Research Article

On an Integral-Type Operator from Zygmund-Type Spaces to Mixed-Norm Spaces on the Unit Ball

Stevo Stević
Mathematical Institute of the Serbian Academy of Sciences and Arts, 36/III Knez Mihailova, 11000 Belgrade, Serbia

Correspondence should be addressed to Stevo Stević, sstevic@ptt.rs

Received 23 June 2010; Accepted 27 October 2010

Academic Editor: H. B. Thompson

Copyright © 2010 Stevo Stević. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The boundedness and compactness of an integral-type operator recently introduced by the author from Zygmund-type spaces to the mixed-norm space on the unit ball are characterized here.

1. Introduction

Let \(\mathbb{B} = \{ z \in \mathbb{C}^n : |z| < 1 \} \) be the open unit ball in \(\mathbb{C}^n \), \(\partial \mathbb{B} \) its boundary, \(dV_N \) the normalized volume measure on \(\mathbb{B} \), and \(H(\mathbb{B}) \) the class of all holomorphic functions on \(\mathbb{B} \). Strictly positive, bounded, continuous functions on \(\mathbb{B} \) are called weights.

For an \(f \in H(\mathbb{B}) \) with the Taylor expansion \(f(z) = \sum_{|\beta| \geq 0} a_\beta z^\beta \), let

\[
\Re f(z) = \sum_{|\beta| \geq 0} |\beta| a_\beta z^\beta
\]

be the radial derivative of \(f \), where \(\beta = (\beta_1, \beta_2, \ldots, \beta_n) \) is a multi-index, \(|\beta| = \beta_1 + \cdots + \beta_n \), and \(z^\beta = z_1^{\beta_1} \cdots z_n^{\beta_n} \).

A positive, continuous function \(v \) on the interval \([0,1]\) is called normal \([1]\) if there are \(\delta \in [0,1) \) and \(a \) and \(b \), \(0 < a < b \) such that

\[
\frac{v(r)}{(1-r)^a} \text{ is decreasing on } [\delta,1), \quad \lim_{r \to 1^-} \frac{v(r)}{(1-r)^a} = 0, \\
\frac{v(r)}{(1-r)^b} \text{ is increasing on } [\delta,1), \quad \lim_{r \to 1^-} \frac{v(r)}{(1-r)^b} = \infty.
\]

(1.2)
If we say that a function \(\nu : \mathbb{B} \to [0, \infty) \) is normal, we also assume that it is radial, that is,
\[\nu(z) = \nu(|z|), \quad z \in \mathbb{B}. \]

Let \(\mu \) be a weight. By \(\mathcal{Z}_\mu(\mathbb{B}) = \mathcal{Z}_\mu \), we denote the class of all \(f \in H(\mathbb{B}) \) such that

\[z(f) := \sup_{z\in\mathbb{B}} \mu(z) |R^2 f(z)| < \infty, \tag{1.3} \]

and call it the Zygmund-type class. The quantity \(z(f) \) is a seminorm. A norm on \(\mathcal{Z}_\mu \) can be introduced by \(\|f\|_\mathcal{Z} = |f(0)| + z(f) \). Zygmund-type class with this norm will be called the Zygmund-type space.

The little Zygmund-type space on \(\mathbb{B} \), denoted by \(\mathcal{Z}_{\mu,0}(\mathbb{B}) = \mathcal{Z}_{\mu,0} \), is the closed subspace of \(\mathcal{Z}_\mu \) consisting of functions \(f \) satisfying the following condition

\[\lim_{|z|\to 1} \mu(z) |R^2 f(z)| = 0. \tag{1.4} \]

For \(0 < p, q < \infty \), and \(\phi \) normal, the mixed-norm space \(H(p,q,\phi)(\mathbb{B}) = H(p,q,\phi) \) consists of all functions \(f \in H(\mathbb{B}) \) such that

\[\|f\|_{H(p,q,\phi)} = \left(\int_0^1 M_q^p(f,r) \phi^n(r) \frac{dr}{1-r} \right)^{1/p} < \infty, \tag{1.5} \]

where

\[M_q(f,r) = \left(\int_{\partial \mathbb{B}} |f(r \zeta)|^q \, d\sigma(\zeta) \right)^{1/q}, \tag{1.6} \]

and \(d\sigma \) is the normalized surface measure on \(\partial \mathbb{B} \). For \(p = q \), \(\phi(r) = (1 - r^2)^{(\alpha+1)/p} \), and \(\alpha > -1 \), the space is equivalent with the weighted Bergman space \(A^p_\alpha(\mathbb{B}) \).

In [2], the present author has introduced products of integral and composition operators on \(H(\mathbb{B}) \) as follows (see also [3–5]). Assume \(g \in H(\mathbb{B}) \), \(g(0) = 0 \), and \(\varphi \) is a holomorphic self-map of \(\mathbb{B} \), then we define an operator on \(H(\mathbb{B}) \) by

\[P^g_\varphi(f)(z) = \int_0^1 f(\varphi(tz)) g(tz) \frac{dt}{t}, \quad f \in H(\mathbb{B}), \quad z \in \mathbb{B}. \tag{1.7} \]

The operator is an extension of the operator introduced in [6]. Here, we continue to study operator \(P^g_\varphi \) by characterizing the boundedness and compactness of the operator between Zygmund-type spaces and the mixed-norm space. For some results on related integral-type operators mostly in \(\mathbb{C}^n \), see, for example, [3, 6–27] and the references therein.

In this paper, constants are denoted by \(C \); they are positive and may differ from one occurrence to the other. The notation \(a \lesssim b \) means that there is a positive constant \(C \) such that \(a \leq Cb \). If both \(a \leq b \) and \(b \leq a \) hold, then one says that \(a \asymp b \).
2. Auxiliary Results

In this section, we quote several lemmas which are used in the proofs of the main results.

The first lemma was proved in [2].

Lemma 2.1. Assume that φ is a holomorphic self-map of \mathbb{B}, $g \in H(\mathbb{B})$, and $g(0) = 0$. Then, for every $f \in H(\mathbb{B})$, it holds

$$\Re \left[P^g_\varphi(f) \right](z) = f(\varphi(z))g(z).$$ (2.1)

The next Schwartz-type characterization of compactness [28] is proved in a standard way (see, e.g., the proof of the corresponding lemma in [11]), hence we omit its proof.

Lemma 2.2. Assume $p, q > 0$, φ is a holomorphic self-map of \mathbb{B}, $g \in H(\mathbb{B})$, $g(0) = 0$, φ is normal, and μ is a weight. Then, the operator $P^g_\varphi : \mathcal{L}_\mu (\text{or } \mathcal{L}_{\mu,0}) \rightarrow H(p,q,\varphi)$ is compact if and only if for every bounded sequence $(f_k)_{k \in \mathbb{N}} \subset \mathcal{L}_\mu (\text{or } \mathcal{L}_{\mu,0})$ converging to 0 uniformly on compacts of \mathbb{B} we have

$$\lim_{k \rightarrow \infty} \| P^g_\varphi f_k \|_{H(p,q,\varphi)} = 0.$$ (2.2)

The next lemma is folklore and can be found, for example, in [6] (one-dimensional case for standard power weights is due to Flett [29, Theorems 6 and 7]).

Lemma 2.3. Assume that $0 < p, q < \infty$, φ is normal, and $m \in \mathbb{N}$. Then, the following asymptotic relationship holds for every $f \in H(\mathbb{B})$,

$$\int_0^1 M^p_\varphi(f,r) \frac{\phi^p(r)}{1-r} dr \asymp |f(0)|^p + \int_0^1 M^p_\varphi(\Re^m f,r) (1 - r)^{mp} \frac{\phi^p(r)}{1-r} dr.$$ (2.3)

Lemma 2.4. Assume that μ is normal and $f \in \mathcal{L}_\mu$. Then,

$$|f(z)| \leq C \| f \|_{\mathcal{L}_\mu} \left(1 + \int_0^{|z|} \frac{ds}{\mu(s)} dt \right), \quad z \in \mathbb{B}.$$ (2.4)

Moreover, if

$$\int_0^1 \int_0^t \frac{ds}{\mu(s)} dt < \infty,$$ (2.5)

then

$$|f(z)| \leq C \| f \|_{\mathcal{L}_\mu},$$ (2.6)

for any $z \in \mathbb{B}$.
Proof. By Lemma 2.3.1 in [21] applied to $\Re f$ we have that
\[|\Re f(z)| \leq C \|f\|_{2_n} \left(1 + \int_0^{\|z\|} \frac{ds}{\mu(s)} \right). \] (2.6)

Hence, for $|z| \geq 1/2$, we have that
\[|f(z) - f\left(\frac{z}{2}\right)| \leq \int_{1/2}^{1} |\Re f(tz)| \frac{dt}{t} \leq C \|f\|_{2_n} \left(1 + \int_0^{\|z\|} \frac{ds}{\mu(s)} \right) d(|z|), \] (2.7)
so that
\[|f(z)| \leq M_{\infty}\left(f, \frac{1}{2}\right) + C \|f\|_{2_n} \left(1 + \int_0^{\|z\|} \frac{ds}{\mu(s)} \right), \] (2.8)
where $M_{\infty}(f, 1/2) = \max_{|z| \leq 1/2} |f(z)|$.

If $|z| \leq 1/2$, then by the mean value property of the function $f(z) - f(0)$ (see [30]), Jensen’s inequality, and Parseval’s formula, we obtain
\[
\max_{|z| \leq 1/2} |f(z) - f(0)|^2 \leq 4^n \int_{|z| \leq 3/4} |f(w) - f(0)|^2 dV_N(w)
\leq 4^n \int_{|z| \leq 3/4} |\Re f(w)|^2 dV_N(w)
\leq 3^n \max_{|z| \leq 3/4} |\Re f(z)|^2.
\] (2.9)

From (2.9) and (2.6), we obtain
\[
M_{\infty}(f, 1/2) \leq |f(0)| + \left(\sqrt{3}\right)^n \max_{|z| \leq 3/4} |\Re f(z)|
\leq |f(0)| + \left(\sqrt{3}\right)^n C \|f\|_{2_n} \left(1 + \int_0^{3/4} \frac{ds}{\mu(s)} \right)
\leq C \|f\|_{2_n}.
\] (2.10)

From (2.8) and (2.10), (2.3) follows, from which by (2.4) the second statement follows. \qed

Lemma 2.5. Assume μ is normal and (2.4) holds. Then, for every bounded sequence $(f_k)_{k \in \mathbb{N}} \subset \mathcal{L}_{\mu}$ converging to 0 uniformly on compacts of \mathbb{B}, we have that
\[
\lim_{k \to \infty} \sup_{z \in \mathbb{B}} |f_k(z)| = 0.
\] (2.11)
Proof. From (2.4), we have that for every \(\varepsilon > 0 \), there is a \(\delta \in (0, \min\{\varepsilon, 1/2\}) \) such that

\[
\int_{|z|}^{1|z|} \int_{0}^{1} \frac{ds}{\mu(s)} dt < \varepsilon, \tag{2.12}
\]

for \(|z| > 1 - \delta \).

Hence, from (2.12) it follows that for each \(k \in \mathbb{N} \) and \(|z| \geq 1 - \delta \)

\[
|f_k(z) - f_k((1-\delta)z)| \leq \int_{1-\delta}^{1} \left| \mathfrak{R} f_k(tz) \right| \frac{dt}{t} \\
\leq C \|f_k\|_{L_{p,q,\phi}} \int_{1-\delta}^{1} \left(1 + \int_{0}^{1|z|} \frac{ds}{\mu(s)} \right) dt \\
\leq C \|f_k\|_{L_{p,q,\phi}} \left(\varepsilon + \int_{(1-\delta)|z|}^{1|z|} \frac{ds}{\mu(s)} dt \right). \tag{2.13}
\]

From (2.12) and (2.13), we obtain

\[
|f_k(z)| \leq \sup_{|w| \leq 1-\delta} |f_k(w)| + 2C\varepsilon \sup_{k \in \mathbb{N}} \|f_k\|_{L_{p,q,\phi}}. \tag{2.14}
\]

Letting \(k \to \infty \) in this inequality, using the assumption that \(f_k \) converges to 0 on the compact \(|w| \leq 1 - \delta \), and using the fact that \(\varepsilon \) is an arbitrary positive number, the lemma follows. \(\square \)

3. The Boundedness and Compactness of \(P_{\psi}^{g} : \mathfrak{L}_{\mu} \) (or \(\mathfrak{L}_{\mu,0} \)) \(\to H(p,q,\phi) \)

The boundedness and compactness of the operator \(P_{\psi}^{g} : \mathfrak{L}_{\mu} \) (or \(\mathfrak{L}_{\mu,0} \)) \(\to H(p,q,\phi) \) are characterized in this section.

Theorem 3.1. Assume that \(p,q > 0, \phi \) is a holomorphic self-map of \(\mathbb{B} \), \(g \in H(\mathbb{B}) \), \(g(0) = 0 \), \(\phi \) and \(\mu \) are normal, and \(\mu \) satisfies condition (2.4). Let

\[
G(z) = \int_{0}^{1} g(tz) \frac{dt}{t}. \tag{3.1}
\]

Then, the following statements are equivalent:

(a) \(P_{\psi}^{g} : \mathfrak{L}_{\mu,0} \to H(p,q,\phi) \) is bounded;
(b) \(P_{\psi}^{g} : \mathfrak{L}_{\mu} \to H(p,q,\phi) \) is bounded;
(c) \(P_{\psi}^{g} : \mathfrak{L}_{\mu,0} \to H(p,q,\phi) \) is compact;
(d) \(P_{\psi}^{g} : \mathfrak{L}_{\mu} \to H(p,q,\phi) \) is compact;
(e) \(G \in H(p,q,\phi) \).

Moreover, if \(P_{\psi}^{g} : \mathfrak{L}_{\mu} \to H(p,q,\phi) \) is bounded, then the following asymptotic relations hold:

\[
\|P_{\psi}^{g}\|_{\mathfrak{L}_{\mu} \to H(p,q,\phi)} \asymp \|P_{\psi}^{g}\|_{\mathfrak{L}_{\mu,0} \to H(p,q,\phi)} \asymp \|G\|_{H(p,q,\phi)}, \tag{3.2}
\]

Abstract and Applied Analysis
Proof. The implications (d) ⇒ (b), (b) ⇒ (a), (d) ⇒ (c), and (c) ⇒ (a) are obvious.

(a) ⇒ (e) Since $P^\varphi_q : \mathcal{L}_{\mu,0} \to H(p,q,\phi)$ is bounded and $f(z) \equiv 1 \in \mathcal{L}_{\mu,0}$, by Lemma 2.1 we have that $G(z) = P^\varphi_q (1)(z) \in H(p,q,\phi)$. Moreover,

$$\|G\|_{H(p,q,\phi)} = \|P^\varphi_q (1)\|_{H(p,q,\phi)} \leq \|P^\varphi_q\|_{\mathcal{L}_{\mu,0} \to H(p,q,\phi)},$$

(3.3)

(e) ⇒ (d) Assume that $(f_k)_{k \in \mathbb{N}} \subset \mathcal{L}_{\mu}$ is a bounded sequence converging to 0 uniformly on compacts of \mathbb{B}. Then, by Lemmas 2.1, 2.3, and 2.5, we have

$$\left\| P^\varphi_q f_k \right\|_{H(p,q,\phi)} = \left | P^\varphi_q f_k (0) \right | + \left (\int_0^1 M_q^p (g f_k \circ \varphi, r) \frac{\phi^p (r)}{(1-r)^{1-p}} dr \right)^{1/p} \leq C \|G\|_{H(p,q,\phi)} \sup_{z \in \mathbb{B}} | f_k (z) | \to 0, \; \text{as} \; k \to \infty,$$

(3.4)

which along with Lemma 2.2 implies the compactness of $P^\varphi_q : \mathcal{L}_{\mu} \to H(p,q,\phi)$.

From (2.4) and by Lemmas 2.3 and 2.4, we have

$$\left\| P^\varphi_q f \right\|_{H(p,q,\phi)} \leq C \left (\int_0^1 M_q^p (g \circ \varphi, r) \frac{\phi^p (r)}{(1-r)^{1-p}} dr \right)^{1/p} \leq C \|f\|_{Z_q} \left (\int_0^1 M_q^p (g, r) \frac{\phi^p (r)}{(1-r)^{1-p}} dr \right)^{1/p} \leq C \|f\|_{Z_q} \|G\|_{H(p,q,\phi)},$$

(3.5)

This, together with (3.3) and the inequality

$$\left\| P^\varphi_q \right\|_{\mathcal{L}_{\mu} \to H(p,q,\phi)} \leq \left\| P^\varphi_q \right\|_{\mathcal{L}_{\mu} \to H(p,q,\phi)'},$$

(3.6)

implies the asymptotic relations in (3.2), as desired.

\[\square\]

References

