Research Article

A Note on the Multiple Twisted Carlitz’s Type q-Bernoulli Polynomials

Lee-Chae Jang1 and Cheon-Seoung Ryoo2

1Department of Mathematics and Computer Science, Konkuk University, Chungju 380701, South Korea
2Department of Mathematics, Hannam University, Daejeon 306-791, South Korea

Correspondence should be addressed to Lee-Chae Jang, leechae.jang@kku.ac.kr

Received 26 January 2008; Accepted 17 March 2008

Recommended by Ferhan Atici

We give the twisted Carlitz’s type q-Bernoulli polynomials and numbers associated with p-adic q-inetrals and discuss their properties. Furthermore, we define the multiple twisted Carlitz’s type q-Bernoulli polynomials and numbers and obtain the distribution relation for them.

Copyright © 2008 L.-C. Jang and C.-S. Ryoo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper \mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C}, and \mathbb{C}_p will, respectively, be the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the p-adic completion of the algebraic closure of \mathbb{Q}_p. The p-adic absolute value in \mathbb{C}_p is normalized so that $|p|_p = 1/p$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, one normally assumes that $|1 - q|_p < p^{-1/(p-1)}$ so that $q^x = \exp(x \log q)$ for each $x \in \mathbb{Z}_p$. We use the notation

$$[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q}$$

(1.1)

(cf. [1–20]) for all $x \in \mathbb{Z}_p$. For a fixed odd positive integer d with $(p, d) = 1$, let

$$X = X_d = \mathop{\lim}_{n \to \infty} \frac{\mathbb{Z}}{dp^n\mathbb{Z}}, \quad X_1 = \mathbb{Z}_p, \quad X^* = \bigcup_{0 < a < dp} (a + dp\mathbb{Z}_p),$$

$$a + dp^n\mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^n} \},$$

(1.2)
where \(a \in \mathbb{Z} \) lies in \(0 \leq a < dp^n \). For any \(n \in \mathbb{N} \),

\[
\mu_q(a + dp^n\mathbb{Z}_p) = \frac{q^a}{[dp^n]_q}
\] \hspace{1cm} (1.3)

is known to be a distribution on \(X \) (cf. [1–20]).

We say that \(f \) is uniformly differentiable function at a point \(a \in \mathbb{Z}_p \) and denote this property by \(f \in \text{UD}(\mathbb{Z}_p) \), if the difference quotients

\[
F_f(x, y) = \frac{f(x) - f(y)}{x - y}
\] \hspace{1cm} (1.4)

have a limit \(l = f'(a) \) as \((x, y) \to (a, a) \) (cf. [10–13]). The \(p \)-adic \(q \)-integral of a function \(f \in \text{UD}(\mathbb{Z}_p) \) was defined as

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{n \to \infty} \frac{1}{[p^n]_q} \sum_{x = 0}^{p^n-1} f(x) q^x.
\] \hspace{1cm} (1.5)

By using \(p \)-adic \(q \)-integrals on \(\mathbb{Z}_p \), it is well known that

\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} x^n d\mu_1(x) \frac{t^n}{n!},
\] \hspace{1cm} (1.6)

where \(\mu_1(x + p^n\mathbb{Z}_p) = 1/p^n \). Then, we note that the Bernoulli numbers \(B_n \) were defined as

\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!},
\] \hspace{1cm} (1.7)

and hence, we have

\[
B_n = \int_{\mathbb{Z}_p} x^n d\mu_1(x)
\] \hspace{1cm} (1.8)

for all \(n \in \mathbb{N} \cup \{0\} \). For \(k \in \mathbb{N} \) and \(n \in \mathbb{N} \cup \{0\} \), the multiple Bernoulli polynomials \(B_n^{(k)}(x) \) were defined as

\[
\left(\frac{t}{e^t - 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!}
\] \hspace{1cm} (1.9)

(cf. [2]). We note that

\[
\left(\frac{t}{e^t - 1} \right)^k e^{xt} = \sum_{n=0}^{\infty} \prod_{k=1}^{k} \int_{\mathbb{Z}_p} (x + x_1 + \cdots + x_k)^n d\mu_1(x_1) \cdots d\mu_1(x_k).
\] \hspace{1cm} (1.10)
In this section, we assume that T twisted Carlitz’s type multiple twisted Carlitz’s type associated with numbers. By we derive In this case, we have We obtain the multiple twisted Carlitz’s type q-Bernoulli polynomials and numbers. We also obtain the distribution relation for them.

2. Twisted Carlitz’s type q-Bernoulli polynomials

In this section, we assume that $q \in \mathbb{C}_p$ with $|1 - q_p| < p^{-1/(p - 1)}$. By using p-adic q-integral on \mathbb{Z}_p, we derive

$$I_q(f_1) = \frac{1}{q} I_q(f) + \left(\frac{q - 1}{\log q} f'(0) + (q - 1) f(0) \right),$$

(cf. [8]), where $f_1(x) = f(x + 1)$. From (1.5), we can derive

$$q^n I_q(f_n) = I_q(f) + \frac{q(q - 1)}{\log q} \left(\sum_{i=0}^{n-1} f'(i)q^i + \log q \sum_{i=0}^{n-1} f(i)q^i \right),$$

(cf. [8]), where $n \in \mathbb{N}$ and $f_n(x) = f(x + n)$.

Let $T_p = \bigcup_{n \geq 1} C_{p^n} = \lim_{n \to \infty} C_{p^n} = C_{p^\infty}$ be the locally constant space, where $C_{p^n} = \{ w \mid w^{p^n} = 1 \}$ is the cyclic group of order p^n. For $w \in T_p$, we denote the locally constant function by $\phi_w : \mathbb{Z}_p \to \mathbb{C}_p$, $x \to w^x$. If we take $f(x) = \phi_w(x) = w^x$, then we have

$$\int_{\mathbb{Z}_p} e^{iz} \phi_w(x) d\mu_q(x) = \left(\frac{1}{\log q + t} \right) \frac{q(q - 1)}{q \log q} \equiv F_{w}^q(t).$$
Now we define the twisted q-Bernoulli polynomials as follows:

$$F_{n,w}^q(x, t) = \left(\frac{\log q + t}{q e^t - 1} \right) q(q-1)e^{xt} = \sum_{n=0}^{\infty} B_{n,w}^q(x) \frac{t^n}{n!},$$

(2.4)

We note that $B_{n,w}^q(0) = B_n^q$ are called the twisted q-Bernoulli numbers and by substituting $\omega = 1$, $\lim_{q \to 1} B_{n,1}^q = B_n$ are the familiar Bernoulli numbers. By (2.3), we obtain the following Witt’s type formula for the twisted q-Bernoulli polynomials and numbers.

Theorem 2.1. For $n \in \mathbb{N}$ and $\omega \in T_p$, one has

$$\int_{\mathbb{Z}_p} (t + x)^n \omega^t d\mu_q(t) = B_{n,w}^q(x).$$

(2.5)

From (2.5), we consider the twisted Carlitz’s type q-Bernoulli polynomials by using p-adic q-integrals. For $\omega \in T_p$, we define the twisted Carlitz’s type q-Bernoulli polynomials as follows:

$$\beta_{n,w}^q(x) = \frac{1}{(1-q)^n} \sum_{i=0}^{\infty} \binom{n}{i} q^i (-1)^i \frac{1}{1 - q^{i+1} \omega}.$$

(2.6)

When $x = 0$, we write $\beta_{n,w}^q(0) = \beta_{n,w}^q$ which are called twisted Carlitz’s type q-Bernoulli numbers. Note that if $\omega = 1$, then $\lim_{q \to 1}\beta_{n,1}^q = B_n$. From (2.6), we can see that

$$\beta_{n,w}^q(x) = \frac{1}{(1-q)^n} \sum_{i=0}^{\infty} \binom{n}{i} q^i (-1)^i \frac{1}{1 - q^{i+1} \omega}.$$

(2.7)

From (2.7), we can derive the generating function for the twisted Carlitz’s type q-Bernoulli polynomials as follows:

$$G_{n,w}^q(x, t) = \sum_{n=0}^{\infty} \beta_{n,w}^q(x) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{(1-q)^n} \sum_{i=0}^{n} \binom{n}{i} q^i (-1)^i \frac{1}{1 - q^{i+1} \omega} \right) \frac{t^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{(1-q)^n} \sum_{i=0}^{n} \binom{n}{i} q^i (-1)^i \sum_{l=0}^{\infty} q^{(i+1)l} \omega^l \right) \frac{t^n}{n!}$$

$$= \sum_{l=0}^{\infty} \left(\sum_{n=0}^{\infty} \frac{q^l \omega^l}{(1-q)^n} \sum_{i=0}^{n} \binom{n}{i} q^{(x+1)i} (-1)^i \right) \frac{t^n}{n!}$$

$$= \sum_{l=0}^{\infty} q^l \omega^l e^{t(x+1)} t^n \frac{t^n}{n!}$$

$$= \sum_{l=0}^{\infty} q^l \omega^l e^{t(x+1)} t^n.$$ (2.8)

Then it is easily to see that

$$G_{n,w}^q(x, t) = \int_{\mathbb{Z}_p} e^{t(x+1)} \omega^t d\mu_q(t).$$

(2.9)
By the kth differentiation on both sides of (2.8) at $t = 0$, we also have
\[
\beta^q_{n,w}(x) = \left. \frac{d^k}{dt^k} G^q_{n,w}(x,t) \right|_{t=0} = \sum_{l=0}^{\infty} q^l \omega^l [x + l]^n_q
\] (2.10)
for $n \in \mathbb{N} \cup \{0\}$. We note that
\[
\beta^q_{n,w} = \beta^q_{n,w}(0) = \sum_{l=0}^{\infty} q^l \omega^l [l]^n_q.
\] (2.11)

In view of (2.10), we define twisted Carlitz’s type q-zeta function as follows:
\[
\zeta^q_{w}(s,x) = \sum_{l=0}^{\infty} q^l \omega^l \left[x + l \right]^s_q
\] (2.12)
for all $s \in \mathbb{C}$ and $\text{Re}(x) > 0$. We note that $\zeta^q_{w}(s,x)$ is analytic function in the whole complex s-plane. We also have the following theorem in which twisted Carlitz’s type q-zeta functions interpolate twisted Carlitz’s type q-Bernoulli numbers and polynomials.

Theorem 2.2. For $k \in \mathbb{N} \cup \{0\}$ and $w \in T_p$, one has
\[
\zeta^q_{w}(-k,x) = \beta^q_{k,w}(x),
\] (2.13)
\[
\zeta^q_{w}(-k,0) = \beta^q_{k,w}.
\]

From (2.11), we obtain the following distribution relation for the twisted q-Bernoulli polynomials.

Theorem 2.3. For $r \in \mathbb{N}$, $n \in \mathbb{N} \cup \{0\}$, and $w \in T_p$, one has
\[
\beta^q_{n,w}(x) = [r]^n_q \sum_{i=0}^{r-1} \omega^i q^i \beta^q_{n,w} \left(\frac{i + x}{r} \right).
\] (2.14)

Proof. If we put $i + rl = j$ and $i = 1 \cdots r$ and $l = 0, 1, \ldots$, then by (2.11), we have
\[
\beta^q_{n,w}(x) = \sum_{j=0}^{\infty} \omega^j q^j \left[x + j \right]^n_q
\]
\[
= \sum_{i=0}^{\infty} \sum_{l=0}^{r-1} \omega^{i+rl} q^{i+rl} \left[x + i + rl \right]^n_q
\]
\[
= \sum_{i=0}^{\infty} \omega^i q^i \sum_{l=0}^{\infty} \omega^l q^l \left(1 - q^{r(i+x)/r+l} \right)^n
\]
\[
= [r]^n_q \sum_{i=0}^{r-1} \omega^i q^i \beta^q_{n,w} \left(\frac{i + x}{r} \right).
\] (2.15)
3. Multiple twisted Carlitz’s type \(q \)-Bernoulli polynomials

In this section, we consider the multiple twisted Carlitz’s type \(q \)-Bernoulli polynomials as follows:

\[
\beta_{k,w}^{(h,q)}(x) = \lim_{q \to \infty} \frac{1}{[r]_q^h} \sum_{j_1, \ldots, j_h=0}^{r-1} [x + x_1 + \cdots + x_h]^n_q w^{x_1 + \cdots + x_h} d\mu_q(x_1) \cdots d\mu_q(x_h)
\]

(3.1)

where \(h \in \mathbb{N} \), \(k \in \mathbb{N} \cup \{0\} \), and \(w \in T_p \). We note that \(\beta_{n,w}^{(h,q)}(0) = \beta_{n,w}^{(h,q)} \) are called the multiple twisted Carlitz’s type \(q \)-Bernoulli numbers. We also obtain the generating function of the multiple twisted Carlitz’s type \(q \)-Bernoulli polynomials as follows:

\[
G_{w}^{(h,q)}(x,t) = \sum_{j_1, \ldots, j_h=0}^{r-1} [x + x_1 + \cdots + x_h]^n_q t^{x_1 + \cdots + x_h} d\mu_q(x_1) \cdots d\mu_q(x_h) = \sum_{l=0}^{\infty} \beta_{l,w}^{(h,q)}(x) \frac{t^l}{l!}.
\]

(3.2)

Finally, we have the following distribution relation for the multiple twisted \(q \)-Bernoulli polynomials.

Theorem 3.1. For each \(w \in T_p \), \(h, r \in \mathbb{N} \), \(n \in \mathbb{N} \cup \{0\} \), and \(w \in T_p \),

\[
\beta_{n,w}^{(h,q)}(x) = [r]_q^{n-h} \sum_{j_1, \ldots, j_h=0}^{r-1} [x + x_1 + \cdots + x_h]^n_q t^{x_1 + \cdots + x_h} d\mu_q(x_1) \cdots d\mu_q(x_h) \]

(3.3)

Proof. If we put \(j_k + rl_k = x_k \), \(j_k = 0, 1, \ldots, r - 1 \), and \(k = 1 \cdots h \), then by (3.1), we have

\[
\beta_{k,w}^{(h,q)}(x) = \lim_{q \to \infty} \frac{1}{[r]_q^h} \sum_{j_1, \ldots, j_h=0}^{r-1} [x + x_1 + \cdots + x_h]^n_q w^{x_1 + \cdots + x_h} q^{x_1 + \cdots + x_h}
\]

(3.4)
\[\left[r \right]_{q}^{n-h} \sum_{j_{1},...,j_{h}=0}^{r-1} w^{h+j_{1}+\cdots+j_{h}} q^{j_{1}+\cdots+j_{h}} \lim_{\nu \to \infty} \frac{1}{[p^{\nu}]_{q}^{r}} \sum_{h_{1},...,h_{r}=0}^{p^{\nu}-1} \left[\frac{x+j_{1}+\cdots+j_{h}}{r} + l_{1} + \cdots + l_{h} \right]^{n} \left[q^{r(h_{1}+\cdots+h_{r})} \right]_{q}^{n} \]

\[= \left[r \right]_{q}^{n-h} \sum_{j_{1},...,j_{h}=0}^{r-1} w^{h+j_{1}+\cdots+j_{h}} q^{j_{1}+\cdots+j_{h}} \left(\frac{x+j_{1}+\cdots+j_{h}}{r} \right). \]

(3.4)

Question 1. Are there the analytic multiple twisted Carlitz’s type \(q \)-zeta functions which interpolate multiple twisted Carlitz’s type \(q \)-Bernoulli polynomials?

References

