq \frac{1}{2}, \ t \neq k,
\]

\[
x^{(i)}(k^+) = \left(1 + \frac{1}{k^2}\right)x^{(i)}(k), \quad i = 0, 1, 2; \ k = 1, 2, \ldots,
\]

where \(a^{[i]}_k = b^{[i]}_k = (1 + (1/k^2)) \geq 1\) for \(i = 0, 1, 2; \ p(t) = e^t, \ r(t) = t, \ k = k, \ \varphi(x) = x\). It is not difficult to see that conditions (A)–(C) are satisfied. Furthermore,

\[
\sum_{k=1}^{\infty} \left(b^{[0]}_k - 1\right) = \sum_{k=1}^{\infty} \frac{1}{k^2} < +\infty,
\]

\[
\int_{t_0}^{+\infty} \prod_{t_0 < t_k < \infty} \frac{1}{b^{[2]}_k} p(s) ds = \int_{1/2}^{+\infty} \prod_{1/2 < t_k < \infty} \frac{k^2}{k^2 + 1} e^t ds = +\infty.
\]

Thus by Theorem 2.1, every solution of (2.9) either oscillates or tends to zero.

Example 2.6. Consider the equation

\[
(\sqrt{t}(2 - \sin t)g(t)x''(t))' + t^{-3/2}x^3(t) = 0, \quad t \geq \frac{1}{2}, \ t \neq k,
\]

\[
x(k^+) = \frac{k}{k+1} x(k), \quad x^{(i)}(k^+) = x^{(i)}(k), \quad i = 1, 2; \ k = 1, 2, \ldots,
\]

where \(a^{[0]}_k = b^{[0]}_k = k/(k+1), \ a^{[i]}_k = b^{[i]}_k = 1\) for \(i = 1, 2; \ p(t) = t^{-3/2}, \ t_k = k, \ \varphi(x) = x^3, \) and

\[
r(t) = \sqrt{t}(2 - \sin t)g(t), \quad \text{here } g(t) = \left| t - k - \frac{1}{2} \right| + 1, \ t \in [k,k+1), \ k = 1, 2, \ldots.
\]
Here, we do not assume that $r(t)$ is bounded, monotonic, or differential. It is not difficult to see that conditions (A)–(C) are satisfied. Furthermore,

$$
\int_{t_0}^{\infty} \frac{1}{r(s)} \left(\int_{s}^{\infty} \prod_{s < x < u} b_k^{[i]} p(u) \, du \right) \, ds = \int_{1/2}^{\infty} \frac{1}{\sqrt{s} (2 - \sin s) g(s)} \left(\int_{s}^{\infty} u^{-3/2} \, du \right) \, ds
$$

Thus, by Theorem 2.2, every solution of (2.11) either oscillates or tends to zero.

Example 2.7. Consider the equation

$$
\left(e^{-2t} x''(t) \right)' + e^{-2t} x(t) = 0, \quad t \geq \frac{1}{2}, \ t \neq k,
$$

$$
x(k^+) = x(k), \quad x'(k^+) = x'(k), \quad x''(k^+) = \frac{k}{k + 1} x''(k), \quad k = 1, 2, \ldots,
$$

$$
x\left(\frac{1}{2} \right) = x_0^{[0]}, \quad x'\left(\frac{1}{2} \right) = x_0^{[1]}, \quad x''\left(\frac{1}{2} \right) = x_0^{[2]},
$$

where $d_k^{[i]} = b_k^{[i]} = 1$ for $i = 0, 1, d_k^{[2]} = b_k^{[2]} = k/(k + 1); p(t) = e^{-2t}, r(t) = e^{-2t}, t_k = k; \varphi(x) = x.$

It is not difficult to see that conditions (A)–(C) are satisfied. Furthermore,

$$
\int_{t_0}^{\infty} \frac{1}{r(s)} \left(\int_{s}^{\infty} \prod_{s < x < u} b_k^{[i]} p(u) \, du \right) \, ds = \int_{1/2}^{\infty} e^{2s} \left(\int_{s}^{\infty} k - e^{-2u} \, du \right) \, ds
$$

Thus, by Theorem 2.2, every solution of (2.14) either oscillates or tends to zero.

Note that the ordinary differential equation

$$
\left(e^{-2t} x''(t) \right)' + e^{-2t} x(t) = 0
$$
has a nonnegative solution $x(t) = e^t \to +\infty$ as $t \to +\infty$. This example shows that impulses play an important role in oscillatory and asymptotic behaviors of equations under perturbing impulses.

3. Preparatory Lemmas

To prove our theorems, we need the following lemmas.

Lemma 3.1 (Lakshmikantham et al. [3]). Assume the following.

(H$_0$) $m \in PC'(R^+, R)$ and $m(t)$ is left-continuous at t_k, $k = 1, 2, \ldots$.

(H$_1$) For t_k, $k = 1, 2, \ldots$ and $t \geq t_0$,

\[
m'(t) \leq p(t)m(t) + q(t), \quad t \neq t_k, \quad m(t_k^+) \leq d_km(t_k) + b_k,
\]

where $p, q \in PC(R^+, R), d_k \geq 0$, and b_k are real constants. Then for $t \geq t_0$,

\[
m(t) \leq m(t_0) \prod_{t_0 < t_k < t} d_k \exp \left(\int_{t_0}^{t} p(s)ds \right) + \sum_{t_0 < t_k < t} \left(\prod_{t_0 \leq t_j < t_k} d_j \exp \left(\int_{t_0}^{t_j} p(s)ds \right) \right) b_k \]

\[+ \int_{t_0}^{t} \left(\prod_{t_0 \leq t_k < s} d_k \right) \exp \left(\int_{t_0}^{s} p(\sigma)d\sigma \right) q(s)ds.
\]

Lemma 3.2. Suppose that conditions (A)–(C) hold and $x(t)$ is a solution of (1.1). One has the following statements.

(a) If there exists some $T \geq t_0$ such that $x''(t) > 0$ and $(r(t)x''(t))^' \geq 0$ for $t \geq T$, then there exists some $T_1 \geq T$ such that $x'(t) > 0$ for $t \geq T_1$.

(b) If there exists some $T \geq t_0$ such that $x'(t) > 0$ and $x''(t) \geq 0$ for $t \geq T$, then there exists some $T_1 \geq T$ such that $x(t) > 0$ for $t \geq T_1$.

Proof. First of all, we will prove that (a) is true. Without loss of generality, we may assume that $x''(t) > 0$ and $(r(t)x''(t))^' \geq 0$ for $t \geq t_0$. We assert that there exists some j such that $x'(t_j) > 0$ for $t_j \geq t_0$. If this is not true, then for any $t_k \geq t_0$, we have $x'(t_k) \leq 0$. Since $x'(t)$ is increasing on intervals of the form $(t_k, t_{k+1}]$, we see that $x'(t) \leq 0$ for $t \geq t_0$. Since $r(t)x''(t)$ is increasing on intervals of the form $(t_k, t_{k+1}]$, we see that for $(t_1, t_2]$,

\[
r(t)x''(t) \geq r(t_1)x''(t_1^+),
\]

that is,

\[
x''(t) \geq \frac{r(t_1)}{r(t)} x''(t_1^+).
\]

Abstract and Applied Analysis

In particular,

\[x''(t_2) \geq \frac{r(t_1)}{r(t_2)} x''(t_2^+). \] \hspace{1cm} (3.5)

Similarly, for \((t_2, t_3]\), we have

\[x''(t) \geq \frac{r(t_2)}{r(t)} x''(t_2^+) \geq \frac{r(t_2)}{r(t)} a_2^{[2]} x''(t_2) \geq \frac{r(t_1)}{r(t)} a_2^{[2]} x''(t_1^+). \] \hspace{1cm} (3.6)

By induction, we know that for \(t > t_1\),

\[x''(t) \geq \frac{r(t_1)}{r(t)} \prod_{t_1 < t < t_k} a_k^{[2]} x''(t_k^+), \quad t \neq t_k. \] \hspace{1cm} (3.7)

From condition (B), we have

\[x'(t_k^+) \geq b_k^{[1]} x'(t_k), \quad k = 2, 3, \ldots \] \hspace{1cm} (3.8)

Set \(m(t) = -x'(t)\). Then from (3.7) and (3.8), we see that for \(t > t_1\),

\[m'(t) \leq -\frac{r(t_1)}{r(t)} \prod_{t_1 < t < t_k} a_k^{[2]} x''(t_k^+), \quad t \neq t_k \] \hspace{1cm} (3.9)

\[m(t_k) \leq b_k^{[1]} m(t_k), \quad k = 2, 3, \ldots \]

It follows from Lemma 3.1 that

\[m(t) \leq m(t_1^+) \prod_{t_1 < t < t_k} b_k^{[1]} - x''(t_k^+) r(t_1) \int_{t_1}^{t} \frac{1}{r(s)} \prod_{s < t_1 < t} b_k^{[1]} \prod_{t_1 < s < t_1} a_k^{[2]} ds \]

\[= \prod_{t_1 < t < t_k} b_k^{[1]} \left\{ m(t_1^+) - x''(t_1^+) r(t_1) \int_{t_1}^{t} \frac{1}{r(s)} \prod_{s < t_1 < ssu} a_k^{[2]} ds \right\}. \] \hspace{1cm} (3.10)

That is,

\[x'(t) \geq \prod_{t_1 < t < t_k} b_k^{[1]} \left\{ x'(t_1^+) + x''(t_1^+) r(t_1) \int_{t_1}^{t} \frac{1}{r(s)} \prod_{s < t_1 < ssu} a_k^{[2]} ds \right\}. \] \hspace{1cm} (3.11)

Note that \(a_k^{[1]} > 0, b_k^{[1]} > 0\), and the second equality of condition (C) holds. Thus we get \(x'(t) > 0\) for all sufficiently large \(t\). The relation \(x'(t) \leq 0\) leads to a contradiction. Thus, there
exists some \(j \) such that \(t_j \geq t_0 \) and \(x'(t_j) > 0 \). Since \(x'(t) \) is increasing on intervals of the form \((t_{j+\lambda}, t_{j+\lambda+1}] \) for \(\lambda = 0, 1, 2, \ldots \), thus for \(t \in (t_j, t_{j+1}] \), we have
\[
x'(t) \geq x'(t_j) \geq a_j^{[1]} x'(t_j) > 0.
\]

Similarly, for \(t \in (t_{j+1}, t_{j+2}] \),
\[
x'(t) \geq x'(t_{j+1}) \geq a_{j+1}^{[1]} x'(t_{j+1}) \geq a_j^{[1]} a_{j+1}^{[1]} x'(t_j) > 0.
\]

We can easily prove that, for any positive integer \(\lambda \geq 2 \) and \(t \in (t_{j+\lambda}, t_{j+\lambda+1}] \),
\[
x'(t) \geq a_j^{[1]} a_{j+1}^{[1]} \cdots a_{j+\lambda}^{[1]} x'(t_j) > 0.
\]

Therefore, \(x'(t) > 0 \) for \(t \geq t_j \). Thus, (a) is true.

Next, we will prove that (b) is true. Without loss of generality, we may assume that \(x'(t) > 0 \) and \(x''(t) \geq 0 \) for \(t \geq t_0 \). We assert that there exists some \(j \) such that \(x(t_j) > 0 \) for \(t_j \geq t_0 \). If this is not true, then for any \(t_k \geq t_0 \), we have \(x(t_k) \leq 0 \). Since \(x(t) \) is increasing on intervals of the form \((t_k, t_{k+1}] \), we see that \(x(t) \leq 0 \) for \(t \geq t_0 \). By \(x'(t) > 0 \), \(x''(t) \geq 0 \), \(t \in (t_k, t_{k+1}] \), we have that \(x'(t) \) is nondecreasing on \((t_k, t_{k+1}] \). For \(t \in (t_1, t_2] \), we have
\[
x'(t) \geq x'(t_1^+).
\]

In particular,
\[
x'(t_2) \geq x'(t_1^+).
\]

Similarly, for \(t \in (t_2, t_3] \), we have
\[
x'(t) \geq x'(t_2^+) \geq a_2^{[1]} x'(t_2) \geq a_2^{[1]} x'(t_1^+).
\]

By induction, we know that for \(t > t_1 \),
\[
x'(t) \geq \prod_{t_k < t \leq t_{k+1}} a_k^{[1]} x'(t_k^+), \quad t \neq t_k.
\]

From condition (B), we have
\[
x(t_k^+) \geq b_k^{[0]} x(t_k), \quad k = 2, 3, \ldots
\]
Set \(u(t) = -x(t) \). Then from (3.18) and (3.19), we see that for \(t > t_1 \),
\[
\begin{align*}
 u'(t) &\leq - \prod_{t_i < t < t_{i+1}} a_k^{[1]} x'(t), \quad t \neq t_k, \\
 u(t^+_k) &\leq b_k^{[0]} u(t_k), \quad k = 2, 3, \ldots.
\end{align*}
\] (3.20)

It follows from Lemma 3.1 that
\[
\begin{align*}
 u(t) &\leq u(t^+_1) \prod_{t_i < t < t_{i+1}} b_k^{[0]} - x'(t^+_1) \int \prod_{t_i < t < t_{i+1}} b_k^{[0]} \prod_{t_{i+1} < s < t} a_k^{[1]} ds \\
 &= \prod_{t_i < t < t_{i+1}} b_k^{[0]} \left\{ u(t^+_1) - x'(t^+_1) \int \prod_{t_i < t < t_{i+1}} b_k^{[0]} a_k^{[1]} ds \right\}.
\end{align*}
\] (3.21)

That is,
\[
\begin{align*}
 x(t) &\geq \prod_{t_i < t < t_{i+1}} b_k^{[0]} \left\{ x(t^+_1) + x'(t^+_1) \int \prod_{t_i < t < t_{i+1}} b_k^{[0]} a_k^{[1]} ds \right\}.
\end{align*}
\] (3.22)

Note that \(a_k^{[1]} > 0, b_k^{[1]} > 0 \), and the first equality of condition (C) holds. Thus we get \(x(t) > 0 \) for all sufficiently large \(t \). The relation \(x(t) \leq 0 \) leads to a contradiction. So there exists some \(j \) such that \(t_j \geq t_0 \) and \(x(t_j) > 0 \). Then
\[
x(t^+_j) \geq a_j^{[0]} x(t_j) > 0.
\] (3.23)

Since \(x'(t) > 0 \), we see that \(x(t) \) is strictly monotonically increasing on \((t_{j+m}, t_{j+m+1}] \) for \(m = 0, 1, 2, \ldots \). For \(t \in (t_j, t_{j+1}] \), we have
\[
x(t) \geq x(t^+_j) > 0.
\] (3.24)

In particular,
\[
x(t_{j+1}) \geq x(t^+_j) > 0.
\] (3.25)

Similarly, for \(t \in (t_{j+1}, t_{j+2}] \), we have
\[
x(t) \geq x(t^+_j) \geq a_{j+1}^{[0]} x(t_{j+1}) > 0.
\] (3.26)

By induction, we have \(x(t) > 0 \) for \(t \in (t_{j+m}, t_{j+m+1}] \). Thus, we know that \(x(t) > 0 \), for \(t \geq t_j \).

The proof of Lemma 3.2 is complete.
Remark 3.3. We may prove in similar manners the following statements.

(a') If we replace the condition (a) in Lemma 3.2 “$x''(t) > 0$ and $(r(t)x''(t))' \geq 0$ for $t \geq T$” with “$x'(t) < 0$ and $(r(t)x'(t))' \leq 0$ for $t \geq T$”, then there exists some $T_1 \geq T$ such that $x'(t) < 0$ for $t \geq T_1$.

(b') If we replace the condition (b) in Lemma 3.2 “$x'(t) > 0$ and $x''(t) \geq 0$ for $t \geq T$” with “$x'(t) < 0$ and $x''(t) \leq 0$ for $t \geq T$”, then there exists some $T_1 \geq T$ such that $x(t) < 0$ for $t \geq T_1$.

Lemma 3.4. Suppose that conditions (A)–(C) hold and $x(t)$ is a solution of (1.1) such that $x(t) > 0$ for $t \geq T$, where $T \geq t_0$. Then there exists $T' \geq T$ such that either (a) $x''(t) > 0$, $x'(t) < 0$ for $t \geq T'$ or (b) $x''(t) > 0$, $x'(t) > 0$ for $t \geq T'$.

Proof. Without loss of generality, we may assume that $x(t) > 0$ for $t \geq t_0$. By (1.1) and condition (A), we have for $t \geq t_0$,

$$
(r(t)x''(t))' = -f(t,x) \leq -p(t)\varphi(x) < 0.
$$

We assert that for any $t_k \geq t_0, x''(t_k) > 0$. If this is not true, then there exists some j such that $x''(t_j) \leq 0$, so $x''(t_j) \leq a^\cdot[2]x''(t_j) \leq 0$. Since $r(t)x''(t)$ is decreasing on $(t_{j+k-1}, t_{j+k}]$ for $k = 1, 2, \ldots,$ we see that for $t \in (t_j, t_{j+1}]$,

$$
x''(t) < \frac{r(t_j)}{r(t)}x''(t_j^\prime) \leq 0.
$$

In particular,

$$
x''(t_{j+1}) < \frac{r(t_j)}{r(t_{j+1})}x''(t_j^\prime) \leq 0.
$$

Similarly, for $t \in (t_{j+1}, t_{j+2}]$, we have

$$
x''(t) < \frac{r(t_{j+1})}{r(t)}x''(t_{j+1}^\prime) \leq \frac{r(t_{j+1})}{r(t)}a^\cdot[2]x''(t_{j+1}) \leq \frac{r(t_j)}{r(t_{j+1})}a^\cdot[2]x''(t_j^\prime) \leq 0.
$$

In particular,

$$
x''(t_{j+2}) < \frac{r(t_j)}{r(t_{j+2})}a^\cdot[2]x''(t_j^\prime) \leq 0.
$$

By induction, for any $t \in (t_{j+n-1}, t_{j+n}]$ for $n = 2, 3, \ldots$, we have

$$
x''(t) < \frac{r(t_j)}{r(t)} \prod_{k=1}^{n-1}a^\cdot[2]x'(t_j^\prime) \leq 0.
$$
Hence, $x''(t) < 0$ for $t \geq t_j$. By Remark 3.3(a'), there exists $T_j \geq t_j$ such that $x'(t) < 0$ for $t \geq T_j$; by Remark 3.3(b'), we get $x(t) < 0$ for $t \geq T_j$, which is contrary to $x(t) > 0$ for $t \geq t_0$. Hence, for any $t_k \geq t_0$, $x''(t_k) > 0$, since $r(t)x''(t)$ is decreasing on $(t_{j+k-1},t_{j+k}]$ for $k = 1,2,\ldots$, therefore $x''(t) > 0$ for $t \geq t_0$. It follows that $x'(t)$ is strictly increasing on $(t_k,t_{k+1}]$ for $k = 1,2,\ldots$ Furthermore, note that $a_k^{[1]} > 0$, $k = 1,2,\ldots$ we see that if for any t_k, $x'(t_k) < 0$, then $x'(t) < 0$ for $t \geq t_0$. If there exists some t_j such that $x'(t_j) > 0$, then $x'(t) > 0$ for $t > t_j$.

\section*{4. Proofs of Main Theorems}

We now turn to the proof of Theorem 2.1. Without loss of generality, we may assume that $k_0 = 1$. If (1.1) has a nonoscillatory solution $x = x(t)$, we first assume that $x(t) > 0$ for $t \geq t_0$. By (1.1) and the condition (A), for $t \geq T \geq t_0$, we get

$$\left(r(t)x''(t)\right)' = -f(t,x(t)) \leq -p(t)\varphi(x(t)), \quad t \neq t_k. \tag{4.1}$$

From the condition (B), we know that

$$r(t_k^+)x''(t_k^+) \leq b_k^{[2]}r(t_k)x''(t_k). \tag{4.2}$$

By Lemma 3.4, there exists a $T \geq t_0$ such that either (a) $x''(t) > 0$, $x'(t) < 0$ for $t \geq T$ or (b) $x''(t) > 0$, $x'(t) > 0$ for $t \geq T$.

Suppose that (a) holds. Then we see that the conditions (H2) and (H3) of Lemma 3.5 are satisfied. Furthermore, note that \(\sum_{k=1}^{\infty}(b_k^{[0]} - 1) < +\infty\) and $b_k^{[0]} \geq a_k^{[0]} \geq 1$. Then we have

$$\prod_{k=1}^{\infty} b_k^{[0]} < +\infty. \tag{4.3}$$

Since $x'(t) < 0$, $t \geq T$, we obtain for any $t_k > T$,

$$x(t_k) \leq \prod_{t_{j+k} \neq t_k} b_j^{[0]}x(T^+). \tag{4.4}$$

By (4.3) and (4.4), we know that the sequence $\{x(t_k)\}$ is bounded. Thus there exists $M > 0$ such that $|x(t_k)| \leq M$. It follows from the condition (B) that

$$|x(t_k^+) - x(t_k)| \leq \left|b_k^{[0]} - 1\right|x(t_k)| \leq M\left(b_k^{[0]} - 1\right). \tag{4.5}$$
From (4.5) and the fact that \(\sum_{k=1}^{\infty} (b_k^{[0]} - 1) \) is convergent, we know that \(\sum_{k=1}^{\infty} [x(t_k^+) - x(t_k)] \) is convergent. Therefore, the condition (H_4) of Lemma 3.5 is also satisfied. By Lemma 3.5, we know that \(\lim_{t \to +\infty} x(t) = r \geq 0 \). We assert that \(r = 0 \). If \(r > 0 \), then there exists \(T_1 \geq T \) such that for any \(t \geq T_1, x(t) > r/2 > 0 \). Note further that \(\psi'(x) \geq 0 \); so we obtain \(\psi(x(t)) \geq \psi(r/2) \) for \(t \geq T_1 \). Let \(m(t) = r(t)x'(t) \) for \(t \geq T_1 \). By (4.1) and (4.2), we have

\[
m'(t) \leq q(t), \quad t \geq T_1, \quad t \neq t_k, \quad (4.6)
\]

\[
m(t_k^+) \leq b_k^{[2]} m(t_k), \quad t_k \geq T_1, \quad (4.7)
\]

where \(q(t) = -\psi(r/2)p(t) \). From (4.6), (4.7), and Lemma 3.1, we get for \(t \geq T_1 \),

\[
m(t) \leq m(T_1^+) \prod_{T_1 < t < T} b_k^{[2]} + \int_{T_1}^{t} \left(\prod_{t < k < t} b_k^{[2]} \right) q(s)ds
\]

\[
= \prod_{T_1 < t < T} b_k^{[2]} \left\{ m(T_1^+) - \psi \left(\frac{T}{2} \right) \int_{T_1}^{t} \left(\prod_{t < k < s} b_k^{[2]} \right) p(s)ds \right\}. \quad (4.8)
\]

It is easy to see from (2.2) and (4.8) that \(m(t) < 0 \) for sufficiently large \(t \). This is contrary to \(m(t) > 0 \) for \(t \geq T_1 \). Thus \(r = 0 \), that is, \(\lim_{t \to +\infty} x(t) = 0 \).

Suppose that (b) holds. Let \(\Psi(t) = (r(t)x'(t)/\psi(x(t))) \) for \(t \geq T \). Then \(\Psi(t) > 0 \) for \(t \geq T \). By (1.1) and the condition (A), we get, for \(t \geq T \),

\[
\Psi'(t) = \frac{-f(t,x(t))}{\psi(x(t))} \cdot \frac{r(t)x''(t)\psi'(x(t))x'(t)}{\psi^2(x(t))} \leq \frac{-f(t,x(t))}{\psi(x(t))} \leq -p(t), \quad t \neq t_k. \quad (4.9)
\]

From the conditions (A), (B) and \(a_k^{[0]} \geq 1 \), we know that

\[
\Psi(t_k^+) = \frac{r(t_k)x'(t_k^+)}{\psi(x(t_k^+))} \leq \frac{r(t_k)b_k^{[2]}x''(t_k)}{\psi(a_k^{[0]}x(t_k))} \leq b_k^{[2]} \frac{r(t_k)x''(t_k)}{\psi(x(t_k))} \leq b_k^{[2]} \Psi(t_k), \quad t_k \geq T. \quad (4.10)
\]

From (4.9), (4.10), and Lemma 3.1, we get, for \(t \geq T \),

\[
\Psi(t) \leq \Psi(T^+) \prod_{T < t_k < T} b_k^{[2]} - \int_{T}^{t} \left(\prod_{t < k < s} b_k^{[2]} \right) p(s)ds
\]

\[
= \prod_{T < t_k < T} b_k^{[2]} \left\{ \Psi(T^+) - \int_{T}^{t} \left(\prod_{T < k < s} b_k^{[2]} \right) p(s)ds \right\}. \quad (4.11)
\]

It is easy to see from (2.2) and (4.11) that \(\Psi(t) < 0 \) for sufficiently large \(t \). This is contrary to \(\Psi(t) > 0 \) for \(t \geq T \), and hence we obtain a contradiction. Thus in case (b) \(x(t) \) must be oscillatory. The proof of Theorem 2.1 is complete.
Next, we give the proof of Theorem 2.2. Without loss of generality, we may assume that $k_0 = 1$. If (1.1) has an eventually positive solution $x = x(t)$ for $t \geq t_0$, By (1.1) and conditions (A) and (B), we have that (4.1) and (4.2) hold. By Lemma 3.4, there exists a $T \geq t_0$ such that either (a) $x''(t) > 0$, $x'(t) < 0$ for $t \geq T$ or (b) $x''(t) > 0$, $x'(t) > 0$ for $t \geq T$.

Suppose that (a) holds. Note that $b_{k_0}^{(0)} \leq 1$ and for $t_j \geq T$ and each $l = 0, 1, 2, \ldots$, $x(t)$ is decreasing on $(t_{j+1}, t_{j+1}]$; we have for $t \in (t_j, t_{j+1}]

\begin{equation}
x(t) < x(t_j) \leq b_j^{(0)} x(t_j) \leq x(t).
\end{equation}

Similarly, for $t \in (t_{j+1}, t_{j+2}]$, we have

\begin{equation}
x(t) < x(t_{j+1}) \leq b_{j+1}^{(0)} x(t_{j+1}) \leq x(t_j) \leq x(t).
\end{equation}

By induction, for each $l = 0, 1, 2, \ldots$, we have

\begin{equation}
x(t) < x(t_{j+l}) \leq \cdots \leq x(t_{j+1}) \leq x(t_j), \quad t \in (t_{j+l}, t_{j+l+1}]
\end{equation}

so that $x(t)$ is decreasing on $(t_j, +\infty)$. We know that $x(t)$ is convergent as $t \to +\infty$. Let $\lim_{t \to +\infty} x(t) = r$. Then $r \geq 0$. We assert that $r = 0$. If $r > 0$, then there exists $T_1 \geq t_0$, such that for $t \geq T_1$, $x(t) > r/2 > 0$. Since $\phi'(x) \geq 0$, then $\phi(x(t)) \geq \phi(r/2)$. Let $m(t) = r(t)x''(t)$ for $t \geq T_1$. Then By (4.1) and (4.2), we have that (4.6) and (4.7) hold. From (4.6), (4.7), and Lemma 3.1, we get for $t \geq T_1$,

\begin{equation}
m(+\infty) \leq m(t) \prod_{l=1}^{\infty} b_k^{(2)} - \phi \left(\frac{r}{2} \right) \int_t^{+\infty} \prod_{s<t} b_k^{(2)} p(s) ds.
\end{equation}

That is,

\begin{equation}
0 \leq \lim_{t \to +\infty} r(t)x''(t) \leq r(t)x''(t) \prod_{l=1}^{\infty} b_k^{(2)} - \phi \left(\frac{r}{2} \right) \int_t^{+\infty} \prod_{s<t} b_k^{(2)} p(s) ds.
\end{equation}

It is easy to see from (4.16) that the following inequality holds:

\begin{equation}
x''(t) \geq \frac{\phi(r/2)}{r(t)} \int_t^{+\infty} \prod_{l=1}^{\infty} b_k^{(2)} p(s) ds, \quad t \geq T_1.
\end{equation}
Note that $a_k^{[1]} \geq 1$; it follows from integrating (4.17) from t_0 to t and by using the condition (B) that

$$x'(t) - x'(t_0^+) \geq x'(t) - x'(t_0^+) + \sum_{t_0 < t_k < t} (a_k^{[1]} - 1) x'(t_k)$$

$$\geq x'(t) - x'(t_0^+) + \sum_{t_0 < t_k < t} [x'(t_k^+) - x'(t_k^-)]$$

(4.18)

$$\geq \varphi \left(\frac{r}{2} \int_{t_0}^{t} \frac{1}{r(s)} \left(\int_{s}^{\infty} \prod_{s < u < b_k^{[2]}} p(u) du \right) ds. \right)$$

It is easy to see from (2.4) and (4.18) that $x'(t) > 0$ for sufficiently large t. This is contrary to $x'(t) < 0$ for $t \geq T_1$. Thus $r = 0$, that is, $\lim_{t \to +\infty} x(t) = 0$.

Suppose (b) holds. Without loss of generality, we may assume that $T = t_0$. Then we see that $x'(t) > 0$, $t \geq t_0$. Since $x(t)$ is nondecreasing on (t_k, t_k+1), for $t \in (t_0, t_1]$, we have

$$x(t) \geq x(t_0^+).$$

(4.19)

In particular,

$$x(t_1) \geq x(t_0^+).$$

(4.20)

Similarly, for $t \in (t_1, t_2]$, we have

$$x(t) \geq x(t_1^+) \geq a_1^{[0]} x(t_1) \geq a_1^{[0]} x(t_0^+).$$

(4.21)

By induction, we know that

$$x(t) \geq \prod_{t_0 < t_k < t} a_k^{[0]} x(t_0^+), \quad t > t_0.$$

(4.22)

That is, $x(t) \geq \prod_{t_0 < t_k < t} a_k^{[0]} x(t_0^+)$ for $t > t_0$. Note that $b_k^{[0]} \leq 1$ and $\prod_{t_0 < t_k < t} a_k^{[0]} \geq \sigma > 0$. From the condition (B), we have $x(t) \geq \sigma x(t_0^+)$. Since $\varphi'(x) \geq 0$, we have $\varphi(x(t)) \geq \varphi(\sigma x(t_0^+))$. Let $m(t) = r(t)x''(t)$; by (4.1) and (4.2), we have, for $t \geq t_0$, that

$$m'(t) \leq -\varphi(\sigma x(t_0^+)) p(t), \quad t \neq t_k,$$

$$m(t_k^+) \leq b_k^{[2]} m(t_k), \quad t_k > t_0.$$

(4.23)

Similar to the proof of (4.17), we obtain

$$x''(t) \geq \frac{\varphi(\sigma x(t_0^+))}{r(t)} \int_t^{\infty} \prod_{t < s < t} b_k^{[2]} p(s) ds, \quad t \geq t_0.$$

(4.24)
Let $s(t) = -x'(t)$ for $t \geq t_0$. Then $s(t) \leq 0$. By (4.24) and the condition (B), and noting that $a_k^{[1]} \geq 1$, we have for $t \geq t_0$,

$$s'(t) \leq -\frac{\varphi(\sigma x(t^*_0))}{r(t)} \int_{t}^{+\infty} \prod_{1 \leq l \leq s} b_k^{[2]} p(s) ds, \quad t \neq t_k,$$

$$s(t^*_k) \leq a_k^{[1]} s(t_k) \leq s(t_k), \quad t_k \geq t_0.$$

By Lemma 3.1, we get

$$0 \leq s(+\infty) \leq s(t) - \varphi(\sigma x(t^*_0)) \int_{t}^{+\infty} \frac{1}{r(s)} \left(\int_{s}^{+\infty} \prod_{1 \leq l \leq s} b_k^{[2]} p(u) du \right) ds.$$

It follows that

$$0 \geq x'(t) + \varphi(\sigma x(t^*_0)) \int_{t}^{+\infty} \frac{1}{r(s)} \left(\int_{s}^{+\infty} \prod_{1 \leq l \leq s} b_k^{[2]} p(u) du \right) ds.$$

In view of (4.27), we have, for $t \geq t_0$,

$$x'(t) \leq -\varphi(\sigma x(t^*_0)) \int_{t}^{+\infty} \frac{1}{r(s)} \left(\int_{s}^{+\infty} \prod_{1 \leq l \leq s} b_k^{[2]} p(u) du \right) ds.$$

It is easy to see from (2.4) and (4.28) that $x'(t) < 0$. This is contrary to $x'(t) > 0$ for $t \geq t_0$. Thus in case (b) $x(t)$ must be oscillatory. The proof of Theorem 2.2 is complete.

We now give the proof of Theorem 2.3. Without loss of generality, we may assume that $k_0 = 1$. If (1.1) has an eventually positive solution, $x = x(t)$ for $t \geq t_0$. By Lemma 3.4, there exists a $T \geq t_0$ such that either (a) $x^0(t) > 0, x'(t) < 0, t \geq T$ or (b) $x''(t) > 0, x'(t) > 0, t \geq T$ holds.

Suppose that (a) holds. Note that $b_j^{[0]} \leq 1$, since for $t_j \geq T$ and each $l = 0, 1, 2, \ldots, x(t)$ is decreasing on $(t_{j+l}, t_{j+l+1}]$; then for $t \in (t_{j+l}, t_{j+l+1}]$, we have

$$x(t) < x(t^*_j) \leq b_j^{[0]} x(t_j) \leq x(t_j).$$

Similarly, for $t \in (t_j, t_{j+1}]$, we have

$$x(t) < x(t^*_j) \leq b_j^{[0]} x(t_{j+1}) \leq x(t_{j+1}) \leq x(t_j).$$

By induction, for any $t \in (t_{j+l}, t_{j+l+1}]$ for $l = 0, 1, 2, \ldots$, we have

$$x(t) < x(t_{j+l}) \leq \cdots \leq x(t_{j+1}) \leq x(t_j).$$
So \(x(t)\) is decreasing and bounded on \((t_j, +\infty)\); we know that \(x(t)\) is convergent as \(t \to +\infty\). Let \(\lim_{t \to +\infty} x(t) = r\), then \(r \geq 0\). We assert that \(r = 0\). If \(r > 0\), then there exists \(T_1 \geq T\), such that for \(t \geq T_1\), \(x(t) > r/2 > 0\). Since \(\varphi'(x) \geq 0\), then \(\varphi(x(t)) \geq \varphi(r/2)\). By (1.1) and condition (A), we have for \(t \geq T_1\)

\[
(r(t)x''(t))^\prime = -f(t, x) \leq -p(t)\varphi(x(t)) \leq -\varphi\left(\frac{R}{2}\right)p(t) < 0, \quad t \neq t_k, \tag{4.32}
\]

From condition (B), and noting that \(b_k^{[2]} \leq 1\), we have

\[
r(t_k^+)x''(t_k^+) \leq b_k^{[2]}r(t_k)x''(t_k) \leq r(t_k)x''(t_k), \quad t_k \geq T_1. \tag{4.33}
\]

Let \(\Phi(t) = r(t)x''(t)\). Then \(\Phi(t) > 0\) for \(t \geq T_1\). By (4.32) and (4.33), we have for \(t \geq T_1\), that

\[
\Phi'(t) \leq -\varphi\left(\frac{R}{2}\right)p(t), \quad t \neq t_k, \tag{4.34}
\]

\[
\Phi(t_k^+) \leq \Phi(t_k), \quad t_k \geq T_1. \tag{4.35}
\]

From (4.34), (4.35), and Lemma 3.1, we get, for \(t \geq T_1\), that

\[
\Phi(t) \leq \Phi(T_1^+) - \varphi\left(\frac{R}{2}\right)\int_{t_1}^{t} p(s) ds, \tag{4.36}
\]

It is easy to see from (2.6) and (4.36) that \(\Phi(t) \leq 0\) for sufficiently large \(t\). This is contrary to \(\Phi(t) > 0\) for \(t \geq T_1\). Thus \(r = 0\), that is, \(\lim_{t \to +\infty} x(t) = 0\).

If \((b)\) holds, let \(\Psi(t) = (r(t)x''(t)/\varphi(x(t)))\) for \(t \geq T\). We see that \(\Psi(t) > 0\) for \(t \geq T\). By (1.1) and the condition (A), we get for \(t \geq T\)

\[
\Psi'(t) = \frac{-f(t, x(t))}{\varphi(x(t))} - \frac{r(t)x''(t)\varphi'(x(t))x'(t)}{\varphi^2(x(t))} \leq \frac{-f(t, x(t))}{\varphi(x(t))} \leq -p(t), \quad t \neq t_k. \tag{4.37}
\]

From the conditions (A) and (B), we know that

\[
\Psi(t_k^+) = \frac{r(t_k)x''(t_k^+)}{\varphi(x(t_k^+))} \leq \frac{r(t_k)b_k^{[2]}x''(t_k)}{\varphi\left(a_k^{[0]}x(t_k)\right)} \leq \frac{b_k^{[2]}}{\varphi\left(a_k^{[0]}\right)} \frac{r(t_k)x''(t_k)}{\varphi(x(t_k))} \leq \Psi(t_k), \quad t_k \geq T. \tag{4.38}
\]

From (4.37), (4.38), and Lemma 3.1, we get for \(t \geq T\)

\[
\Psi(t) \leq \Psi(T^+) - \int_{T}^{t} p(s) ds. \tag{4.39}
\]

It is easy to see from (2.6) and (4.39) that \(\Psi(t) < 0\) for sufficiently large \(t\). This is contrary to \(\Psi(t) > 0\) for \(t \geq T\). Thus in case \((b)\) \(x(t)\) must be oscillatory. The proof of Theorem 2.3 is complete.
Finally, we give the proof of Theorem 2.4. Without loss of generality, we may assume that $k_0 = 1$. If (1.1) has an eventually positive solution, $x = x(t)$ for $t \geq t_0$. By Lemma 3.4, there exists a $T \geq t_0$ such that either (a) $x''(t) > 0$, $x'(t) < 0$, $t \geq T$ or (b) $x''(t) > 0$, $x'(t) > 0$, $t \geq T$ holds.

Suppose that (a) holds. We may easily see that the conditions (H$_2$), (H$_3$) of Lemma 3.5 are satisfied. Furthermore, since $x'(t) < 0$, $t \geq T$, then there exists some $t_i \geq T$, such that for $t \in (t_i, t_{i+1}]

\begin{equation}
 x(t) \leq x(t_i^+).
\end{equation}

In particular,

\begin{equation}
 x(t_{i+1}) \leq x(t_i^+).
\end{equation}

Similarly, we have for $t \in (t_{i+1}, t_{i+2}]

\begin{equation}
 x(t) \leq x(t_{i+1}^+) \leq b_{i+1}^{[0]} x(t_{i+1}) \leq b_{i+1}^{[0]} x(t_i^+).
\end{equation}

In particular,

\begin{equation}
 x(t_{i+1}) \leq b_{i+1}^{[0]} x(t_i^+).
\end{equation}

By induction, we obtain for any $t_k > t_i

\begin{equation}
 x(t_k) \leq \prod_{i \in \mathbb{Z}^+} b_{i}^{[0]} x(t_i^+).
\end{equation}

Since $\prod_{k=1}^n b_k^{[0]}$ is bounded and (4.44) holds, we know that $\{x(t_k)\}$ is bounded. Thus there exists $M_1 > 0$, such that $|x(t_k)| \leq M_1$. It follows from the condition (B) that

\begin{equation}
 |x(t_k^+) - x(t_k)| \leq \max \left\{ \left| a_k^{[0]} - 1 \right|, \left| b_k^{[0]} - 1 \right| \right\} |x(t_k)| \leq M_1 \max \left\{ \left| a_k^{[0]} - 1 \right|, \left| b_k^{[0]} - 1 \right| \right\}.
\end{equation}

By (4.45), we know that $\sum_{k=1}^{\infty} [x(t_k^+) - x(t_k)]$ is convergent. Therefore, the condition (H$_4$) of Lemma 3.5 is also satisfied. By Lemma 3.5, we know that $\lim_{t \to \infty} x(t) = r \geq 0$. We assert that $r = 0$. If $r > 0$, then there exists $T_1 \geq T$, such that for $t \geq T_1$, $x(t) > r/2 > 0$. Since $q'(x) \geq 0$, we have $q(x(t)) \geq q(r/2)$. Since $(r(t)x'(t))^2 < 0$, $t \geq T_1$, there exists some $t_i \geq T_1$ such that for $t \in (t_i, t_{i+1}]

\begin{equation}
 r(t)x''(t) \leq r(t_i)x''(t_i^+).
\end{equation}

In particular,

\begin{equation}
 r(t_{i+1})x''(t_{i+1}) \leq r(t_i)x''(t_i^+).
\end{equation}
Similarly, we have for \(t \in (t_{i-1}, t_{i+1}] \)

\[
 r(t)x''(t) - r(T_1)x''(T_1^+) \leq \sum_{T_1 < t < T_{i+1}} r(t) [x''(t^+) - x''(t)] - \int_{T_1}^{t} p(s)q(x(s))ds \\
\leq \sum_{T_1 < t < T_{i+1}} r(t) [x''(t^+) - x''(t)] - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds \\
\leq \sum_{T_1 < t < T_{i+1}} \left(b_k^{[2]} - 1 \right) r(t) x''(t) - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds \\
\leq \sum_{T_1 < t < T_{i+1}} \left| \left(b_k^{[2]} - 1 \right) r(t) x''(t) \right| - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds.
\]

By (1.1) and the condition (A), we have that (4.1) holds. Integrating (4.1) from \(T_1 \) to \(t \), it follows from (4.51) and \(\varphi(x(t)) \geq \varphi(r/2) \) for \(t \geq T_1 \) that

\[
 r(t) x''(t) - r(T_1) x''(T_1^+) \leq \sum_{T_1 < t < T_{i+1}} r(t) [x''(t^+) - x''(t)] - \int_{T_1}^{t} p(s)q(x(s))ds \\
\leq \sum_{T_1 < t < T_{i+1}} r(t) [x''(t^+) - x''(t)] - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds \\
\leq \sum_{T_1 < t < T_{i+1}} \left(b_k^{[2]} - 1 \right) r(t) x''(t) - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds \\
\leq \sum_{T_1 < t < T_{i+1}} \left| \left(b_k^{[2]} - 1 \right) r(t) x''(t) \right| - \varphi\left(\frac{r}{2}\right) \int_{T_1}^{t} p(s)ds.
\]

Note that \(\sum_{k=1}^{\infty} |b_k^{[2]} - 1| \) is convergent. Thus it is easy to see from (2.8) and (4.52) that \(x''(t) < 0 \) for sufficiently large \(t \). This is contrary to \(x''(t) > 0 \) for \(t \geq T \). Thus \(r = 0 \), that is, \(\lim_{t \to +\infty} x(t) = 0 \).

Suppose that (b) holds. Let \(\Psi(t) = \frac{r(t)x''(t)}{\varphi(x(t))} \) for \(t \geq T \). We see that \(\Psi(t) > 0 \) for \(t \geq T \). Similar to the proof of (4.39), we also obtain

\[
 \Psi(t) \leq \Psi(T^+) - \int_{T}^{t} p(s)ds.
\]
It is easy to see from (2.8) and (4.53) that \(\Psi(t) < 0 \) for sufficiently large \(t \). This is contrary to \(\Psi(t) > 0 \) for \(t \geq T \). Thus in case (b) \(x(t) \) must be oscillatory. The proof of Theorem 2.4 is complete.

Acknowledgments

This research is supported by the Natural Science Foundation of Guang Dong of China under Grant 9151008002000012. The authors would also like to thank the reviewers for their comments and corrections of their mistakes in the original version of this paper.

References

