Research Article

On Perfectly Homogeneous Bases in Quasi-Banach Spaces

F. Albiac and C. Leránoz

Departamento de Matemáticas, Universidad Pública de Navarra, 31006 Pamplona, Spain

Correspondence should be addressed to F. Albiac, fernando.albiac@unavarra.es

Received 22 April 2009; Accepted 3 June 2009

Recommended by Simeon Reich

For $0 < p < \infty$ the unit vector basis of ℓ_p has the property of perfect homogeneity: it is equivalent to all its normalized block basic sequences, that is, perfectly homogeneous bases are a special case of symmetric bases. For Banach spaces, a classical result of Zippin (1966) proved that perfectly homogeneous bases are equivalent to either the canonical c_0-basis or the canonical ℓ_p-basis for some $1 \leq p < \infty$. In this note, we show that (a relaxed form of) perfect homogeneity characterizes the unit vector bases of ℓ_p for $0 < p < 1$ as well amongst bases in nonlocally convex quasi-Banach spaces.

Copyright © 2009 F. Albiac and C. Leránoz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Background

Let us first review the relevant elementary concepts and definitions. Further details can be found in the books [1, 2] and the paper [3]. A (real) quasi-normed space X is a locally bounded topological vector space. This is equivalent to saying that the topology on X is induced by a quasi-norm, that is, a map $\| \cdot \| : X \to [0, \infty)$ satisfying

(i) $\|x\| = 0$ if and only if $x = 0$;
(ii) $\|\alpha x\| = |\alpha|\|x\|$ if $\alpha \in \mathbb{R}$, $x \in X$;
(iii) there is a constant $\kappa \geq 1$ so that for any x_1 and $x_2 \in X$ we have

$$\|x_1 + x_2\| \leq \kappa(\|x_1\| + \|x_2\|).$$ \hspace{1cm} (1.1)

The best constant κ in inequality (1.1) is called the modulus of concavity of the quasi-norm. If $\kappa = 1$, the quasi-norm is a norm. A quasi-norm on X is p-subadditive if

$$\|x_1 + x_2\|^p \leq \|x_1\|^p + \|x_2\|^p, \quad x_1, x_2 \in X.$$ \hspace{1cm} (1.2)
A theorem by Aoki [4] and Rolewicz [5] asserts that every quasi-norm has an equivalent \(p \)-subadditive quasi-norm, where \(0 < p \leq 1 \) is given by \(\kappa = 2^{1/p-1} \). A \(p \)-subadditive quasi-norm \(\| \cdot \| \) induces an invariant metric on \(X \) by the formula \(d(x, y) = \|x - y\|^p \). The space \(X \) is called quasi-Banach space if \(X \) is complete for this metric. A quasi-Banach space is isomorphic to a Banach space if and only if it is locally convex.

A basis \((x_n)_{n=1}^{\infty} \) of a quasi-Banach space \(X \) is symmetric if \((x_n)_{n=1}^{\infty} \) is equivalent to \((x_{\pi(n)})_{n=1}^{\infty} \) for any permutation \(\pi \) of \(\mathbb{N} \). Symmetric bases are unconditional and so there exists a nonnegative constant \(K \) such that for all \(x = \sum_{n=1}^{\infty} a_n x_n \) the inequality

\[
\left\| \sum_{n=1}^{\infty} \theta_n a_n x_n \right\| \leq K \left\| \sum_{n=1}^{\infty} a_n x_n \right\|
\]

holds for any bounded sequence \((\theta_n)_{n=1}^{\infty} \in B_{\ell_1} \). The least such constant \(K \) is called the unconditional constant of \((x_n)_{n=1}^{\infty} \).

For instance, the canonical basis of the spaces \(\ell_p \) for \(0 < p < \infty \) is symmetric and 1-unconditional. What is more, it is the only symmetric basis of \(\ell_p \) up to equivalence, that is, whenever \((x_n)_{n=1}^{\infty} \) is another normalized symmetric basis of \(\ell_p \), there is a constant \(C \) such that

\[
\frac{1}{C} \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p} \leq \left\| \sum_{n=1}^{\infty} a_n x_n \right\| \leq C \left(\sum_{n=1}^{\infty} |a_n|^p \right)^{1/p},
\]

for any finitely nonzero sequence of scalars \((a_n)_{n=1}^{\infty} \) [6, 7].

The spaces \(\ell_p \) for \(0 < p < 1 \) share the property of uniqueness of symmetric basis with all natural quasi-Banach spaces whose Banach envelope (i.e., the smallest containing Banach space) is isomorphic to \(\ell_1 \), as was recently proved in [8]. For other results on uniqueness of unconditional or symmetric basis in nonlocally convex quasi-Banach spaces the reader can consult the papers [9, 10].

This article illustrates how Zippin’s techniques can also be used to characterize the unit vector bases of \(\ell_p \) for \(0 < p < 1 \) as the only, up to equivalence, perfectly homogeneous bases in nonlocally convex quasi-Banach spaces. We use standard Banach space theory terminology and notation throughout, as may be found in [11, 12].

2. Perfectly Homogeneous Bases in Quasi-Banach Spaces

Let \((x_i)_{i=1}^{\infty} \) be a basis for a quasi-Banach space \(X \). A block basic sequence \((u_n)_{n=1}^{\infty} \) of \((x_i)_{i=1}^{\infty} \),

\[
u_n = \sum_{i=p_{n-1}+1}^{p_n} a_i x_i,
\]

is said to be a constant coefficient block basic sequence if for each \(n \) there is a constant \(c_n \) so that \(a_i = c_n \) or \(a_i = 0 \) for \(p_{n-1} + 1 \leq i \leq p_n \).

Definition 2.1. A basis \((x_i)_{i=1}^{\infty} \) of a quasi-Banach space \(X \) is almost perfectly homogeneous if every normalized constant coefficient block basic sequence of \((x_i)_{i=1}^{\infty} \) is equivalent to \((x_i)_{i=1}^{\infty} \).
Let us notice that using a uniform boundedness argument we obtain that, in fact, if \((x_i)_{i=1}^\infty\) is almost perfectly homogeneous then it is uniformly equivalent to all its normalized constant coefficient block basic sequences. That is, there is a constant \(M \geq 1\) such that for any normalized constant coefficient block basic sequence \((u_n)_{n=1}^\infty\) of \((x_i)_{i=1}^\infty\) we have

\[
M^{-1} \left\| \sum_{k=1}^n a_k x_k \right\| \leq \left\| \sum_{k=1}^n a_k u_k \right\| \leq M \left\| \sum_{k=1}^n a_k x_k \right\|,
\]

for all choices of scalars \((a_k)_{k=1}^n\) and \(n \in \mathbb{N}\). Equation (2.2) also yields that for any increasing sequence of integers \((k_j)_{j=1}^\infty\),

\[
M^{-1} \left\| \sum_{j=1}^n x_j \right\| \leq \left\| \sum_{j=1}^n x_{k_j} \right\| \leq M \left\| \sum_{j=1}^n x_j \right\|.
\]

This is our main result (cf. [13]).

Theorem 2.2. Let \(X\) be a nonlocally convex quasi-Banach space with normalized basis \((x_i)_{i=1}^\infty\). Suppose that \((x_i)_{i=1}^\infty\) is almost perfectly homogeneous. Then \((x_i)_{i=1}^\infty\) is equivalent to the canonical basis of \(\ell_q\) for some \(0 < q < 1\).

Proof. Let \(\kappa\) be the modulus of concavity of the quasi-norm. Since \(X\) is nonlocally convex, \(\kappa > 1\). By the Aoki-Roléwicz theorem we can assume that the quasi-norm is \(p\)-subadditive for \(0 < p < 1\) such that \(\kappa = 2^{1/p-1}\). We will show that \((x_i)_{i=1}^\infty\) is equivalent to the canonical \(\ell_q\)-basis for some \(p \leq q < 1\).

By renorming, without loss of generality we can assume \((x_i)_{i=1}^\infty\) to be 1-unconditional. For each \(n\) put,

\[
\lambda(n) = \left\| \sum_{i=1}^n x_i \right\|.
\]

Note that

\[
1 \leq \lambda(n) \leq n^{1/p}, \quad n \in \mathbb{N},
\]

and that, by the 1-unconditionality of the basis, the sequence \((\lambda(n))_{n=1}^\infty\) is nondecreasing.

We are going to construct disjoint blocks of length \(n\) of the basis \((x_i)_{i=1}^\infty\) as follows:

\[
v_1 = \sum_{i=1}^n x_i, \quad v_2 = \sum_{i=n+1}^{2n} x_i, \ldots, \quad v_j = \sum_{i=(j-1)n+1}^{jn} x_i, \ldots
\]

Equation (2.3) says that

\[
M^{-1} \lambda(n) \leq \|v_j\| \leq M \lambda(n), \quad j \in \mathbb{N},
\]
and so by the 1-unconditionality of $(x_i)_{i=1}^{\infty}$,

\[
\frac{1}{M\lambda(n)} \left\| \sum_{j=1}^{m} v_j \right\| \leq \left\| \sum_{j=1}^{m} \|v_j\|^{-1} v_j \right\| \leq \frac{M}{\lambda(n)} \left\| \sum_{j=1}^{m} v_j \right\|, \quad m \in \mathbb{N}.
\] (2.8)

On the other hand, by (2.2) we know that

\[
\frac{\lambda(m)}{M} \leq \left\| \sum_{j=1}^{m} \|v_j\|^{-1} v_j \right\| \leq M \lambda(m), \quad m \in \mathbb{N}.
\] (2.9)

If we put these last two inequalities together we obtain

\[
\frac{1}{M^2} \lambda(m) \lambda(n) \leq \lambda(mn) \leq M^2 \lambda(m) \lambda(n), \quad m, n \in \mathbb{N}.
\] (2.10)

Substituting in (2.10) integers of the form $m = 2^k$ and $n = 2^j$ give

\[
\frac{1}{M^2} \lambda\left(2^k\right) \lambda\left(2^j\right) \leq \lambda\left(2^{k+j}\right) \leq M^2 \lambda\left(2^k\right) \lambda\left(2^j\right), \quad k, j \in \mathbb{N}.
\] (2.11)

For $k = 0, 1, 2, \ldots$, let $h(k) = \log_2 \lambda(2^k)$. From (2.11) it follows that

\[
|h(j) - h(k) - h(j + k)| \leq 2 \log_2 M.
\] (2.12)

We need the following well-known lemma from real analysis.

Lemma 2.3. Suppose that $(s_n)_{n=1}^{\infty}$ is a sequence of real numbers such that

\[
|s_{m+n} - s_m - s_n| \leq 1
\] (2.13)

for all $m, n \in \mathbb{N}$. Then there is a constant c so that

\[
|s_n - cn| \leq 1, \quad n = 1, 2, \ldots
\] (2.14)

Lemma 2.3 yields a constant c so that

\[
|h(k) - ck| \leq 2 \log_2 M, \quad k = 1, 2, \ldots
\] (2.15)

In turn, using (2.5) we have

\[
1 \leq \lambda\left(2^k\right) \leq 2^{k/p}, \quad k = 1, 2, \ldots
\] (2.16)
Abstract and Applied Analysis

which implies

\[0 \leq h(k) \leq \frac{k}{p}, \quad (2.17) \]

and so, combining with (2.15) we obtain that the range of possible values for \(c \) is

\[0 \leq c \leq \frac{1}{p}, \quad (2.18) \]

If \(c = 0 \) then \((\lambda(n))_{n=1}^{\infty} \) would be (uniformly) bounded and so \((x_i)_{i=1}^{\infty} \) would be equivalent to the canonical basis of \(c_0 \), a contradiction with the local nonconvexity of \(X \). Otherwise, if \(0 < c \leq 1/p \) there is \(q \in [p, \infty) \) such that \(c = 1/q \). This way we can rewrite (2.15) in the form

\[\left| h(k) - \frac{k}{q} \right| \leq 2 \log_2 M, \quad k \in \mathbb{N}, \quad (2.19) \]

or equivalently,

\[M^{-2k/q} \leq \lambda \left(\frac{2^k}{q} \right) \leq 2^{k/q} M^2, \quad k \in \mathbb{N}. \quad (2.20) \]

Now, given \(n \in \mathbb{N} \) we pick the only integer \(k \) so that \(2^{k-1} \leq n \leq 2^k \). Then,

\[\lambda \left(\frac{2^{k-1}}{q} \right) \leq \lambda(n) \leq \lambda \left(\frac{2^k}{q} \right), \quad (2.21) \]

and so

\[M^{-2^{-1/q} n^{1/q}} \leq \lambda(n) \leq M^{2^{1/q} n^{1/q}}. \quad (2.22) \]

If \(A \) is any finite subset of \(\mathbb{N} \), by (2.3) we have

\[M^{-1} \lambda(|A|) \leq \left\| \sum_{j \in A} x_j \right\| \leq M \lambda(|A|), \quad (2.23) \]

hence

\[C^{-1} |A|^{1/q} \leq \left\| \sum_{j \in A} x_j \right\| \leq C |A|^{1/q}, \quad (2.24) \]

where \(C = M^{3/2^{1/q}} \).
To prove the equivalence of $\{x_i\}_{i=1}^\infty$ with the canonical basis of ℓ_q, given any $n \in \mathbb{N}$ we let $(a_i)_{i=1}^n$ be nonnegative scalars such that $a_i^q \in \mathbb{Q}$ and $\sum_{i=1}^n a_i^q = 1$. Each a_i^q can be written in the form $a_i^q = m_i/m$ where $m_i \in \mathbb{N}$, m is the common denominator of the a_i^q’s, and $\sum_{i=1}^n m_i = m$.

Let A_1 be interval of natural numbers $[1, m_1]$ and for $j = 2, \ldots, n$ let A_i be the interval of natural numbers $[m_1 + \cdots + m_{i-1} + 1, m_1 + \cdots + m_i]$. The sets A_1, \ldots, A_n are disjoint and have cardinality $|A_i| = m_i$ for each $i = 1, \ldots, n$. Consider the normalized constant coefficient block basic sequence defined as

$$u_i = c_i^{-1} \sum_{j \in A_i} x_j, \quad 1 \leq i \leq n,$$

where $c_i = \|\sum_{j \in A_i} x_k\|$. Equation (2.24) yields

$$C^{-1} m_1^{1/q} \leq c_i \leq C m_1^{1/q}, \quad 1 \leq i \leq n.$$

Therefore,

$$\left\| \sum_{i=1}^n \sum_{j \in A_i} x_j \right\| \leq \left\| \sum_{i=1}^n a_i u_i \right\| \leq \frac{C}{m_1^{1/q}} \left\| \sum_{i=1}^n \sum_{j \in A_i} x_k \right\|,$$

that is,

$$C^{-1} \frac{\lambda(m)}{m_1^{1/q}} \leq \left\| \sum_{i=1}^n a_i u_i \right\| \leq C \frac{\lambda(m)}{m_1^{1/q}}.$$

Thus,

$$\frac{1}{C^2 M} \leq \left\| \sum_{i=1}^n a_i u_i \right\| \leq C^2 M.$$

Using (2.2) again, we have

$$\frac{1}{C^2 M^2} \leq \left\| \sum_{i=1}^n a_i x_i \right\| \leq C^2 M^2.$$

We note that a simple density argument shows that (2.30) holds whenever $\sum_{i=1}^n |a_i|^q = 1$ (i.e., without the assumption that $|a_i|^q$ is rational), and this completes the proof that $\{x_i\}_{i=1}^\infty$ is equivalent to the canonical ℓ_q-basis for some $p \leq q < \infty$. Since X is not locally convex, we conclude that $p \leq q < 1$. \qed
Acknowledgment

The authors would like to acknowledge support from the Spanish Ministerio de Educación y Ciencia Research Project Espacios Topológicos Ordenados: Resultados Analíticos y Aplicaciones Multidisciplinares, reference number MTM2007-62499.

References