Research Article

On Bloch-Type Functions with Hadamard Gaps

Stevo Stević

Received 2 May 2007; Accepted 20 August 2007

Recommended by Simeon Reich

We give some sufficient and necessary conditions for an analytic function \(f \) on the unit ball \(B \) with Hadamard gaps, that is, for \(f(z) = \sum_{k=1}^{\infty} P_k(z) \) (the homogeneous polynomial expansion of \(f \)) satisfying \(\frac{n_{k+1}}{n_k} \geq \lambda > 1 \) for all \(k \in \mathbb{N} \), to belong to the space \(H_p^p(B) = \{ f \mid \sup_{0 < r < 1} (1 - r^2)^{\alpha} \| Rf_r \|_p < \infty, f \in H(B) \} \), \(p = 1, 2, \infty \) as well as to the corresponding little space. A remark on analytic functions with Hadamard gaps on mixed norm space on the unit disk is also given.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \(B = \{ z \in \mathbb{C}^n : |z| < 1 \} \) be the open unit ball of \(\mathbb{C}^n \), \(\partial B = \{ z \in \mathbb{C}^n : |z| = 1 \} \) its boundary, \(\mathbb{D} \) the unit disk in \(\mathbb{C} \), \(dv \) the normalized Lebesgue measure of \(B \) (i.e., \(\nu(B) = 1 \)), and \(d\sigma \) the normalized rotation invariant Lebesgue measure of \(S \) satisfying \(\sigma(\partial B) = 1 \). We denote the class of all holomorphic functions on the unit ball by \(H(B) \).

For \(f \in H(B) \) with the Taylor expansion \(f(z) = \sum_{|\beta| \geq 0} a_{\beta} z^\beta \), let \(\mathcal{R}f(z) = \sum_{|\beta| \geq 0} |\beta| a_{\beta} z^\beta \) be the radial derivative of \(f \), where \(\beta = (\beta_1, \beta_2, \ldots, \beta_n) \) is a multi-index and \(z^\beta = z_1^{\beta_1} \cdots z_n^{\beta_n} \).

It is well known that \(\mathcal{R}f(z) = \sum_{j=1}^{n} z_j (\partial f/\partial z_j)(z) = \sum_{k=0}^{\infty} k P_k(z) \), if \(f(z) = \sum_{k=0}^{\infty} P_k(z) \).

As usual, we write

\[
\| f_r \|_p = \left(\int_S |f(r\zeta)|^p d\sigma(\zeta) \right)^{1/p} \tag{1.1}
\]

if \(p \in (0, \infty) \), and where \(f_r(\zeta) = f(r\zeta) \). If \(p = \infty \), then \(\| f \|_\infty = \sup_{z \in B} |f(z)| \).
2 Abstract and Applied Analysis

Let $\alpha > 0$. The α-Bloch space $B^\alpha = B^\alpha(B)$ is the space of all holomorphic functions f on B such that

$$b_\alpha(f) = \sup_{z \in B} (1 - |z|^2)^\alpha |\mathcal{R} f(z)| < \infty.$$ \hfill (1.2)

It is clear that B^α is a normed space under the norm $\| f \|_{B^\alpha} = |f(0)| + b_\alpha(f)$, and $B^{\alpha_1} \subset B^{\alpha_2}$ for $\alpha_1 < \alpha_2$. Let B^{α}_0 denote the subspace of B^α consisting of those $f \in B^\alpha$ for which $(1 - |z|^2)^\alpha |\mathcal{R} f(z)| \rightarrow 0$ as $|z| \rightarrow 1$. This space is called the little α-Bloch space. For $\alpha = 1$, the α-Bloch space and the little α-Bloch space become Bloch space B and the little Bloch space B_0. Some characterizations of these spaces can be found, for example, in the following papers [1–6].

We say that an analytic function f on the unit disk \mathbb{D} has Hadamard gaps if $f(z) = \sum_{k=1}^\infty a_k z^k$ where $n_{k+1}/n_k \geq \lambda > 1$, for all $k \in \mathbb{N}$.

In [7], Yamashita proved the following result.

Theorem 1.1. Assume that f is an analytic function on \mathbb{D} with Hadamard gaps. Then for $\alpha > 0$, the following two propositions hold:

(a) $f \in B^{\alpha}(\mathbb{D})$ if and only if $\limsup_{k \to \infty} |a_k| n_k^{1-\alpha} < \infty$;

(b) $f \in B^{\alpha}_0(\mathbb{D})$ if and only if $\lim_{k \to \infty} |a_k| n_k^{1-\alpha} = 0$.

An analytic function on B with the homogeneous expansion $f(z) = \sum_{k=1}^\infty P_{n_k}(z)$ (here, P_{n_k} is a homogeneous polynomial of degree n_k) is said to have Hadamard gaps if $n_{k+1}/n_k \geq \lambda > 1$, for all $k \in \mathbb{N}$. In [8], among others, Choa generalizes the main result in [9], proving the following result.

Theorem 1.2. Assume that $p \in (0, \infty)$ and $f(z) = \sum_{k=1}^\infty P_{n_k}(z)$ is an analytic function on B with Hadamard gaps. Then the following statements are equivalent:

(a) $\| f \|_{X_p} = (\int_B |\mathcal{R} f(z)|^p (1 - |z|^2)^{p-1} d\nu(z))^{1/p} < \infty$;

(b) $\sum_{k=1}^\infty \| P_{n_k} \|_p < \infty$.

This result motivates us to find some characterizations for certain function spaces of analytic functions on the unit ball, in terms of the sequence $(\| P_{n_k} \|_p)_{k \in \mathbb{N}}$.

Now note that the quantity b_α in the definition of the α-Bloch spaces can be written in the following form:

$$b_\alpha(f) = \sup_{0 < r < 1} (1 - r^2)^\alpha \sup_{\zeta \in S} |\mathcal{R} f(r\zeta)| = \sup_{0 < r < 1} (1 - r^2)^\alpha M_\infty(\mathcal{R} f, r).$$ \hfill (1.3)

On the other hand, the quantity b_α can be considered as the limit case of the following quantities:

$$\| f \|_{\mathcal{R}^\alpha} = \sup_{0 < r < 1} (1 - r^2)^\alpha \| \mathcal{R} f_r \|_p,$$ \hfill (1.4)

as $p \to \infty$. Note that for every $f \in H(B)$ and $p \in (0, \infty)$,

$$\sup_{0 < r < 1} (1 - r^2)^\alpha \| \mathcal{R} f_r \|_p \leq \sup_{0 < r < 1} (1 - r^2)^\alpha \| \mathcal{R} f_r \|_\infty.$$ \hfill (1.5)
Hence, in this paper we also consider analytic functions with Hadamard gaps on the following spaces:

$$\mathcal{B}_p^\alpha = \left\{ f \mid \sup_{0 < r < 1} (1 - r^2)^\alpha \| \mathcal{R} f_r \|_p < \infty, \ f \in H(B) \right\},$$

$$\mathcal{B}_{p,0}^\alpha = \left\{ f \mid \lim_{r \to 1} (1 - r^2)^\alpha \| \mathcal{R} f_r \|_p = 0, \ f \in H(B) \right\}. \quad (1.6)$$

Motivated by Theorem 1.1 in this paper, we study analytic functions with Hadamard gaps, which belong to \mathcal{B}_p^α or $\mathcal{B}_{p,0}^\alpha$ space when $p = 1, 2, \infty$. Some characterizations for these classes of functions on the unit ball are given in terms of the sequence $(\| P_{n_k} \|_p)_{k \in \mathbb{N}}$.

The following are the main results.

Theorem 1.3. Assume that $\alpha > 0$, $p = 1, 2, \infty$, and $f(z) = \sum_{k=1}^{\infty} P_{n_k}(z)$ is an analytic function on B with Hadamard gaps. Then the following statements are equivalent:

(a) $f \in \mathcal{B}_p^\alpha$;

(b) $\limsup_{k \to \infty} \| P_{n_k} \|_p n_k^{1-\alpha} < \infty$.

Theorem 1.4. Assume that $\alpha > 0$, $p = 1, 2, \infty$, and $f(z) = \sum_{k=1}^{\infty} P_{n_k}(z)$ is an analytic function on B with Hadamard gaps. Then the following statements are equivalent:

(a) $f \in \mathcal{B}_{p,0}^\alpha$;

(b) $\lim_{k \to \infty} \| P_{n_k} \|_p n_k^{1-\alpha} = 0$.

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A \asymp B$ means that there is a positive constant C such that $B/C \leq A \leq CB$.

2. **Proof of main results**

Before proving the main results of this paper we quote two auxiliary results which are incorporated in the lemmas which follow (see [9, 10]).

Lemma 2.1. Assume that $p \in (0, \infty)$. If (n_k) is an increasing sequence of positive integers satisfying $n_{k+1}/n_k \geq \lambda > 1$, for all k, then there is a positive constant K depending only on p and λ such that

$$1/K \left(\sum_{k=1}^{\infty} |a_k|^2 \right)^{1/2} \leq \left(\frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{k=1}^{\infty} a_k e^{in_k \theta} \right|^p d\theta \right)^{1/p} \leq A \left(\sum_{k=1}^{\infty} |a_k|^2 \right)^{1/2} \quad (2.1)$$

for any number a_k, $k \in \mathbb{N}$.

Lemma 2.2. Assume that $\alpha > 0$, $p > 0$, $n \in \mathbb{N}_0$, $(a_n)_{n \in \mathbb{N}_0}$ is the sequence of nonnegative numbers, $I_n = \{ k \mid 2^n \leq k < 2^{n+1}, \ k \in \mathbb{N} \}$, $t_n = \sum_{k \in I_n} a_k$, and $g(x) = \sum_{n=1}^{\infty} a_n x^n$. Then there is a positive constant K depending only on p and α such that

$$\frac{1}{K} \sum_{n=0}^{\infty} \frac{t_n^p}{2^{na}} \leq \int_0^1 (1 - x)^{a-1} g^p(x) dx \leq K \sum_{n=0}^{\infty} \frac{t_n^p}{2^{na}}. \quad (2.2)$$
Proof of Theorem 1.3. (a) ⇒ (b) (Case $p = 1$). Let $f \in \mathcal{B}_1^\alpha$. Let $f_\zeta(w) = f(\zeta w)$, $\zeta \in S$, where ζ is fixed and $w \in \mathbb{D}$, be a slice function. By some calculation we see that

$$f'_\zeta(w) = \zeta_1 \frac{\partial f}{\partial z_1}(w\zeta) + \cdots + \zeta_n \frac{\partial f}{\partial z_n}(w\zeta) = \frac{1}{w} \mathcal{R} f(w\zeta). \tag{2.3}$$

From (2.3) and since $f'_\zeta(w) = \sum_{k=1}^\infty n_k P_{nk}(\zeta) w^{n_k-1}$, we have that

$$\int_S n_k |P_{nk}(\zeta)| \, d\sigma(\zeta) = \int_S \left| \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{\eta f'_\zeta(\eta)}{\eta^{n_k+1}} \, d\eta \right| \, d\sigma(\zeta) \leq \frac{1}{2\pi} \int_{\partial \mathbb{D}} \int_S \left| \frac{\mathcal{R} f(\zeta \eta)}{\eta^{n_k+1}} \right| \, d\sigma(\zeta) \, |d\eta| \leq \frac{\|f\|_{\mathcal{B}_1^\alpha}}{(1-r)^\alpha r^{n_k}}, \tag{2.4}$$

which implies that

$$n_k r^{n_k} \|P_{nk}\|_1 \leq \frac{\|f\|_{\mathcal{B}_1^\alpha}}{(1-r)^\alpha}, \tag{2.5}$$

for every $k \in \mathbb{N}$ and $r \in (0,1)$. Choosing $r = 1 - (1/n_k)$, we obtain $n_k^{1-\alpha} \|P_{nk}\|_1 \leq C$, as desired.

(b) ⇒ (a) (Case $p = 1$). Assume $\limsup_{k \to \infty} \|P_{nk}\|_1 n_k^{1-\alpha} < \infty$. We have that

$$\|f\|_{\mathcal{B}_1^\alpha} = \sup_{0 < r < 1} (1-r^2)^\alpha \int_S \left| \mathcal{R} f(r\zeta) \right| \, d\sigma(\zeta) \leq \sup_{0 < r < 1} (1-r^2)^\alpha \int_S \sum_{k=1}^\infty n_k P_{nk}(\zeta) r^{n_k} \, d\sigma(\zeta) \leq \sup_{0 < r < 1} (1-r^2)^\alpha \sum_{k=1}^\infty n_k \|P_{nk}\|_1 r^{n_k} \leq \sup_{0 < r < 1} (1-r^2)^{\alpha+1} \sum_{n=1}^\infty \left(\sum_{n_k \leq n} n_k \right) r^{n} \leq C \sup_{0 < r < 1} (1-r^2)^{\alpha+1} \sum_{n=1}^\infty n^{\alpha} r^{n} \leq C,$$

where we have used the fact that there is a positive constant C independent of n such that $\sum_{n_k \leq n} n_k^{\alpha} \leq C n^{\alpha}$ (here is used the assumption that $n_{k+1}/n_k \geq \lambda > 1$) and the following well-known estimate:

$$\sum_{n=1}^\infty n^{\alpha} r^{n} \leq C(1-r)^{-(\alpha+1)}, \tag{2.7}$$

$\alpha > 0$, $r \in [0,1)$; see, for example, [11].
Case $p = 2$. Since
\[
\|f\|_{B^2} = \sup_{0<r<1} (1-r^2)^a \left(\sum_{k=1}^{\infty} n_k^2 \|P_{nk}\|_{2r^{2nk}}^2 \right)^{1/2}
\] (2.8)
we have that
\[
\sup_{0<r<1} (1-r^2)^a n_k \|P_{nk}\|_{2r^{nk}} \leq \|f\|_{B^2} \leq \sup_{0<r<1} (1-r^2)^a \sum_{k=1}^{\infty} n_k \|P_{nk}\|_{2r^{nk}},
\] (2.9)
from which the result follows similar to the case $p = 1$.

Now we show that $(a) \iff (b)$ for case $p = \infty$. As above, the function $f_\zeta(w) = \sum_{k=1}^{\infty} P_{nk}(\zeta) w^{nk}$, where $w = re^{i\theta}$, is a lacunary series in D and
\[
(1-r^2)^a \mathcal{R} f(r\zeta) = re^{i\theta} (1-r^2)^a f_\zeta e^{-i\theta}(re^{i\theta}),
\] (2.10)
from which by Theorem 1.1 the equivalence follows.

Proof of Theorem 1.4. (a)\implies(b) (Case $p = 1$). Let $f \in B_{1,0}^a$, then for every $\varepsilon > 0$ there is a $\delta > 0$ such that
\[
(1-r^2)^a \int_S |\mathcal{R} f(r\zeta)| d\sigma(\zeta) < \varepsilon,
\] (2.11)
whenever $\delta < r < 1$. From (2.4), (2.11), and rotational invariance of $d\sigma$, we have that
\[
\int_S n_k |P_{nk}(\zeta)| d\sigma(\zeta) \leq \frac{1}{2\pi} \int_{\partial\mathbb{D}} \int_S |\mathcal{R} f(\zeta \eta)| |\eta^{n_{k+1}}| d\sigma(\zeta) |d\eta|
\leq \frac{1}{2\pi} \int_{\partial\mathbb{D}} \int_S \frac{(1-r^2)^a |\mathcal{R} f(\zeta \eta)|}{(1-r^2)^a r^{nk+1}} d\sigma(\zeta) |d\eta|
\leq \frac{\varepsilon}{(1-r)^a r^{nk}},
\] (2.12)
which implies that
\[
n_k r^{nk} \|P_{nk}\|_1 \leq \frac{\varepsilon}{(1-r)^a}
\] (2.13)
for every $k \in \mathbb{N}$ and $r \in (\delta,1)$. Choosing $r = 1 - (1/n_k)$, we obtain
\[
n_k \|P_{nk}\|_1 \leq C \varepsilon n_k^a,
\] (2.14)
from which (b) follows in this case.

(b)\implies(a) (Case $p = 1$). Assume that $\lim_{k \to \infty} \|P_{nk}\|_1 n_k^{-1-a} = 0$, then for every $\varepsilon > 0$ there is a $k_0 \in \mathbb{N}$ such that
\[
\|P_{nk}\|_1 \leq \varepsilon n_k^{a-1}, \quad \text{for } k \geq k_0.
\] (2.15)
We may assume that \(k_0 = 1 \). From this and by the proof of Theorem 1.3, \((b) \Rightarrow (a)\) (Case \(p = 1 \)), we have that
\[
(1 - r^2)^{\alpha} \| R f_r \|_1 \leq \sup_{0 < r < 1} (1 - r^2)^{\alpha + 1} \sum_{n=1}^{\infty} \left(\sum_{\lambda \in n} n_k \| P_{n_k} \|_1 \right) r^n \leq C \varepsilon \sup_{0 < r < 1} (1 - r^2)^{\alpha + 1} \sum_{n=1}^{\infty} n^\alpha r^n \leq C \varepsilon,
\]
from which the implication follows.

Case \(p = 2 \). By using (2.9) the result follows similar to the Case \(p = 1 \). The proof is omitted.

Finally, in view of (2.10) and employing Theorem 1.1(b) it is easy to see that \((a) \Leftrightarrow (b)\) for case \(p = \infty \). □

3. The case of mixed norm space

In this section, we give a note concerning analytic functions with Hadamard gaps on the mixed norm space. The mixed norm space \(H_{p,q,\alpha}(B) \), \(p, q > 0 \), and \(\alpha \in (-1, \infty) \), consists of all \(f \in H(B) \) such that
\[
\| f \|_{p,q,\alpha} = \left(\int_0^1 |f(r\zeta)|_p^q (1 - r)^{\alpha} \, dr \right)^{1/q} < \infty.
\]
From [12, Theorem 4] the following result holds.

Theorem 3.1. Assume that \(p \in (0, \infty) \), \(\alpha > -1 \) and \(f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \) is an analytic function on \(\mathbb{D} \) with Hadamard gaps. Then \(f^{(m)} \in H_{p,q,\alpha}(\mathbb{D}) \) if and only if \(\sum_{k=0}^{\infty} n_k^{m - \alpha - 1} |a_k|^q < \infty \).

Proof. First we consider the case \(m = 0 \). Similar to the proof of [12, Theorem 4] and by Lemmas 2.1 and 2.2, we have that
\[
\| f \|_{p,q,\alpha}^q = \int_0^1 \left(\frac{1}{2\pi} \int_0^{2\pi} \left| \sum_{k=1}^{\infty} a_k r^{n_k} e^{in_k \theta} \right|^p d\theta \right)^{q/p} (1 - r)^{\alpha} \, dr
\]
\[
\approx \int_0^1 \left(\sum_{k=1}^{\infty} |a_k|^2 r^{2n_k} \right)^{q/2} (1 - r)^{\alpha} \, dr
\]
\[
\approx \int_0^1 \left(\sum_{k=1}^{\infty} |a_k|^2 \rho^{n_k} \right)^{q/2} (1 - \rho)^{\alpha} \, d\rho
\]
\[
\approx \sum_{k=0}^{\infty} \frac{1}{2(\alpha+1)k} \left(\sum_{m \in I_k} |a_m|^2 \right)^{q/2} \approx \sum_{k=0}^{\infty} \frac{|a_k|^q}{n_k^{\alpha+1}},
\]
from which the result follows in this case.
Since \(f \) has Hadamard gaps and \(f^{(m)}(z) = \sum_{k=1}^{\infty} a_k n_k (n_k - 1) \cdots (n_k - m + 1) z^{n_k - m} \), it follows that \(f^{(m)} \) has Hadamard gaps too. Applying the just proved result to the function \(f^{(m)} \), we obtain that \(f^{(m)} \in H_{p,q,\alpha}(\mathbb{D}) \) if and only if
\[
\sum_{k=0}^{\infty} \frac{|n_k (n_k - 1) \cdots (n_k - m + 1) a_k|^q}{n_k^{a+1-mq}} < \infty,
\]
finishing the proof. \(\square \)

Remark 3.2. Motivated by [12, Theorems 3 and 4], we can conjecture that if \(p \in (0, \infty) \), \(\alpha > -1 \), and \(f(z) = \sum_{k=1}^{\infty} P_{nk}(z) \) is an analytic function on \(B \) with Hadamard gaps, then \(\mathcal{R}^{(m)} f \in H_{p,q,\alpha}(B) \) if and only if \(\sum_{k=0}^{\infty} n_k^{q \alpha} \|P_{nk}\|^q_p < \infty \). Note that the result is true for the case of the weighted Bergman space, that is, when \(p = q \), see [12, Corollary 1]. It is also expected that Theorems 1.3 and 1.4 hold for every \(p \in [1; \infty) \) (for the case \(n = 1 \), see [13]).

Acknowledgment

The author would like to express his sincere thanks to the referees whose comments considerably improved the paper, in particular, for correcting a gap in the original versions of Theorems 1.3 and 1.4.

References

Stevo Stević: Mathematical Institute of the Serbian Academy of Science, Knez Mihailova 35/I, 11000 Beograd, Serbia

Email addresses: ssstevic@ptt.yu; sstevo@matf.bg.ac.yu