Some Computational Formulas for D-Nörlund Numbers

Guodong Liu
Department of Mathematics, Huizhou University, Huizhou, Guangdong 516015, China
Correspondence should be addressed to Guodong Liu, gdliu@pub.huizhou.gd.cn
Received 30 June 2009; Accepted 11 October 2009
Recommended by Lance Littlejohn

The author establishes some identities involving the D numbers, Bernoulli numbers, and central factorial numbers of the first kind. A generating function and several computational formulas for D-Nörlund numbers are also presented.

Copyright © 2009 Guodong Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Results

The Bernoulli polynomials $B_n^{(k)}(x)$ of order k, for any integer k, may be defined by (see [1–5])

$$
\left(\frac{t}{e^t - 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!}, \quad |t| < 2\pi.
$$

(1.1)

The numbers $B_n^{(k)} = B_n^{(k)}(0)$ are the Bernoulli numbers of order k, $B_n^{(1)} = B_n$ are the ordinary Bernoulli numbers (see [2, 6, 7]). By (1.1), we can get (see [4, page 145])

$$
\frac{d}{dx} B_n^{(k)}(x) = n B_n^{(k)}(x),
$$

(1.2)

$$
B_n^{(k+1)}(x) = \frac{k - n}{k} B_n^{(k)}(x) + (x - k) \frac{n}{k} B_n^{(k)}(x),
$$

(1.3)

$$
B_n^{(k+1)}(x + 1) = \frac{nx}{k} B_n^{(k)}(x) - \frac{n - k}{k} B_n^{(k)}(x),
$$

(1.4)

where $n \in \mathbb{N}$, with \mathbb{N} being the set of positive integers.
The numbers $B_n^{(n)}$ are called the Nörlund numbers (see [4, 8]). A generating function for the Nörlund numbers $B_n^{(n)}$ is (see [4, page 150])

$$\frac{t}{(1 + t) \log(1 + t)} = \sum_{n=0}^{\infty} B_n^{(n)} \frac{t^n}{n!}. \quad (1.5)$$

The D numbers $D_{2n}^{(k)}$ may be defined by (see [4, 5])

$$(t \csc t)^k = \sum_{n=0}^{\infty} (-1)^n D_{2n}^{(k)} \frac{t^{2n}}{(2n)!}, \quad |t| < \pi. \quad (1.6)$$

By (1.1), (1.6), and note that $\csc t = 2i/(e^{it} - e^{-it})$ (where $i^2 = -1$), we can get

$$D_{2n}^{(k)} = 4^n B_{2n}^{(k)} \left(\frac{k}{2} \right). \quad (1.7)$$

Taking $k = 1, 2$ in (1.7), and note that $B_{2n}^{(1)} (1/2) = (2^{1-2n} - 1)B_{2n}, B_{2n}^{(2)} (1) = (1 - 2n)B_{2n}$ (see [4, pages 22 and 145]), we have

$$D_{2n}^{(1)} = (2 - 2^{2n})B_{2n}, \quad D_{2n}^{(2)} = 4^n (1 - 2n)B_{2n}. \quad (1.8)$$

The numbers $D_{2n}^{(2n)}$ are called the D-Nörlund numbers. These numbers $D_{2n}^{(2n)}$ and $D_{2n}^{(2n-1)}$ have many important applications. For example (see [4, page 246])

$$\int_0^{\pi/2} \frac{\sin t}{t} dt = \sum_{n=0}^{\infty} \frac{(-1)^n D_{2n}^{(2n)}}{(2n+1)!}, \quad \int_0^{\pi/2} \frac{\sin t}{t} dt = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n+1} D_{2n}^{(2n-1)}}{2^{2n}(2n-1)(n!)} \quad (1.9)$$

$$\frac{2}{\pi} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} D_{2n}^{(2n-1)}}{(2n-1)(2n)!}. \quad (1.10)$$

We now turn to the central factorial numbers $t(n, k)$ of the first kind, which are usually defined by (see [9–12])

$$x \left(x + \frac{n}{2} - 1 \right) \left(x + \frac{n}{2} - 2 \right) \cdots \left(x + \frac{n}{2} - n + 1 \right) = \sum_{k=0}^{n} t(n, k)x^k, \quad (1.11)$$

or by means of the following generating function:

$$\left(2 \log \left(\frac{x}{2} + \sqrt{1 + \frac{x^2}{4}} \right) \right)^k = k! \sum_{n=k}^{\infty} t(n, k) \frac{x^n}{n!}. \quad (1.12)$$
Abstract and Applied Analysis

It follows from (1.11) or (1.12) that

\[t(n, k) = t(n - 2, k - 2) - \frac{1}{4}(n - 2)^2 t(n - 2, k), \]

(1.13)

and that

\[t(n, 0) = \delta_{n,0} \quad (n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}), \quad t(n, n) = 1 \quad (n \in \mathbb{N}), \]

\[t(n, k) = 0 \quad (n + k \text{ odd}), \quad t(n, k) = 0 \quad (k > n \text{ or } k < 0), \]

(1.14)

where \(\delta_{m,n}\) denotes the Kronecker symbol.

By (1.13), we have

\[t(2n + 1, 1) = \frac{(-1)^n(n!)(2n)}{4^{2n}} \binom{2n}{n}, \quad t(2n + 2, 2) = (-1)^n(n!)^2 \quad (n \in \mathbb{N}_0), \]

(1.15)

\[t(2n + 2, 4) = (-1)^{n+1}(n!)^2 \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}\right) \quad (n \in \mathbb{N}), \]

(1.16)

\[t(2n + 1, 3) = \frac{(-1)^{n-1}(2n)!}{4^{2n-1}} \binom{2n}{n} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots + \frac{1}{(2n-1)^2}\right) \quad (n \in \mathbb{N}). \]

(1.17)

The main purpose of this paper is to prove some identities involving \(D\) numbers, Bernoulli numbers, and central factorial numbers of the first kind and obtain a generating function and several computational formulas for the \(D\)-Nörlund numbers. That is, we will prove the following main conclusion.

Theorem 1.1. Let \(n \in \mathbb{N}, k \in \mathbb{N} \setminus \{1\}\). Then

\[D^{(k)}_{2n} = \frac{(2n - k + 2)(2n - k + 1)}{(k - 2)(k - 1)} D^{(k-2)}_{2n} - \frac{2n(2n - 1)(k - 2)}{k - 1} D^{(k-2)}_{2n-2}. \]

(1.18)

Remark 1.2. By (1.18), we may immediately deduce the following (see [4, page 147]):

\[D^{(2n+1)}_{2n} = \frac{(-1)^n(n!)(2n)}{4^n} \binom{2n}{n}, \quad D^{(2n+2)}_{2n} = \frac{(-1)^n 4^n}{2n + 1} (n!)^2. \]

(1.19)

Theorem 1.3. Let \(n \geq k \quad (n, k \in \mathbb{N}_0)\). Then

\[D^{(2n+1)}_{2n-2k} = \frac{4^{n-k}}{2n \binom{2n}{2k}} t(2n + 1, 2k + 1), \]

(1.20)

\[D^{(2n)}_{2n-2k} = \frac{4^{n-k}}{2n-1 \binom{2n-1}{2k-1}} t(2n, 2k) \quad (k \geq 1). \]

(1.21)
Remark 1.4. By (1.20) and (1.17), we may immediately deduce the following:

\[
D_{2n}^{(2n+3)} = \frac{(-1)^n(2n)!}{2 \cdot 4^n} \left(\binom{2n+2}{n+1} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots + \frac{1}{(2n+1)^2} \right) \right). \quad (1.22)
\]

Theorem 1.5. Let \(n \in \mathbb{N}_0 \). Then

\[
\sum_{j=0}^{n} (-1)^j \frac{4^j}{(2j+1)!} \frac{D_{2n-2j}^{(2n-2j)}}{(2n-2j)!} = \frac{(-1)^n}{4^n} \binom{2n}{n},
\]

so one finds \(D_0^{(0)} = 1, D_2^{(2)} = -2/3, D_4^{(4)} = 88/15, D_6^{(6)} = -3056/21, D_8^{(8)} = 319616/45, D_{10}^{(10)} = -18940160/33, \ldots \).

By (1.23), and note that

\[
\log(t + \sqrt{1 + t^2}) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n (2n+1)!} \binom{2n}{n} t^{2n+1} \quad (|t| < 1),
\]

\[
\frac{1}{\sqrt{1 + t^2}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \binom{2n}{n} t^{2n} \quad (|t| < 1),
\]

one may immediately deduce the following Corollary 1.6.

Corollary 1.6. Let \(n \in \mathbb{N}_0 \). Then

\[
\sum_{n=0}^{\infty} D_{2n}^{(2n)} \frac{t^{2n}}{(2n)!} = \frac{t}{\sqrt{1 + t^2} \log(t + \sqrt{1 + t^2})} \quad (|t| < 1). \quad (1.25)
\]

Theorem 1.7. Let \(n \in \mathbb{N} \). Then

(i)

\[
D_{2n}^{(2n)} = \frac{(-1)^n(2n)!}{4^n} \binom{2n}{n} + n \cdot 4^n \sum_{j=1}^{n} \frac{1 - 2^{1-2j}}{j} t(2n, 2j) B_{2j}
\]

(ii)

\[
D_{2n}^{(2n)} = \frac{(-1)^n 4^n (n!)^2}{2n+1} + n \cdot 4^n \sum_{j=1}^{n} \frac{2j - 1}{j} t(2n, 2j) B_{2j}
\]

(1.26)
2. Proof of the Theorems

Proof of Theorem 1.1. By (1.4) and (1.3), we have

\[
B_{2n}^{(k)}(x + 1) = \frac{2nx}{k - 1} B_{2n-1}^{(k-1)}(x) - \frac{2n - k + 1}{k - 1} B_{2n}^{(k-1)}(x)
\]

\[
= \frac{2nx}{k - 1} \left(\frac{k - 2n - 1}{k - 2} B_{2n-1}^{(k-2)}(x) + (x - k + 2) \frac{2n - 1}{k - 2} B_{2n-2}^{(k-2)}(x) \right)
\]

\[
- \frac{2n - k + 1}{k - 1} \left(\frac{k - 2n - 2}{k - 2} B_{2n-1}^{(k-2)}(x) + (x - k + 2) \frac{2n}{k - 2} B_{2n-2}^{(k-2)}(x) \right)
\]

\[
= \frac{(2n - k + 1)(2n - k + 2)}{(k - 1)(k - 2)} B_{2n}^{(k-2)}(x) + \frac{2n(2n - 1)}{(k - 1)(k - 2)} x(x - k + 2) B_{2n-2}^{(k-2)}(x)
\]

\[
- \frac{2n(2n - k + 1)}{(k - 1)(k - 2)} (2x - k + 2) B_{2n-1}^{(k-2)}(x).
\]

Setting \(x = (k - 2)/2\) in (2.1), we get

\[
B_{2n}^{(k)} \left(\frac{k}{2} \right) = \frac{(2n - k + 1)(2n - k + 2)}{(k - 1)(k - 2)} B_{2n}^{(k-2)} \left(\frac{k - 2}{2} \right) - \frac{2n(2n - 1)(k - 2)}{4(k - 1)} B_{2n-1}^{(k-2)} \left(\frac{k - 2}{2} \right).
\]

(2.2)

By (2.2) and (1.7), we immediately obtain (1.18). This completes the proof of Theorem 1.1. □
Proof of Theorem 1.3. By the usage of Theorem 1.1 and (1.13).

Proof of Theorem 1.5. Note the identity (see [4, page 203])

\[
B_{2n+1}^{(k)}\left(x + \frac{k}{2}\right) = \sum_{j=0}^{n} \binom{2n+1}{2j+1} D_{2n-2j}^{(k-2j-1)} x \left(x^2 - \left(\frac{1}{2}\right)^2\right) \left(x^2 - \left(\frac{3}{2}\right)^2\right) \cdots \left(x^2 - \left(\frac{2j-1}{2}\right)^2\right),
\]

we have

\[
\lim_{x \to 0} \frac{B_{2n+1}^{(2n+1)}(x + (2n + 1)/2)}{x} = \frac{1}{4^n} \sum_{j=0}^{n} \binom{2n+1}{2j+1} D_{2n-2j}^{(2n-2j)} (-1)^j 1^2 3^2 \cdots (2j - 1)^2
\]

\[
= \frac{(2n + 1)!}{4^n} \sum_{j=0}^{n} \frac{(-1)^j}{4^j(2j + 1)} \binom{2j}{j} D_{2n-2j}^{(2n-2j)} (2n - 2j)!. \tag{2.4}
\]

By (2.4) and (1.2), we have

\[
\lim_{x \to 0} (2n + 1)B_{2n}^{(2n+1)}\left(x + \frac{2n + 1}{2}\right) = \frac{(2n + 1)!}{4^n} \sum_{j=0}^{n} \frac{(-1)^j}{4^j(2j + 1)} \binom{2j}{j} D_{2n-2j}^{(2n-2j)} (2n - 2j)!. \tag{2.5}
\]

that is,

\[
B_{2n}^{(2n+1)}\left(\frac{2n + 1}{2}\right) = \frac{(2n)!}{4^n} \sum_{j=0}^{n} \frac{(-1)^j}{4^j(2j + 1)} \binom{2j}{j} D_{2n-2j}^{(2n-2j)} (2n - 2j)!. \tag{2.6}
\]

By (2.6) and (1.7), we have

\[
D_{2n}^{(2n+1)} = (2n)! \sum_{j=0}^{n} \frac{(-1)^j}{4^j(2j + 1)} \binom{2j}{j} D_{2n-2j}^{(2n-2j)} (2n - 2j)!. \tag{2.7}
\]

By (2.7) and (1.19), we immediately obtain (1.23). This completes the proof of Theorem 1.5.

Proof of Theorem 1.7. By (1.6), we have

\[
D_{2n}^{(k)} = \sum_{j=0}^{n} \binom{2n}{2j} D_{2n-2j}^{(k-4j)} D_{2j}^{(l)}, \tag{2.8}
\]

where \(l\) is an integer.
Setting \(k = 2n + 1, l = 1 \) in (2.8), and note that \(D_0^{(1)} = 1 \), we have

\[
D_{2n}^{(2n+1)} = \sum_{j=0}^{n} \binom{2n}{2j} D_{2n-2j}^{(2n)} D_{2j}^{(1)} = D_{2n}^{(2n)} + \sum_{j=1}^{n} \binom{2n}{2j} D_{2n-2j}^{(2n)} D_{2j}^{(1)}. \tag{2.9}
\]

By (2.9), (1.19), (1.8), and (1.21), we immediately obtain (1.26).

Setting \(k = 2n + 2, l = 2 \) in (2.8), and note that \(D_0^{(2)} = 1 \), we have

\[
D_{2n}^{(2n+2)} = \sum_{j=0}^{n} \binom{2n}{2j} D_{2n-2j}^{(2n)} D_{2j}^{(2)} = D_{2n}^{(2n)} + \sum_{j=1}^{n} \binom{2n}{2j} D_{2n-2j}^{(2n)} D_{2j}^{(2)}. \tag{2.10}
\]

By (2.10), (1.19), (1.8), and (1.21), we immediately obtain (1.27).

Setting \(k = 2n, l = -1 \) in (2.8), and note that (1.20) and \(D_{2j}^{(-1)} = 1/(2j + 1) \), we immediately obtain (1.18). This completes the proof of Theorem 1.7.

Proof of Theorem 1.8. Setting \(k = 2n + 2, l = 1 \) in (2.8), and note (1.19), (1.20), and (1.8), we immediately obtain (1.29).

Setting \(k = 2n + 3, l = 2 \) in (2.8), and note (1.22), (1.20), and (1.8), we immediately obtain (1.30). This completes the proof of Theorem 1.8.

Acknowledgment

This work was supported by the Guangdong Provincial Natural Science Foundation (no. 8151601501000002).

References

