Research Article

On the Stability of Quadratic Functional Equations

Jung Rye Lee,1 Jong Su An,2 and Choonkil Park3

1 Department of Mathematics, Daejin University, Kyeonggi 487-711, South Korea
2 Department of Mathematics Education, Pusan National University, Pusan 609-735, South Korea
3 Department of Mathematics, Hanyang University, Seoul 133-791, South Korea

Correspondence should be addressed to Jung Rye Lee, jrlee@daejin.ac.kr

Received 5 October 2007; Revised 27 November 2007; Accepted 4 January 2008

Let X, Y be vector spaces and k a fixed positive integer. It is shown that a mapping $f(kx + y) + f(kx - y) = 2k^2f(x) + 2f(y)$ for all $x, y \in X$ if and only if the mapping $f : X \to Y$ satisfies $f(x + y) + f(x - y) = 2f(x) + 2f(y)$ for all $x, y \in X$. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banach spaces is proven.

Copyright © 2008 Jung Rye Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [3] for additive mapping and by Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. Th. M. Rassias [5] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. Gajda [6], following the same approach as in [4], gave an affirmative solution to this question for $p > 1$. It was shown by Gajda [6] as well as by Rassias and Šemrl [7] that one cannot prove a Th.M. Rassias’ type theorem when $p = 1$. J. M. Rassias [8], following the spirit of the innovative approach of Th. M. Rassias [4] for the unbounded Cauchy difference, proved a similar stability theorem in which he replaced the factor $\|x\|^p + \|y\|^p$ by $\|x\|^p \cdot \|y\|^q$ for $p, q \in \mathbb{R}$ with $p + q \neq 1$.

The functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional
Proof. for all

Throughout this paper, assume that \(k \) is a fixed positive integer.

In this paper, we solve the functional equation

\[
f(kx + y) + f(kx - y) = 2k^2 f(x) + 2f(y)
\]

and prove the Hyers-Ulam-Rassias stability of the functional equation (1.2) in Banach spaces.

2. Hyers-Ulam-Rassias stability of the quadratic functional equation

Proposition 2.1. Let \(X \) and \(Y \) be vector spaces. A mapping \(f : X \to Y \) satisfies

\[
f(kx + y) + f(kx - y) = 2k^2 f(x) + 2f(y)
\]

for all \(x, y \in X \) if and only if the mapping \(f : X \to Y \) satisfies

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y)
\]

for all \(x, y \in X \).

Proof. Assume that \(f : X \to Y \) satisfies (2.1).

Letting \(x = y = 0 \) in (2.1), we get \(f(0) = 0 \).

Letting \(y = 0 \) in (2.1), we get \(f(kx) = k^2 f(x) \) for all \(x \in X \).

Letting \(x = 0 \) in (2.1), we get \(f(-y) = f(y) \) for all \(y \in X \).

It follows from (2.1) that

\[
f(kx + y) + f(kx - y) = 2k^2 f(x) + 2f(y) = 2f(kx) + 2f(y)
\]

for all \(x, y \in X \). So the mapping \(f : X \to Y \) satisfies

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y)
\]

for all \(x, y \in X \).

Assume that \(f : X \to Y \) satisfies \(f(x + y) + f(x - y) = 2f(x) + 2f(y) \) for all \(x, y \in X \).

We prove (2.1) for \(k = j \) by induction on \(j \).

For the case \(j = 1 \), (2.1) holds by the assumption.

For the case \(j = 2 \), since

\[
f(2x + y) + f(2x - y) = f(x + y + x) + f(x - y + x)
\]

\[
= 2f(x + y) + 2f(x) - f(y) + 2f(x - y) + 2f(x) - f(-y)
\]

\[
= 2f(x + y) + 2f(x - y) + 4f(x) - 2f(y)
\]

\[
= 4f(x) + 4f(y) + 4f(x) - 2f(y)
\]

\[
= 8f(x) + 2f(y)
\]

for all \(x, y \in X \), then (2.1) holds.
Assume that (2.1) holds for \(j = n - 2 \) and \(j = n - 1 \) \((2 < n \leq k) \). By the assumption,

\[
f(nx + y) + f(nx - y) = f((n - 1)x + y + x) + f((n - 1)x - y + x)
= 2f((n - 1)x + y) + 2f(x) - f((n - 2)x + y)
+ 2f((n - 1)x - y) + 2f(x) - f((n - 2)x - y)
= 4(n - 1)^2 f(x) + 4f(y) + 4f(x) - 2(n - 2)^2 f(x) - 2f(y)
= 2n^2 f(x) + 2f(y)
\]

for all \(x, y \in X \), (2.1) holds for \(j = n \). Hence the mapping \(f : X \rightarrow Y \) satisfies (2.1) for \(j = k \). \(\square \)

From now on, assume that \(X \) is a normed vector space with norm \(\| \cdot \| \) and that \(Y \) is a Banach space with norm \(\| \cdot \| \).

For a given mapping \(f : X \rightarrow Y \), we define

\[
Df(x, y) := f(kx + y) + f(kx - y) - 2k^2 f(x) - 2f(y)
\]

for all \(x, y \in X \).

Now we prove the Hyers-Ulam-Rassias stability of the quadratic functional equation \(Df(x, y) = 0 \).

Theorem 2.2. Let \(f : X \rightarrow Y \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\varphi : X^2 \rightarrow [0, \infty) \) such that

\[
\varphi(x, y) := \sum_{j=0}^{\infty} \frac{1}{k^{2j}} \varphi(k^j x, k^j y) < \infty,
\]

\[
\|Df(x, y)\| \leq \varphi(x, y)
\]

for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \rightarrow Y \) such that

\[
\|f(x) - Q(x)\| \leq \frac{1}{2k^2} \varphi(x, 0)
\]

for all \(x \in X \).

Proof. Letting \(y = 0 \) in (2.9), we get

\[
\|2f(kx) - 2k^2 f(x)\| \leq \varphi(x, 0)
\]

for all \(x \in X \). So

\[
\left\| f(x) - \frac{1}{k^2} f(kx) \right\| \leq \frac{1}{2k^2} \varphi(x, 0)
\]

for all \(x \in X \). Hence

\[
\left\| \frac{1}{k^{2j}} f(k^j x) - \frac{1}{k^{2m}} f(k^m x) \right\| \leq \sum_{j=1}^{m-1} \frac{1}{2k^{2j+2}} \varphi(k^j x, 0)
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.13) that the sequence \(\{(1/k^{2n})f(k^n x)\} \) is Cauchy for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{(1/k^{2n})f(k^n x)\} \) converges. So one can define the mapping \(Q : X \to Y \) by

\[
Q(x) := \lim_{n \to \infty} \frac{1}{k^{2n}} f(k^n x)
\]

(2.14)

for all \(x \in X \).

By (2.8),

\[
\|DQ(x, y)\| = \lim_{n \to \infty} \frac{1}{k^{2n}} \|Df(k^n x, k^n y)\| \leq \lim_{n \to \infty} \frac{1}{k^{2n}} \varphi(k^n x, k^n y) = 0
\]

(2.15)

for all \(x, y \in X \). So \(DQ(x, y) = 0 \). By Proposition 2.1, the mapping \(Q : X \to Y \) is quadratic. Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.13), we get (2.10).

Now, let \(T : X \to Y \) be another quadratic mapping satisfying (2.1) and (2.10). Then we have

\[
\|Q(x) - T(x)\| = \frac{1}{k^{2n}} \|Q(k^n x) - T(k^n x)\|
\]

\[
\leq \frac{1}{k^{2n}} \left(\|Q(k^n x) - f(k^n x)\| + \|T(k^n x) - f(k^n x)\| \right)
\]

\[
\leq \frac{1}{k^{2n+2}} \varphi(k^n x, 0),
\]

which tends to zero as \(n \to \infty \) for all \(x \in X \). So we can conclude that \(Q(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(Q \). So there exists a unique quadratic mapping \(Q : X \to Y \) satisfying (2.10).

\[\]

Corollary 2.3. Let \(p < 2 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping such that

\[
\|Df(x, y)\| \leq \theta(\|x\|^p + \|y\|^p)
\]

(2.17)

for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \to Y \) such that

\[
\|f(x) - Q(x)\| \leq \frac{\theta}{8 - 2^{p+1}} \|x\|^p
\]

(2.18)

for all \(x \in X \).

Proof. The proof follows from Theorem 2.2 by taking

\[
\varphi(x, y) := \theta(\|x\|^p + \|y\|^p)
\]

(2.19)

for all \(x, y \in A \). \(\square \)

Theorem 2.4. Let \(f : X \to Y \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\varphi : X^2 \to [0, \infty) \) satisfying (2.9) such that

\[
\varphi(x, y) := \sum_{j=0}^{\infty} k^{2j} \varphi\left(\frac{x}{k^j}, \frac{y}{k^j}\right) < \infty
\]

(2.20)

for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \to Y \) such that

\[
\|f(x) - Q(x)\| \leq \frac{1}{2\varphi}\left(\frac{x}{k}, 0\right)
\]

(2.21)

for all \(x \in X \).
Proof. It follows from (2.11) that
\[\left\| f(x) - k^2 f \left(\frac{x}{k} \right) \right\| \leq \frac{1}{2} \varphi \left(\frac{x}{k}, 0 \right) \] (2.22)
for all \(x \in X \). Hence
\[\left\| k^{2i} f \left(\frac{x}{k^i} \right) - k^{2m} f \left(\frac{x}{k^m} \right) \right\| \leq \sum_{j=i}^{m-1} \frac{k^{2j}}{2} \varphi \left(\frac{x}{k^{j+1}}, 0 \right) \] (2.23)
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.23) that the sequence \(\{k^{2n} f(x/k^n)\} \) is Cauchy for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{k^{2n} f(x/k^n)\} \) converges. So one can define the mapping \(Q : X \rightarrow Y \) by
\[Q(x) := \lim_{n \to \infty} k^{2n} f \left(\frac{x}{k^n} \right) \] (2.24)
for all \(x \in X \).

By (2.20),
\[\left\| DQ(x, y) \right\| = \lim_{n \to \infty} k^{2n} \left\| Df \left(\frac{x}{k^n}, \frac{y}{k^n} \right) \right\| \leq \lim_{n \to \infty} k^{2n} \varphi \left(\frac{x}{k^n}, \frac{y}{k^n} \right) = 0 \] (2.25)
for all \(x, y \in X \). So \(DQ(x, y) = 0 \). By Proposition 2.1, the mapping \(Q : X \rightarrow Y \) is quadratic. Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.23), we get (2.21).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Corollary 2.5. Let \(p > 2 \) and \(\theta \) be positive real numbers, and let \(f : X \rightarrow Y \) be a mapping satisfying (2.17). Then there exists a unique quadratic mapping \(Q : X \rightarrow Y \) such that
\[\left\| f(x) - Q(x) \right\| \leq \frac{\theta}{2^{p+1} - 8} \|x\|^p \] (2.26)
for all \(x \in X \).

Proof. The proof follows from Theorem 2.4 by taking
\[\varphi(x, y) := \theta (\|x\|^p + \|y\|^p) \] (2.27)
for all \(x, y \in A \). \(\square \)

From now on, assume that \(k = 2 \).

Theorem 2.6. Let \(f : X \rightarrow Y \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\varphi : X^2 \rightarrow [0, \infty) \) satisfying (2.9) such that
\[\tilde{\varphi}(x, y) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(3^j x, 3^j y) < \infty \] (2.28)
for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \rightarrow Y \) such that
\[\left\| f(x) - Q(x) \right\| \leq \frac{1}{9} \tilde{\varphi}(x, x) \] (2.29)
for all \(x \in X \).
Proof. Letting $y = x$ in (2.9), we get

$$\|f(3x) - 9f(x)\| \leq \varphi(x,x)$$ \hspace{1cm} (2.30)

for all $x \in X$. So

$$\|f(x) - \frac{1}{9}f(3x)\| \leq \frac{1}{9}\varphi(x,x)$$ \hspace{1cm} (2.31)

for all $x \in X$. Hence

$$\left\| \frac{1}{9}f(3^lx) - \frac{1}{9^m}f(3^mx) \right\| \leq \sum_{i=l}^{m-1} \frac{1}{9^{i+1}}\varphi(3^lx,3^lx)$$ \hspace{1cm} (2.32)

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.32) that the sequence \{$(1/9^n)f(3^n x)$\} is Cauchy for all $x \in X$. Since Y is complete, the sequence \{$(1/9^n)f(3^n x)$\} converges. So one can define the mapping $Q : X \to Y$ by

$$Q(x) := \lim_{n \to \infty} \frac{1}{9^n}f(3^n x)$$ \hspace{1cm} (2.33)

for all $x \in X$.

By (2.28),

$$\|DQ(x,y)\| = \lim_{n \to \infty} \frac{1}{9^n} \|Df(3^n x,3^n y)\| \leq \lim_{n \to \infty} \frac{1}{9^n} \varphi(3^n x,3^n y) = 0$$ \hspace{1cm} (2.34)

for all $x,y \in X$. So $DQ(x,y) = 0$. By Proposition 2.1, the mapping $Q : X \to Y$ is quadratic. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.32), we get (2.29).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.7. Let $p < 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping such that

$$\|Df(x,y)\| \leq \theta \cdot \|x\|^p \cdot \|y\|^p$$ \hspace{1cm} (2.35)

for all $x,y \in X$. Then there exists a unique quadratic mapping $Q : X \to Y$ such that

$$\|f(x) - Q(x)\| \leq \frac{\theta}{9 - \theta p} \|x\|^{2p}$$ \hspace{1cm} (2.36)

for all $x \in X$.

Proof. The proof follows from Theorem 2.6 by taking

$$\varphi(x,y) := \theta \cdot \|x\|^p \cdot \|y\|^p$$ \hspace{1cm} (2.37)

for all $x,y \in A$. \square
Theorem 2.8. Let \(f : X \rightarrow Y \) be a mapping with \(f(0) = 0 \) for which there exists a function \(\varphi : X^2 \rightarrow [0, \infty) \) satisfying (2.9) such that
\[
\tilde{\varphi}(x, y) := \sum_{j=0}^{\infty} g^j \varphi \left(\frac{x}{3^j}, \frac{y}{3^j} \right) < \infty
\]
for all \(x, y \in X \). Then there exists a unique quadratic mapping \(Q : X \rightarrow Y \) such that
\[
\| f(x) - Q(x) \| \leq \varphi \left(\frac{x}{3}, \frac{x}{3} \right)
\]
for all \(x \in X \).

Proof. It follows from (2.30) that
\[
\left\| f(x) - 9f \left(\frac{x}{3} \right) \right\| \leq \varphi \left(\frac{x}{3}, \frac{x}{3} \right)
\]
for all \(x \in X \). Hence
\[
\left\| g^l f \left(\frac{x}{3^l} \right) - 9^m f \left(\frac{x}{3^m} \right) \right\| \leq \sum_{j=l}^{m} g^j \varphi \left(\frac{x}{3^{j+1}}, \frac{x}{3^{j+1}} \right)
\]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.41) that the sequence \(\{9^n f(x/3^n)\} \) is Cauchy for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{9^n f(x/3^n)\} \) converges. So one can define the mapping \(Q : X \rightarrow Y \) by
\[
Q(x) := \lim_{n \to \infty} 9^n f \left(\frac{x}{3^n} \right)
\]
for all \(x \in X \).

By (2.38),
\[
\| DQ(x, y) \| = \lim_{n \to \infty} \frac{1}{9^n} \| Df(3^n x, 3^n y) \| \leq \lim_{n \to \infty} \frac{1}{9^n} \varphi(3^n x, 3^n y) = 0
\]
for all \(x, y \in X \). So \(DQ(x, y) = 0 \). By Proposition 2.1, the mapping \(Q : X \rightarrow Y \) is quadratic. Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.41), we get (2.39).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Corollary 2.9. Let \(p > 1 \) and \(\theta \) be positive real numbers, and let \(f : X \rightarrow Y \) be a mapping satisfying (2.35). Then there exists a unique quadratic mapping \(Q : X \rightarrow Y \) such that
\[
\| f(x) - Q(x) \| \leq \frac{\theta}{9^p - 9} \| x \|^{2p}
\]
for all \(x \in X \).

Proof. The proof follows from Theorem 2.8 by taking
\[
\varphi(x, y) := \theta \cdot \| x \|^p \cdot \| y \|^p
\]
for all \(x, y \in A \). \(\square \)
Acknowledgments

Jung Rye Lee was supported by Daejin University grants in 2007. The authors would like to thank the referees for a number of valuable suggestions regarding a previous version of this paper.

References