Research Article

Nearly Ring Homomorphisms and Nearly Ring Derivations on Non-Archimedean Banach Algebras

Madjid Eshaghi Gordji¹, ², ³

¹ Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
² Research Group of Nonlinear Analysis and Applications (RGNAA), Semnan, Iran
³ Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Semnan, Iran

Correspondence should be addressed to Madjid Eshaghi Gordji, madjid.eshaghi@gmail.com

Received 29 October 2010; Accepted 24 December 2010

Academic Editor: Stephen Clark

Copyright © 2010 Madjid Eshaghi Gordji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove the generalized Hyers-Ulam stability of homomorphisms and derivations on non-Archimedean Banach algebras. Moreover, we prove the superstability of homomorphisms on unital non-Archimedean Banach algebras and we investigate the superstability of derivations in non-Archimedean Banach algebras with bounded approximate identity.

1. Introduction and Preliminaries

In 1897, Hensel [1] has introduced a normed space which does not have the Archimedean property.

During the last three decades theory of non-Archimedean spaces has gained the interest of physicists for their research in particular in problems coming from quantum physics, p-adic strings, and superstrings [2]. Although many results in the classical normed space theory have a non-Archimedean counterpart, their proofs are essentially different and require an entirely new kind of intuition [3–9].

Let \(\mathbb{K} \) be a field. A non-Archimedean absolute value on \(\mathbb{K} \) is a function \(|\cdot| : \mathbb{K} \to \mathbb{R} \) such that for any \(a, b \in \mathbb{K} \) we have

(i) \(|a| \geq 0 \) and equality holds if and only if \(a = 0 \),

(ii) \(|ab| = |a||b| \),

(iii) \(|a + b| \leq \max\{|a|, |b|\} \).
Condition (iii) is called the strict triangle inequality. By (ii), we have \(|1| = | - 1| = 1\). Thus, by induction, it follows from (iii) that \(|n| \leq 1\) for each integer \(n\). We always assume in addition that \(|\cdot|\) is non trivial, that is, that there is an \(a_0 \in \mathbb{K}\) such that \(|a_0| \neq 0,1\).

Let \(X\) be a linear space over a scalar field \(\mathbb{K}\) with a non-Archimedean nontrivial valuation \(|\cdot|\). A function \(\|\cdot\| : X \to \mathbb{R}\) is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) \(\|x\| = 0\) if and only if \(x = 0\);
(NA2) \(\|rx\| = |r|\|x\|\) for all \(r \in \mathbb{K}\) and \(x \in X\);
(NA3) the strong triangle inequality (ultrametric), namely,

\[
\|x + y\| \leq \max\{\|x\|,\|y\|\} \quad (x, y \in X).
\] (1.1)

Then \((X, \| \cdot \|)\) is called a non-Archimedean space.

It follows from (NA3) that

\[
\|x_m - x_l\| \leq \max\{\|x_{j+1} - x_j\| : l \leq j \leq m - 1\} \quad (m > l),
\] (1.2)

therefore a sequence \(\{x_m\}\) is Cauchy in \(X\) if and only if \(\{x_{m+1} - x_m\}\) converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent. A non-Archimedean Banach algebra is a complete non-Archimedean algebra \(\mathcal{A}\) which satisfies \(\|ab\| \leq \|a\|\|b\|\) for all \(a, b \in \mathcal{A}\). For more detailed definitions of non-Archimedean Banach algebras, we can refer to [10].

The first stability problem concerning group homomorphisms was raised by Ulam [11] in 1960 and affirmatively solved by Hyers [12]. Perhaps Aoki was the first author who has generalized the theorem of Hyers (see [13]).

T. M. Rassias [14] provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1 (T. M. Rassias). Let \(f : E \to E'\) be a mapping from a normed vector space \(E\) into a Banach space \(E'\) subject to the inequality

\[
\|f(x + y) - f(x) - f(y)\| \leq \varepsilon (\|x\|^p + \|y\|^p)
\] (1.3)

for all \(x, y \in E\), where \(\varepsilon\) and \(p\) are constants with \(\varepsilon > 0\) and \(p < 1\). Then the limit

\[
L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\] (1.4)

exists for all \(x \in E\) and \(L : E \to E'\) is the unique additive mapping which satisfies

\[
\|f(x) - L(x)\| \leq \frac{2\varepsilon}{2 - 2^p} \|x\|^p
\] (1.5)

for all \(x \in E\). Also, if for each \(x \in E\) the mapping \(f(tx)\) is continuous in \(t \in \mathbb{R}\), then \(L\) is \(\mathbb{R}\)-linear.
Moreover, Bourgin [15] and Găvruţa [16] have considered the stability problem with unbounded Cauchy differences (see also [17–27]).

On the other hand, J. M. Rassias [28–33] considered the Cauchy difference controlled by a product of different powers of norm. However, there was a singular case; for this singularity a counterexample was given by Găvruţa [34]. This stability phenomenon is called the Ulam-Găvruţa-Rassias stability (see also [35]).

Theorem 1.2 (J. M. Rassias [28]). Let X be a real normed linear space and Y a real complete normed linear space. Assume that $f : X \to Y$ is an approximately additive mapping for which there exist constants $\theta \geq 0$ and $p, q \in \mathbb{R}$ such that $r = p + q \neq 1$ and f satisfies the inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \theta \|x\|^p \|y\|^q$$

(1.6)

for all $x, y \in X$. Then there exists a unique additive mapping $L : X \to Y$ satisfying

$$\|f(x) - L(x)\| \leq \frac{\theta}{2^r - 2}\|x\|^r$$

(1.7)

for all $x \in X$. If, in addition, $f : X \to Y$ is a mapping such that the transformation $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$, then L is an \mathbb{R}-linear mapping.

Very recently, Ravi et al. [36] in the inequality (1.6) replaced the bound by a mixed one involving the product and sum of powers of norms, that is, $\theta \left\{ \|x\|^p \|y\|^p + (\|x\|^{2p} + \|y\|^{2q}) \right\}$.

For more details about the results concerning such problems and mixed product-sum stability (J. M.-Rassias Stability) the reader is referred to [37–49].

Khodaei and T. M. Rassias [50] have established the general solution and investigated the Hyers-Ulam-Rassias stability of the following n-dimensional additive functional equation:

$$\sum_{k=2}^{n} \left(\sum_{i_1=2}^{k-1} \sum_{i_2=i_1+1}^{k-1} \cdots \sum_{i_k=i_{k-1}+1}^{k-1} \right) f \left(\sum_{i=1}^{n} a_i x_i - \sum_{r=1}^{n-k+1} a_{i_r} x_{i_r} \right)$$

$$+ f \left(\sum_{i=1}^{n} a_i x_i \right) = 2^{n-1} a_1 f(x_1),$$

(1.8)

where $a_1, \ldots, a_n \in \mathbb{Z} - \{0\}$ with $a_1 \neq \pm 1$.

In this paper, we investigate the Hyers-Ulam stability of homomorphisms and derivations associated with functional equation (1.8).
2. Main Results

Before taking up the main subject, for a given \(f : A \rightarrow B \) between vector spaces, we define the difference operator

\[
Df(x_1, \ldots, x_n) := \sum_{k=2}^{n} \left(\sum_{l_1=2}^{k} \sum_{i_2=i_1+1}^{k+1} \cdots \sum_{i_{k+1}=i_{k+1}+1}^{n} \right) f \left(\sum_{i=1}^{n} a_i x_i - \sum_{r=1}^{n-k+1} a_i x_i \right) + \frac{f \left(\sum_{i=1}^{n} a_i x_i \right)}{2^{n-1}} - a_1 f(x_1).
\]

(2.1)

\[\tag{2.1} \]

\[\text{Theorem 2.1.} \]
Let \(A, B \) be two non-Archimedean Banach algebras and let \(\psi : A^n \rightarrow [0, \infty), \phi : A^2 \rightarrow [0, \infty) \) be functions such that

\[
\lim_{m \to \infty} \frac{1}{|a_1|} \psi \left(a_1^m x_1, \ldots, a_1^m x_n \right) = \lim_{k \to \infty} \frac{1}{k} \phi(kx, y) = 0
\]

(2.2)

for all \(x_1, \ldots, x_n \in A \), and the limit

\[\tilde{\psi}(x) := \lim_{m \to \infty} \max \left\{ \frac{1}{|a_1|} \psi \left(a_1^\ell x, 0, \ldots, 0 \right) : 0 \leq \ell < m \right\} \]

(2.3)

exists and \(\lim_{k \to \infty} (1/k) \tilde{\psi}(kx) = 0 \) for all \(x \in A \). Suppose that \(f : A \rightarrow B \) is a function satisfying

\[
\|Df(x_1, \ldots, x_n)\| \leq \psi(x_1, \ldots, x_n), \quad \|f(xy) - f(x)f(y)\| \leq \phi(x, y)
\]

(2.4)

for all \(x_1, \ldots, x_n, x, y \in A \). Then there exists a ring homomorphism \(H : A \rightarrow B \) such that

\[
\|f(x) - H(x)\| \leq \frac{1}{|2^{n-1}a_1|} \tilde{\psi}(x)
\]

(2.5)

for all \(x \in A \) and

\[H(x)(H(y) - f(y)) = (f(x) - H(x))H(y) = 0 \]

(2.6)

for all \(x, y \in A \). Moreover, if

\[
\lim_{j \to \infty} \lim_{m \to \infty} \max \left\{ \frac{1}{|a_1|} \psi \left(a_1^j x, 0, \ldots, 0 \right) : j \leq \ell < m + j \right\} = 0,
\]

(2.7)

then \(H \) is the unique ring homomorphism satisfying (2.5).
Abstract and Applied Analysis

Proof. By [50, Theorem 4.4], there exists an additive function $H : \mathcal{A} \to \mathcal{B}$ which satisfies (2.5). We have

$$H(x) := \lim_{m \to \infty} a_m f \left(\frac{x}{a_m} \right)$$

(2.8)

for all $x \in \mathcal{A}$. Now we show that H is a multiplicative function. It follows from (2.5) that

$$\left\| f(kx) - H(kx) \right\| \leq \frac{1}{2^{n-1} a_1} \bar{\psi}(kx)$$

(2.9)

for all $x \in \mathcal{A}$ and all $k \in \mathbb{N}$. On the other hand H is additive then we have

$$\left\| \frac{1}{k} f(kx) - H(x) \right\| \leq \frac{1}{2^{n-1} a_1 k} \bar{\psi}(kx)$$

(2.10)

for all $x \in \mathcal{A}$ and all $k \in \mathbb{N}$. If $k \to \infty$, then by (2.3), the right hand side of above inequality tends to zero. It follows that

$$H(x) = \lim_{k \to \infty} \frac{1}{k} f(kx)$$

(2.11)

for all $x \in \mathcal{A}$. Applying (2.3), (2.4), and (2.11) we have

$$H(xy) - H(x)f(y) = \lim_{k \to \infty} \frac{1}{k} (f(kxy) - f(kx)f(y)) = 0$$

(2.12)

for all $x, y \in \mathcal{A}$. This means that

$$H(xy) = H(x)f(y)$$

(2.13)

for all $x, y \in \mathcal{A}$. From (2.13) and additivity of H we have

$$H(x)H(y) = H(x) \lim_{k \to \infty} \frac{1}{k} f(ky) = \lim_{k \to \infty} \frac{1}{k} (H(x)f(ky)) = \lim_{k \to \infty} \frac{1}{k} H(x(ky)) = H(xy)$$

(2.14)

for all $x, y \in \mathcal{A}$. In other words, H is multiplicative. It follows from (2.13) and (2.14) that

$$H(x)(H(y) - f(y)) = 0$$

(2.15)

for all $x, y \in \mathcal{A}$. Similarly, we can show that

$$(f(x) - H(x))H(y) = 0$$

(2.16)
for all \(x, y \in \mathcal{A} \). To prove the uniqueness property of \(H \), let \(T : \mathcal{A} \to \mathcal{B} \) be another ring homomorphism which satisfies (2.5). Applying (2.11) and (2.5) we have

\[
\| H(x) - T(x) \| = \lim_{k \to \infty} \frac{1}{k} \| f(kxy) - T(kx) \| \leq \lim_{k \to \infty} \frac{1}{k} |2^{\gamma-1}a_1| \psi(kx) = 0
\]

for all \(x \in \mathcal{A} \) which is the desired conclusion. \(\square \)

Now, we establish the superstability of homomorphisms as follows.

Corollary 2.2. Let \(\mathcal{A}, \mathcal{B} \) be two unital non-Archimedean Banach algebras, and let \(\psi : \mathcal{A}^n \to [0, \infty), \phi : \mathcal{A}^2 \to [0, \infty), f : \mathcal{A} \to \mathcal{B} \) be functions with conditions of Theorem 2.1. Suppose that

\[
\lim_{m \to \infty} a_1^m f\left(\frac{1}{a_1^m} \right) = 1_B.
\]

Then the mapping \(f : \mathcal{A} \to \mathcal{B} \) is a ring homomorphism.

Proof. It follows from (2.6) and (2.18) that \(f = H \) in Theorem 2.1. Hence, \(f \) is a ring homomorphism. \(\square \)

Corollary 2.3. Let \(\eta : [0, \infty) \to [0, \infty) \) be a function satisfying

(i) \(\eta(|a_1|) \leq \eta(|a_1|)\eta(t) \) for all \(t \geq 0 \);

(ii) \(\eta(|a_1|) < |a_1| \);

(iii) \(\lim_{k \to -\infty}(1/k)\eta(k|a_1|) = 0 \).

Suppose that \(\epsilon > 0 \), and let \(f : \mathcal{A} \to \mathcal{B} \) satisfying

\[
\| Df(x_1, \ldots, x_n) \| + \| f(xy) - f(x)f(y) \| \leq \epsilon \min \left\{ \sum_{i=1}^n \eta(\|x_i\|), \eta(\|x\|)\eta(\|y\|) \right\}
\]

for all \(x_1, \ldots, x_n, x, y \in \mathcal{A} \). Then there exists a unique ring homomorphism \(H : \mathcal{A} \to \mathcal{B} \) such that

\[
\| f(x) - H(x) \| \leq \frac{\epsilon}{|2^{\gamma-1}a_1|} \eta(\|x\|)
\]

for all \(x \in \mathcal{A} \).

Proof. Defining \(\psi : \mathcal{A}^n \to [0, \infty) \) and \(\phi : \mathcal{A}^2 \to [0, \infty) \) by

\[
\psi(x_1, \ldots, x_n) := \epsilon \sum_{i=1}^n \eta(\|x_i\|), \quad \phi(x, y) := \eta(\|x\|)\eta(\|y\|),
\]

(2.21)
respectively, we have
\[
\lim_{m \to \infty} \frac{1}{|a_1|^m} \psi(a_1^m x_1, \ldots, a_1^m x_n) \leq \lim_{m \to \infty} \left(\frac{\eta(|a_1|)}{|a_1|} \right)^m \psi(x_1, \ldots, x_n) = 0 \tag{2.22}
\]
for all \(x_1, \ldots, x_n \in \mathcal{A}\). Hence
\[
\tilde{\psi}(x) := \lim_{m \to \infty} \max \left\{ \frac{1}{|a_1|^\ell} \psi(a_1^\ell x, 0, \ldots, 0) : 0 \leq \ell < m \right\} = \psi(x, 0, \ldots, 0),
\]
\[
\lim_{j \to \infty} \lim_{m \to \infty} \max \left\{ \frac{1}{|a_1|^j} \psi(a_1^j x, 0, \ldots, 0) : j \leq \ell < m + j \right\} = \lim_{j \to \infty} \frac{1}{|a_1|^j} \psi(a_1^j x, 0, \ldots, 0) = 0 \tag{2.23}
\]
for all \(x \in \mathcal{A}\). On the other hand
\[
\lim_{k \to \infty} \frac{1}{k} \tilde{\phi}(kx, y) = \lim_{k \to \infty} \frac{1}{k} \eta(k \|x\|) \eta(\|y\|) = 0 \tag{2.24}
\]
for all \(x, y \in \mathcal{A}\). The conclusion follows from Theorem 2.1.

Remark 2.4. The classical example of the function \(\eta\) is the function \(\eta(t) = t^p\) for all \(t \in [0, \infty)\), where \(p > 1\) with the further assumption that \(|a_1| < 1\).

Now, we prove the stability of derivations non-Archimedean Banach algebras by using Theorem 2.1.

Theorem 2.5. Let \(\mathcal{A}\) be a non-Archimedean Banach algebra, and let \(\mathcal{H}\) be a non-Archimedean Banach \(\mathcal{A}\)-module. Let \(\psi : \mathcal{A}^n \to [0, \infty)\), \(\phi : \mathcal{A}^2 \to [0, \infty)\) be a function such that
\[
\lim_{m \to \infty} \frac{1}{|a_1|^m} \psi(a_1^m x_1, \ldots, a_1^m x_n) = \lim_{k \to \infty} \frac{1}{k} \phi(kx, y) = 0 \tag{2.25}
\]
for all \(x_1, \ldots, x_n \in \mathcal{A}\), and the limit
\[
\tilde{\psi}(x) := \lim_{m \to \infty} \max \left\{ \frac{1}{|a_1|^\ell} \psi(a_1^\ell x, 0, \ldots, 0) : 0 \leq \ell < m \right\}
\]
exists and \(\lim_{k \to \infty} (1/k) \tilde{\phi}(kx) = 0 \) for all \(x \in \mathcal{A}\). Suppose that \(f : \mathcal{A} \to \mathcal{H}\) is a function satisfying
\[
\|Df(x_1, \ldots, x_n)\| \leq \psi(x_1, \ldots, x_n), \quad \|f(xy) - f(x)y - xf(y)\| \leq \phi(x, y) \tag{2.27}
\]
We define projection maps π_i for all i. Then there exists a ring derivation $D : \mathcal{A} \to \mathcal{K}$ such that

$$\|f(x) - D(x)\| \leq \frac{1}{2^{n-1}a_1} \tilde{\varphi}(x)$$

(2.28)

for all $x \in \mathcal{A}$.

Proof. It is easy to see that $\mathcal{K} \oplus_1 \mathcal{A}$ is a non-Archimedean Banach algebra equipped with the product

$$(x_1, a_1)(x_2, a_2) = (x_1 \cdot a_2 + a_1 \cdot x_2, a_1a_2) \quad (a_1, a_2 \in \mathcal{A}, x_1, x_2 \in \mathcal{K})$$

(2.29)

and with the following ℓ_1-norm:

$$\|(x, a)\| = \|x\| + \|a\| \quad (a \in \mathcal{A}, x \in \mathcal{K}).$$

(2.30)

Let us define the mapping $\varphi_f : \mathcal{A} \to \mathcal{K} \oplus_1 \mathcal{A}$ by $a \mapsto (f(a), a)$. It is easy to see that $\varphi_f : \mathcal{A} \to \mathcal{K} \oplus_1 \mathcal{A}$ satisfies the conditions of Theorem 2.1. By Theorem 2.1, there exists a unique ring homomorphism $H : \mathcal{A} \to \mathcal{K} \oplus_1 \mathcal{A}$ such that

$$\|H(a) - \varphi_f(a)\| \leq \frac{1}{2^{n-1}a_1} \tilde{\varphi}(a) \quad (a \in \mathcal{A}).$$

(2.31)

We define projection maps $\pi_1 : \mathcal{K} \oplus_1 \mathcal{A} \to \mathcal{K}$ and $\pi_2 : \mathcal{K} \oplus_1 \mathcal{A} \to \mathcal{A}$ by $(x, b) \mapsto x$ and $(x, b) \mapsto b$, respectively.

It follows from (2.31) that

$$\|(\pi_2 \circ \varphi_f)(ka) - (\pi_2 \circ H)(ka)\| \leq \|\varphi_f(ka) - H(ka)\| \leq \frac{1}{2^{n-1}a_1} \tilde{\varphi}(ka) \quad (k \in \mathbb{N}, a \in \mathcal{A}).$$

(2.32)

By the additivity of mappings under consideration

$$(\pi_2 \circ \varphi_f)(ka) = k(\pi_2 \circ \varphi_f)(a),$$

$$(\pi_2 \circ \varphi_f)(ka) = \pi_2(f(ka), ka) = ka,$$

(2.33)

whence, by (2.32),

$$\|a - (\pi_2 \circ H)(a)\| \leq \frac{1}{k} \frac{1}{2^{n-1}a_1} \tilde{\varphi}(ka)$$

(2.34)

for all $k \in \mathbb{N}, a \in \mathcal{A}$. By letting k tend to ∞ in (2.34), we obtain by (2.25) that

$$(\pi_2 \circ H)(a) = a \quad (a \in \mathcal{A}).$$

(2.35)
Abstract and Applied Analysis

Put $D := \pi_1 \circ H$. Then we have

$$(\pi_1 \circ H)(ab), ab = (\pi_1(H(ab)), \pi_2(H(ab))) = H(ab) = H(a)H(b)$$

$$= (\pi_1(H(a)), \pi_2(H(a)))(\pi_1(H(b)), \pi_2(H(b)))$$

$$= (\pi_1(H(a)), a)(\pi_1(H(b)), b)$$

$$= (a\pi_1(H(b)) + \pi_1(H(a))b, ab)$$

for all $a, b \in \mathcal{A}$. It follows that D is a derivation. On the other hand, by (2.31) we have

$$\|D(a) - f(a)\| = \|\pi_1(H(a)) - \pi_1(\psi_f(a))\| \leq \|H(a) - \psi_f(a)\| \leq \frac{1}{|2^\nu - a_1|} \bar{\psi}(a)$$

for all $a \in \mathcal{A}$.

To prove the uniqueness property of D, assume that D^* is another derivation from \mathcal{A} into \mathcal{K} satisfying

$$\|D^*(a) - f(a)\| \leq \frac{1}{|2^\nu - a_1|} \bar{\psi}(a) \quad (a \in \mathcal{A}).$$

Then by (2.25), we have

$$\|D(a) - D^*(a)\| = \lim_{k \to \infty} \frac{1}{k} \|D(ka) - D^*(ka)\| \leq \lim_{k \to \infty} \left(\frac{1}{k} \|D^*(a) - f(a)\| + \frac{1}{k} \|D(a) - f(a)\| \right)$$

$$\leq \lim_{k \to \infty} \frac{2}{k} \frac{1}{|2^\nu - a_1|} \bar{\psi}(ka)$$

$$= 0$$

for all $a \in \mathcal{A}$. This means that $D(a) = D^*(a)$ for all $a \in \mathcal{A}$. \hfill \square

Corollary 2.6. Let $\eta : [0, \infty) \to [0, \infty)$ be a function satisfying

(i) $\eta(|t|) \leq \eta(|a_1|)\eta(t)$ for all $t \geq 0$;

(ii) $\eta(|a_1|) < |a_1|$;

(iii) $\lim_{k \to \infty} (1/k) \eta(k|a_1|) = 0$.

Suppose that $\varepsilon > 0$, and let $f : \mathcal{A} \to \mathcal{K}$ satisfying

$$\|Df(x_1, \ldots, x_n)\| + \|f(xy) - f(x)y - xf(y)\| \leq \varepsilon \min\left\{ \sum_{i=1}^{n} \eta(|x_i|), \eta(||x||)\eta(||y||) \right\}$$

(2.40)
for all \(x_1, \ldots, x_n, x, y \in \mathcal{A} \). Then there exists a unique ring derivation \(D : \mathcal{A} \to \mathcal{X} \) such that

\[
\|f(x) - D(x)\| \leq \frac{\varepsilon}{\|2^{n-1} a_1\|} \eta(\|x\|) \tag{2.41}
\]

for all \(x \in \mathcal{A} \).

Now, we would like to prove the superstability of derivations on non-Archimedean Banach algebras.

Theorem 2.7. Let \(\mathcal{A} \) be a non-Archimedean Banach algebra with bounded approximate identity. Let \(\varphi : \mathcal{A}^n \to [0, \infty) \), \(\phi : \mathcal{A}^2 \to [0, \infty) \), \(f : \mathcal{A} \to \mathcal{A} \) be functions satisfying the conditions of Theorem 2.5. Then \(f : \mathcal{A} \to \mathcal{A} \) is a ring derivation.

Proof. In the proof of Theorem 2.5, we can see that

\[
H(b)(H(a) - \varphi_f(a)) = (H(a) - \varphi_f(a))H(b) = 0 \tag{2.42}
\]

for all \(a, b \in \mathcal{A} \).

\[
(f(a) - D(a))b = \pi_1((f(a) - D(a))b, 0)
\]

\[
= \pi_1((f(a) - D(a), 0)(D(b), b))
\]

\[
= \pi_1((\pi_1(H(a) - \varphi_f(a)), 0)(\pi_1(H(b)), b))
\]

\[
= \pi_1((\pi_1(H(a) - \varphi_f(a)), 0)H(b))
\]

\[
= \pi_1((\pi_1(H(a)), a - (\pi_1(\varphi_f(a)), a))H(b))
\]

\[
= \pi_1(0, 0) \quad \text{(by (2.42))}
\]

\[
= 0
\]

for all \(a, b \in \mathcal{A} \). Since \(\mathcal{A} \) has a bounded approximate identity, then by above equation, we have \(f(a) = D(a) \) for all \(a \in \mathcal{A} \). \(f \) is a ring derivation on \(\mathcal{A} \). \(\square \)

References

