We will be concerned with the existence result of unilateral problem associated to the equations of the form $Au + g(x, u, \nabla u) = f$, where A is a Leray-Lions operator from its domain $\mathcal{D}(A) \subset W_0^1 L_M(\Omega)$ into $W^{-1} E_{\overline{M}}(\Omega)$. On the nonlinear lower order term $g(x, u, \nabla u)$, we assume that it is a Carathéodory function having natural growth with respect to $|\nabla u|$, and satisfies the sign condition. The right-hand side f belongs to $W^{-1} E_{\overline{M}}(\Omega)$.

Copyright © 2006 L. Aharouch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let Ω be an open bounded subset of \mathbb{R}^N, $N \geq 2$, with segment property. Let us consider the following nonlinear Dirichlet problem:

$$-\text{div} \left(a(x, u, \nabla u) \right) + g(x, u, \nabla u) = f \quad (1.1)$$

$Au = -\text{div} a(x, u, \nabla u)$ is a Leray-Lions operator defined on its domain $\mathcal{D}(A) \subset W_0^1 L_M(\Omega)$, with M an N-function and where g is a nonlinearity with the “natural” growth condition

$$|g(x, s, \xi)| \leq b(|s|) \left(h(x) + M(|\xi|) \right) \quad (1.2)$$

and which satisfies the classical sign condition

$$g(x, s, \xi) \cdot s \geq 0. \quad (1.3)$$

The right-hand side f belongs to $W^{-1} E_{\overline{M}}(\Omega)$.
2 Variational unilateral problems

An existence theorem has been proved in [15] where the nonlinearity \(g \) depend only on \(x \) and \(u \), and in [3] where \(g \) depends also on the \(\nabla u \) but the author’s suppose the \(\Delta_2 \)-condition, while in [8] the author’s were concerned of the above problem without assuming a \(\Delta_2 \)-condition on \(M \).

It is our purpose, in this paper, to prove an existence result for unilateral problems associated to (1.1) without assuming the \(\Delta_2 \)-condition.

In our paper, the mean difficulty is the second and the third steps where we study the a priori estimate. To overcome this difficulty, we have changed the classical coercivity condition by the following one:

\[
a(x, s, \zeta)(\zeta - \nabla v_0) \geq aM(|\zeta|) - \delta(x) \quad \text{see (A4) below,}
\]

(1.4)

(this idea is inspired from the work [16]).

Note that in the case of the equation, the a priori estimate is easily proved in [8] thanks to the some classical technique (see [16]).

Furthermore, in our work, we have not supposed any regularity assumption on the obstacle. Note that this type of equations can be applied in sciences physics. Non-standard examples of \(M(t) \) which occur in the mechanics of solids and fluids are \(M(t) = t \log(1 + t), M(t) = \int_0^t s^{\alpha}(\arcsinh s)^\alpha ds \) \((0 \leq \alpha \leq 1)\) and \(M(t) = t \log(1 + \log(1 + t)) \) (see [10, 11, 13, 12] for more details).

This paper is organized as follows. Section 2 contains some preliminaries and some technical lemmas. Section 3 is concerned with basic assumptions and the main result which is proved in Section 4.

2 Preliminaries

2.1. Let \(M : \mathbb{R}^+ \to \mathbb{R}^+ \) be an \(N \)-function, that is, \(M \) is continuous, convex, with \(M(t) > 0 \) for \(t > 0 \), \(M(t)/t \to 0 \) as \(t \to 0 \) and \(M(t)/t \to \infty \) as \(t \to \infty \).

Equivalently, \(M \) admits the representation: \(M(t) = \int_0^t a(s)ds \) where \(a : \mathbb{R}^+ \to \mathbb{R}^+ \) is non-decreasing, right continuous, with \(a(0) = 0 \), \(a(t) > 0 \) for \(t > 0 \) and \(a(t) \) tends to \(\infty \) as \(t \to \infty \).

The \(N \)-function \(\overline{M} \) conjugate to \(M \) is defined by \(\overline{M} = \int_0^t \bar{a}(s)ds \), where \(\bar{a} : \mathbb{R}^+ \to \mathbb{R}^+ \) is given by \(\bar{a}(t) = \sup\{s : a(s) \leq t\} \).

The \(N \)-function \(M \) is said to satisfy the \(\Delta_2 \)-condition if, for some \(k \)

\[
M(2t) \leq kM(t) \quad \forall t \geq 0.
\]

(2.1)

When (2.1) holds only for \(t \geq t_0 > 0 \), then \(M \) is said to satisfy the \(\Delta_2 \)-condition near infinity.

We will extend these \(N \)-functions even functions on all \(\mathbb{R} \).

Moreover, we have the following Young’s inequality:

\[
\forall s, t \geq 0, \quad st \leq M(t) + \overline{M}(s).
\]

(2.2)

Let \(P \) and \(Q \) be two \(N \)-functions. \(P \ll Q \) means that \(P \) grows essentially less rapidly than \(Q \), that is, for each \(\epsilon > 0 \), \(P(t)/Q(\epsilon t) \to 0 \) as \(t \to \infty \).

This is the case if and only if \(\lim_{t \to \infty} (Q^{-1}(t)/P^{-1}(t)) = 0 \).
2.2. Let Ω be an open subset of \mathbb{R}^N. The Orlicz class $K_M(\Omega)$ (resp., the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that
\[
\int_{\Omega} M(u(x)) \, dx < +\infty \quad (\text{resp.,} \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) \, dx < +\infty \text{ for some } \lambda > 0).
\] (2.3)
$L_M(\Omega)$ is a Banach space under the norm
\[
\|u\|_{M,\Omega} = \inf \left\{ \lambda > 0, \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) \, dx \leq 1 \right\}
\] (2.4)
and $K_M(\Omega)$ is a convex subset of $L_M(\Omega)$.

The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$.

The dual of $E_M(\Omega)$ can be identified with $L_{\overline{\Omega}}(\Omega)$ by means of the pairing $\int_{\Omega} uv \, dx$, and the dual norm of $L_{\overline{\Omega}}(\Omega)$ is equivalent to $\| \cdot \|_{M,\Omega}$.

2.3. We now turn to the Orlicz-Sobolev space, $W^1 L_M(\Omega)$ (resp., $W^1 E_M(\Omega)$) is the space of all functions u such that u and its distributional derivatives of order 1 lie in $L_M(\Omega)$ (resp., $E_M(\Omega)$). It is a Banach space under the norm
\[
\|u\|_{1,M} = \sum_{|\alpha| \leq 1} \|D^\alpha u\|_{M}.
\] (2.5)
Thus, $W^1 L_M(\Omega)$ and $W^1 E_M(\Omega)$ can be identified with subspaces of the product of $N + 1$ copies of $L_M(\Omega)$. Denoting this product by $\Pi_L M$, we will use the weak topologies $\sigma(\Pi_L M, \Pi E_M)$ and $\sigma(\Pi_L M, \Pi L_{\overline{\Omega}})$.

The space $W^1_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $D(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W^1_0 L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{\Omega}})$ closure of $D(\Omega)$ in $W^1 L_M(\Omega)$.

2.4. Let $W^{-1} L_{\overline{\Omega}}(\Omega)$ (resp., $W^{-1} E_{\overline{\Omega}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{\Omega}}(\Omega)$ (resp., $E_{\overline{\Omega}}(\Omega)$). It is a Banach space under the usual quotient norm (for more details see [1]).

We recall some lemmas introduced in [3] which will be used later.

Lemma 2.1. Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian, with $F(0) = 0$. Let M be an N-function and let $u \in W^1 L_M(\Omega)$ (resp., $W^1 E_M(\Omega)$). Then $F(u) \in W^1 L_M(\Omega)$ (resp., $W^1 E_M(\Omega)$). Moreover, if the set of discontinuity points of F' is finite, then
\[
\frac{\partial}{\partial x_i} F(u) = \begin{cases}
F'(u) \frac{\partial}{\partial x_i} u & \text{a.e. in } \{x \in \Omega : u(x) \not\in D\}, \\
0 & \text{a.e. in } \{x \in \Omega : u(x) \in D\}.
\end{cases}
\] (2.6)

Lemma 2.2. Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly Lipschitzian, with $F(0) = 0$. We assume that the set of discontinuity points of F' is finite. Let M be an N-function, then the mapping $F : W^1 L_M(\Omega) \to W^1 L_M(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma(\Pi L_M, \Pi E_{\overline{\Omega}})$.
4 Variational unilateral problems

We give now the following lemma which concerns operators of Nemytskii type in Orlicz spaces (see [3]).

Lemma 2.3. Let Ω be an open subset of \mathbb{R}^N with finite measure.

Let M, P and Q be N-functions such that $Q \ll P$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that, for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$|f(x,s)| \leq c(x) + k_1P^{-1}M(k_2|s|),$$

where k_1, k_2 are real constants and $c(x) \in E_Q(\Omega)$.

Then the Nemytskii operator N_f defined by $N_f(u)(x) = f(x,u(x))$ is strongly continuous from $P(E_M(\Omega), 1/k_2) = \{u \in L_M(\Omega) : d(u,E_M(\Omega)) < 1/k_2\}$ into $E_Q(\Omega)$.

Below, we will use the following technical lemma.

Lemma 2.4. Let (f_n), $f \in L^1(\Omega)$ such that

(i) $f_n \geq 0$ a.e. in Ω,

(ii) $f_n \to f$ a.e. in Ω,

(iii) $\int_\Omega f_n(x)dx \to \int_\Omega f(x)dx$,

then $f_n \to f$ strongly in $L^1(\Omega)$.

3. Main results

Let Ω be an open bounded subset of \mathbb{R}^N, $N \geq 2$, with the segment property.

Given an obstacle function $\psi : \Omega \to \mathbb{R}$, we consider

$$K_\psi = \{u \in W_0^1L_M(\Omega) : u \geq \psi \text{ a.e. in } \Omega\},$$

this convex set is sequentially $\sigma(PI_{LM}, PI_{E_M})$ closed in $W_0^1L_M(\Omega)$. (See [16].) We now state conditions on the differential operator

$$Au = - \text{div}(a(x,u,\nabla u)).$$

(A1) $a(x,s,\xi) : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function.

(A2) There exist two N-functions M and P with $P \ll M$, function $c(x)$ in $E_M(\Omega)$, constant k_1, k_2, k_3, k_4 such that, for a.e. x in Ω for all $s, \xi \in \mathbb{R}$

$$|a(x,s,\xi)| \leq c(x) + k_1P^{-1}M(k_2|s|) + k_3M^{-1}M(k_4|\xi|).$$

(A3) $[a(x,s,\xi) - a(x,s,\xi')](\xi - \xi') > 0$ for a.e. x in Ω, s in \mathbb{R} and ξ' in \mathbb{R}^N, with $\xi \neq \xi'$.

(A4) There exists $\delta(x)$ in $L^1(\Omega)$ and a strictly positive constant α such that, for some fixed element v_0 in $K_\psi \cap W_0^1E_M(\Omega) \cap L^\infty(\Omega)$.

$$a(x,s,\xi)(\xi - Dv_0) \geq \alpha M(|\xi|) - \delta(x)$$

for a.e. x in Ω, $s \in \mathbb{R}$ and all $\xi \in \mathbb{R}^N$.

(A5) For each $v \in K_\psi \cap L^\infty(\Omega)$ there exists a sequence $v_j \in K_\psi \cap W_0^1E_M(\Omega) \cap L^\infty(\Omega)$ such that $v_j \to v$ for the modular convergence.
Furthermore let \(g : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R} \) be a Carathéodory function such that for a.e. \(x \in \Omega \) and for all \(s \in \mathbb{R} \) and all \(\zeta \in \mathbb{R}^N \).

\[\begin{align*}
(G_1) \quad g(x,s,\zeta)s &\geq 0, \\
(G_2) \quad |g(x,s,\zeta)| &\leq b(|s|)(h(x) + M(|\zeta|)),
\end{align*} \]

where \(b : \mathbb{R}_+ \to \mathbb{R}_+ \) is continuous non decreasing function, \(h \) is given nonnegative function in \(L^1(\Omega) \).

We define, for \(s \) and \(k \) in \(\mathbb{R} \), \(k \geq 0 \)
\[T_k(s) = \max(-k,\min(k,s)) \]

Consider the following Dirichlet problem:
\[A(u) + g(x,u,\nabla u) = f \quad \text{in } \Omega. \quad (3.5) \]

Remark 3.1. Remark that the condition \((A_5)\) is holds if the one of the following conditions is verified.

(i) There exist \(\psi \in K_\psi \) such that \(\psi - \bar{\psi} \) is continuous in \(\Omega \) (see [16, Proposition 9]).

(ii) \(\psi \in W_0^1 E_M(\Omega) \) (see [16, Proposition 10]).

We will prove the following existence theorem.

Theorem 3.2. Assume that \((A_1)–(A_5)\), \((G_1)\) and \((G_2)\) hold and \(f \in W^{-1}E_\bar{\Psi}(\Omega) \). Then there exists at least one solution of the following unilateral problem:
\[u \in K_\psi(\Omega), \quad g(x,u,\nabla u) \in L^1(\Omega), \quad g(x,u,\nabla u)u \in L^1(\Omega), \]
\[\int_\Omega a(x,u,\nabla u)(u - v)dx + \int_\Omega g(x,u,\nabla u)(u - v)dx \leq \langle f, u - v \rangle, \quad \forall v \in K_\psi. \quad (P) \]

Remark 3.3. We remark that the statement of the previous theorem does not exists in the case of Sobolev space. But, some existence result in this sense have been proved under the regularity assumption \(\psi^+ \in W_0^{1,p}(\Omega) \cap L^\infty(\Omega) \) (see [7]).

Remark 3.4. We recall that, differently from the methods used in [7, 9], we do not introduce the function \(\psi^+ \) in the test function used in the step of a priori estimate.

4. Proof of Theorem 3.2

To prove the existence theorem, we proceed by steps.

Step 1. Approximate unilateral problems.

Let us define
\[g_n(x,s,\xi) = \frac{g(x,s,\xi)}{1 + (1/n)|g(x,s,\xi)|} \]

and let us consider the approximate unilateral problems:
\[u_n \in K_\psi \cap D(A), \]
\[\langle Au_n, u_n - v \rangle + \int_\Omega g_n(x,u_n,\nabla u_n)(u_n - v)dx \leq \langle f, u_n - v \rangle, \quad (P_n) \]
\[\forall v \in K_\psi. \]
6 Variational unilateral problems

From Gossez and Mustonen [16, Proposition 5], the problem \((P_n)\) has at least one solution.

Step 2. A priori estimates.

Let \(k \geq \|v_0\|_\infty\) and let \(\varphi_k(s) = s\|s\|_\gamma^2\), where \(\gamma = (2b(k)/\alpha)^2\).

It is well known that

\[
\varphi'_k(s) - \frac{b(k)}{\alpha} |\varphi_k(s)| \geq \frac{1}{2}, \quad \forall s \in \mathbb{R} \quad \text{(see [7])}. \tag{4.2}
\]

Since \(f \in W^{-1}E_M(\Omega)\) then \(f\) can be written as follows:

\[
f = f_0 - \text{div} \varphi \quad \text{with} \quad f_0 \in E_M(\Omega), \quad F \in (E_M(\Omega))^N. \tag{4.3}
\]

Taking \(u_n - \eta \varphi_k(T_l(u_n - v_0))\) as test function in \((P_n)\), where \(l = k + \|v_0\|_\infty\), we obtain

\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_l(u_n - v_0) \varphi'_k(T_l(u_n - v_0)) \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n) \varphi_k(T_l(u_n - v_0)) \, dx \\
\leq \int_{\Omega} f_0 \varphi_k(T_l(u_n - v_0)) \, dx + \int_{\Omega} F \nabla T_l(u_n - v_0) \varphi'_k(T_l(u_n - v_0)) \, dx. \tag{4.4}
\]

Since \(g_n(x, u_n, \nabla u_n) \varphi_k(T_l(u_n - v_0)) \geq 0\) on the subset \(\{x \in \Omega : |u_n(x)| > k\}\), then

\[
\int_{\{|u_n - v_0| \leq l\}} a(x, u_n, \nabla u_n) \nabla (u_n - v_0) \varphi'_k(T_l(u_n - v_0)) \, dx \\
\leq \int_{\{|u_n| \leq k\}} |g_n(x, u_n, \nabla u_n)| |\varphi_k(T_l(u_n - v_0))| \, dx + \int_{\Omega} f_0 \varphi_k(T_l(u_n - v_0)) \, dx \\
+ \int_{\{|u_n - v_0| \leq l\}} F \nabla u_n \varphi'_k(T_l(u_n - v_0)) \, dx - \int_{\{|u_n - v_0| \leq l\}} F \nabla v_0 \varphi'_k(T_l(u_n - v_0)) \, dx, \tag{4.5}
\]

by using (A₄), (G₁) and Young’s inequality, we have

\[
\alpha \int_{\{|u_n - v_0| \leq l\}} M(|\nabla u_n|) \varphi'_k(T_l(u_n - v_0)) \, dx \\
\leq b(|k|) \int_{\Omega} \left(h(x) + M(|\nabla T_k(u_n)|) \right) |\varphi_k(T_l(u_n - v_0))| \, dx \\
+ \int_{\Omega} \delta(x) \varphi'_k(T_l(u_n - v_0)) \, dx + \int_{\Omega} f_0 \varphi_k(T_l(u_n - v_0)) \, dx \\
+ \frac{\alpha}{2} \int_{\{|u_n - v_0| \leq l\}} M(|\nabla u_n|) \varphi'_k(T_l(u_n - v_0)) \, dx + C_i(k), \tag{4.6}
\]
which implies that

\[
\frac{\alpha}{2} \int_{\{|u_n - v_0| \leq k\}} M(|\nabla u_n|) \varphi_k'(T_l(u_n - v_0)) \, dx \\
\leq b(|k|) \int_{\Omega} (h(x) + M(|\nabla T_k(u_n)|) |\varphi_k(T_l(u_n - v_0))|) \, dx \\
+ \int_{\Omega} \delta(x) \varphi_k'(T_l(u_n - v_0)) \, dx + \int_{\Omega} f_0 \varphi_k(T_l(u_n - v_0)) \, dx + C_1(k).
\]

(4.7)

Since \(\{x \in \Omega, |u_n(x)| \leq k\} \subseteq \{x \in \Omega : |u_n - v_0| \leq l\} \) and the fact that \(h, \delta \) and \(f_0 \in L^1(\Omega) \), then

\[
\int_{\Omega} M(|\nabla T_k(u_n)|) \varphi_k'(T_l(u_n - v_0)) \, dx \\
\leq b(k) \int_{\Omega} M(|\nabla T_k(u_n)|) |\varphi_k(T_l(u_n - v_0))| \, dx + C_2(k),
\]

(4.8)

which implies that

\[
\int_{\Omega} M(|\nabla T_k(u_n)|) \left[\varphi_k'(T_l(u_n - v_0)) - \frac{b(k)}{\beta} |\varphi_k(T_l(u_n - v_0))| \right] \, dx \leq C_2(k).
\]

(4.9)

By using (4.2), we deduce

\[
\int_{\Omega} M(|\nabla T_k(u_n)|) \, dx \leq C_3(k).
\]

(4.10)

On the other side, taking \(v = v_0 \) as test function in \((P_n)\), we get

\[
\int_{\Omega} a(x, u_n, \nabla u_n)(\nabla u_n - \nabla v_0) \, dx + \int_{\Omega} g_n(x, u_n, \nabla u_n)(u_n - v_0) \, dx \\
\leq \int_{\Omega} f_0(u_n - v_0) \, dx + \int_{\Omega} F \nabla (u_n - v_0) \, dx.
\]

(4.11)

Let \(k > \|v_0\|_{\infty} \), since \(g_n(x, u_n, \nabla u_n)(u_n - v_0) \geq 0 \) in the subset \(\{x \in \Omega; |u_n(x)| \geq k\} \), we deduce

\[
\int_{\Omega} a(x, u_n, \nabla u_n)(\nabla u_n - \nabla v_0) \, dx + \int_{\{|u_n(x)| \leq k\}} g_n(x, u_n, \nabla u_n)(u_n - v_0) \, dx \\
\leq \int_{\Omega} f_0(u_n - v_0) \, dx + \int_{\Omega} F \nabla u_n \, dx - \int_{\Omega} F \nabla v_0 \, dx,
\]

(4.12)

thus, implies that, by using (4.10) and \((G_2)\)

\[
\int_{\Omega} a(x, u_n, \nabla u_n)(\nabla u_n - \nabla v_0) \, dx \leq \int_{\Omega} f_0 u_n \, dx + \int_{\Omega} F \nabla u_n \, dx + C_4(k).
\]

(4.13)
8 Variational unilateral problems

By using [14, Lemma 5.7] and Young’s inequality, we deduce

\[
\int_{\Omega} f_0 u_n dx \leq C + \frac{\alpha}{4} \int_{\Omega} M(\nabla u_n) dx,
\]

\[
\int_{\Omega} F \nabla u_n dx \leq C' + \frac{\alpha}{4} \int_{\Omega} M(\nabla u_n) dx.
\]

(4.14)

Combining (4.13), (4.14), we get

\[
\int_{\Omega} a(x, u_n, \nabla u_n) (\nabla u_n - \nabla v_0) dx \leq \frac{\alpha}{4} \int_{\Omega} M(\nabla u_n) dx + \frac{\alpha}{4} \int_{\Omega} M(\nabla u_n) dx + C_5(k),
\]

(4.15)

which implies, by using (A_4)

\[
\alpha \int_{\Omega} M(\nabla u_n) dx \leq \frac{\alpha}{2} \int_{\Omega} M(\nabla u_n) dx + C_6(k)
\]

(4.16)

hence

\[
\int_{\Omega} M(\nabla u_n) dx \leq C_7(k).
\]

(4.17)

Hence \(u_n\) is bounded in \(W^1_0 L_M(\Omega)\). So there exists some \(u \in W^1_0 L_M(\Omega)\) such that

\[
u_n \rightharpoondown u \text{ weakly in } W^1_0 L_M(\Omega) \text{ for } \sigma(\Pi L_M, \Pi E_M),
\]

\[
u_n \rightharpoonup u \text{ strongly in } E_M(\Omega) \text{ and a.e. in } \Omega.
\]

(4.18)

Step 3. Boundedness of \((a(x, u_n, \nabla u_n))_n\) in \((L^1(\Omega))^N\).

Let \(w \in (E_M(\Omega))^N\) be arbitrary, by (A_3) we have

\[
(a(x, u_n, \nabla u_n) - a(x, u_n, w))(\nabla u_n - w) \geq 0,
\]

(4.19)

this implies that

\[
a(x, u_n, \nabla u_n) (w - \nabla v_0) \leq a(x, u_n, \nabla u_n) (\nabla u_n - \nabla v_0) - a(x, u_n, w) (\nabla u_n - w)
\]

(4.20)

hence,

\[
\int_{\Omega} a(x, u_n, \nabla u_n) (w - \nabla v_0) dx \leq \int_{\Omega} a(x, u_n, \nabla u_n) (\nabla u_n - \nabla v_0) dx
\]

\[
+ \int_{\Omega} a(x, u_n, w) (w - \nabla u_n) dx.
\]

(4.21)

We claim that

\[
\int_{\Omega} a(x, u_n, \nabla u_n) (\nabla u_n - v_0) dx \leq C,
\]

(4.22)

with \(C\) is positive constant.
Indeed, if we take $v = v_0$ as test function in (P_n), we get
\[
\int_\Omega a(x, u_n, \nabla u_n)(\nabla u_n - \nabla v_0)\,dx + \int_\Omega g_n(x, u_n, \nabla u_n)(u_n - v_0)\,dx \leq \langle f, u_n - v_0 \rangle.
\]
(4.23)

Since $g_n(x, u_n, \nabla u_n)(u_n - v_0) \geq 0$ on the subset $\{x \in \Omega, |u_n| \geq \|v_0\|_\infty \}$, which implies
\[
\int_\Omega a(x, u_n, \nabla u_n)(\nabla u_n - \nabla v_0)\,dx \\
\leq b(\|v_0\|_\infty) \int_\Omega h(x)\,dx + b(\|v_0\|_\infty) \int_\Omega M(|\nabla u_n|)\,dx + \langle f, u_n - v_0 \rangle.
\]
(4.24)

Combining (4.17) and (4.24), we deduce (4.22).

On the other hand, there exists an N-function Q such that $M \ll Q$ and the space $W_0^1 L_M^1(\Omega)$ is continuously embedded in $L_Q^1(\Omega)$. Since the sequence $\{\nabla u_n\}$ is bounded in $L_M^1(\Omega)$, we can choose an $\epsilon > 0$ such that $\int_\Omega M(\varepsilon \nabla u_n)\,dx \leq C_1$ and $\int_\Omega Q(\varepsilon u_n)\,dx \leq C_2$.

We have by (A2) $|a(x, u_n, w)| \leq c(x) + k_1 M^{-1} Q(\varepsilon u_n) + k_2 M^{-1} M(k_4 w) + C_\epsilon$. When λ large enough we obtain
\[
\int_\Omega M\left(\frac{|a(x, u_n, w)|}{\lambda}\right)\,dx \leq \frac{1}{\lambda} \int_\Omega M(c(x))\,dx + \frac{k_1}{\lambda} \int_\Omega Q(\varepsilon u_n)\,dx \\
+ \frac{k_2}{\lambda} \int_\Omega M(k_4 w)\,dx + \frac{M(C_\epsilon)}{\lambda} \leq C_3,
\]
(4.25)

thus implies that $\int_\Omega a(x, u_n, w)(w - \nabla u_n)\,dx$ is bounded, therefore by using (4.21) and (4.22), we get
\[
\int_\Omega a(x, u_n, \nabla u_n)(w - \nabla v_0)\,dx \leq C_4.
\]
(4.26)

Since w is arbitrary, we deduce $\int_\Omega a(x, u_n, \nabla u_n)\,w\,dx \leq C_5$.

Finally by theorem of Banach-Steinhaus, the sequence $a(x, u_n, \nabla u_n)$ remains bounded in $L_{M^1}(\Omega)$.

Step 4. Almost everywhere convergence of the gradient.

We fix $k > \|v_0\|_\infty$. Let $\Omega_r = \{x \in \Omega, |\nabla T_k(u(x))| \leq r\}$ and denote by χ_r the characteristic function of Ω_r. Clearly, $\Omega_r \subset \Omega_{r+1}$ and $\text{meas}(\Omega \setminus \Omega_r) \to 0$ as $r \to \infty$.

Fix r and let $s \geq r$, we have
\[
0 \leq \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))][\nabla T_k(u_n) - \nabla T_k(u)]\,dx \\
\leq \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u))][\nabla T_k(u_n) - \nabla T_k(u)]\,dx \\
= \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_r)][\nabla T_k(u_n) - \nabla T_k(u)\chi_r]\,dx \\
\leq \int_\Omega [a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)\chi_s)][\nabla T_k(u_n) - \nabla T_k(u)\chi_s]\,dx.
\]
(4.27)
By the condition (A_5) there exists a sequence $v_j \in K \psi \cap W^1_0 E_M(\Omega) \cap L^\infty(\Omega)$ which converges to $T_k(u)$ for the modular converge in $W^1_0 L_M(\Omega)$.

Here, we define $w_{n,j} = T_k(u_n) - T_k(v_j)$, $w_j = T_k(u) - T_k(v_j)$.

For $\eta = \exp(-4y_k^2)$, we defined the following function as

$$vn_j = un - \eta \varphi_k(w_{n,j}).$$

(4.28)

By taking vn_j as test functions in (P_n), we get

$$\langle A(un), \eta \varphi_k(w_{n,j}) \rangle + \int_\Omega g_n(x, un, \nabla un) \eta \varphi_k(w_{n,j}) \, dx \leq \langle f, \eta \varphi_k(w_{n,j}) \rangle.$$

(4.29)

Since η is nonnegative, then

$$\langle A(un), \varphi_k(w_{n,j}) \rangle + \int_\Omega g_n(x, un, \nabla un) \varphi_k(w_{n,j}) \, dx \leq \langle f, \varphi_k(w_{n,j}) \rangle.$$

(4.30)

It follows that

$$\int_\Omega a(x, un, \nabla un) \nabla w_{n,j} \varphi_k'(w_{n,j}) \, dx + \int_\Omega g_n(x, un, \nabla un) \varphi_k(w_{n,j}) \, dx \leq \langle f, \varphi_k(w_{n,j}) \rangle.$$

(4.31)

Denoting by $\epsilon(n, j)$ any quantity such that

$$\lim_{j \to +\infty} \lim_{n \to +\infty} \epsilon(n, j) = 0.$$

(4.32)

We get, by (4.31),

$$\int_\Omega a(x, un, \nabla un) (\nabla T_k(u_n) - \nabla T_k(v_j)) \varphi_k'(w_{n,j}) \, dx + \int_\Omega g_n(x, un, \nabla un) \varphi_k(w_{n,j}) \, dx \leq \langle f, \varphi_k(w_{n,j}) \rangle.$$

(4.33)

In view of (4.18), we have $\varphi_k(w_{n,j}) \to \varphi_k(w_j)$ weakly in $W^1_0 L_M(\Omega)$ for $\sigma(\Pi L_M, \Pi E_{\Pi L})$ as $n \to +\infty$, and then

$$\langle f, \varphi_k(w_{n,j}) \rangle \to \langle f, \varphi_k(w_j) \rangle \quad \text{as } n \to +\infty.$$

(4.34)

Again, tends j to infinity, we get

$$\langle f, \varphi_k(w_j) \rangle \to 0 \quad \text{as } j \to +\infty.$$

(4.35)

Therefore,

$$\langle f, \varphi_k(w_{n,j}) \rangle = \epsilon(n, j).$$

(4.36)
On the set \(\{ x \in \Omega, \ |u_n(x)| > k \} \), we have \(g(x, u_n, \nabla u_n)\varphi_k(w_{n,j}) \geq 0 \), so by (4.31)

\[
\int_\Omega a(x, u_n, \nabla u_n) (\nabla T_k(u_n) - \nabla T_k(v_j)) \varphi_k'(w_{n,j}) \, dx \\
+ \int_{|u_n| \leq k} g_n(x, u_n, \nabla u_n) \varphi_k(w_{n,j}) \, dx \leq \epsilon(n, j).
\] (4.37)

Splitting the first integral on the left-hand side of (4.37) where \(|u_n| \leq k \) and \(|u_n| > k \), we can write

\[
\int_\Omega a(x, u_n, \nabla u_n) \nabla w_{n,j} \varphi_k'(w_{n,j}) \, dx \\
\geq \int_\Omega a(x, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(u_n) - \nabla T_k(v_j)] \varphi_k'(w_{n,j}) \, dx \\
- \varphi_k'(2k) \int_{|u_n| > k} a(x, u_n, \nabla u_n) - a(x, T_k(u_n), 0) \, \|\nabla T_k(v_j)\| \, dx.
\] (4.38)

Since \(|a(x, u_n, \nabla u_n) - a(x, T_k(u_n), 0)| \) bounded in \(L^\infty(\Omega) \) there exists a function \(h_k \in L^M(\Omega) \) such that \(|a(x, u_n, \nabla u_n) - a(x, T_k(u_n), 0)| \rightarrow h_k \) for \(\sigma(L^M, E_M) \) as \(n \rightarrow +\infty \), while \(|\nabla T_k(v_j)|_{\chi/|u_n| > k} \rightarrow |\nabla T_k(v_j)|_{\chi/|u_n| > k} \) strongly in \(E_M(\Omega) \), and by the modular convergence of \(T_k(v_j) \), we deduce that the second term of the right-hand side of (4.38) tends to 0 as \(n \rightarrow \infty \) and \(j \rightarrow \infty \), hence

\[
\int_\Omega a(x, u_n, \nabla u_n) \nabla w_{n,j} \varphi_k'(w_{n,j}) \, dx \\
\geq \int_\Omega a(x, T_k(u_n), \nabla T_k(u_n)) [\nabla T_k(u_n) - \nabla T_k(v_j)] \varphi_k'(w_{n,j}) \, dx + \epsilon(n, j),
\] (4.39)

which implies that

\[
\int_\Omega a(x, u_n, \nabla u_n) \nabla w_{n,j} \varphi_k'(w_{n,j}) \, dx \\
\geq \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j)\chi^j_s) \right] \\
\times [\nabla T_k(u_n) - \nabla T_k(v_j)\chi^j_s] \varphi_k'(w_{n,j}) \, dx \\
+ \int_\Omega a(x, T_k(u_n), \nabla T_k(v_j)\chi^j_s) [\nabla T_k(u_n) - \nabla T_k(v_j)\chi^j_s] \varphi_k'(w_{n,j}) \, dx \\
- \int_{\Omega \setminus \Omega^j_s} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \varphi_k'(w_{n,j}) \, dx + \epsilon(n, j),
\] (4.40)

where \(\chi^j_s \) denotes the characteristic function of the subset \(\Omega^j_s = \{ x \in \Omega : |\nabla T_k(v_j)| \leq s \} \).

Let a function \(l_k \in (L^M(\Omega))^N \) such that \(a(x, T_k(u_n), \nabla T_k(u_n)) - l_k \) for \(\sigma(PL^M, P^M) \), since \(\nabla T_k(v_j)\chi^{j_s}_{\Omega \setminus \Omega^j_s} \varphi_k'(w_{n,j}) \) tends to \(\nabla T_k(v_j)\chi^{j_s}_{\Omega \setminus \Omega^j_s} \varphi_k'(w_j) \) strongly in \((E_M(\Omega))^N \), the third term of the right-hand side of (4.40) tends to quantity \(\int_{\Omega \setminus \Omega^j_s} l_k \nabla T_k(v_j) \varphi_k'(w_j) \, dx \) as \(n \) tend to infinity.
Concerning the second term of the right-hand side of (4.40), since we have to infinity, it is easy to see that
\[j \to \infty \]
\[\int_{\Omega} l_k \nabla T_k(v_j) x_{\Omega} x_{\Omega'} \varphi'_k(w_j) \, dx \to \int_{\Omega \setminus \Omega_i} l_k \nabla T_k(u) \varphi'_k(0) \, dx \]
(4.42)
as \(j \) tend to infinity.

Finally
\[-\int_{\Omega \setminus \Omega_i} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \varphi'_k(w_{n,j}) \, dx = -\int_{\Omega \setminus \Omega_i} l_k \nabla T_k(u) \varphi'_k(0) \, dx + \epsilon(n, j). \]
(4.43)

Concerning the second term of the right-hand side of (4.40), since
\[a(x, T_k(u_n), \nabla T_k(v_j) x_i) \varphi'_k(w_{n,j}) \to a(x, T_k(u), \nabla T_k(v_j) x_i) \varphi'_k(w_j) \]
(4.44)
as \(n \to \infty \) in \((E_\Omega)\) by Lemma 2.3 and \(\nabla T_k(u_n) \to \nabla T_k(u) \) weakly in \((L_M(\Omega))\) for \(\sigma(\Pi L_M, \Pi E_\Omega) \).

Consequently, the second term of the right-hand side of (4.40) tends to quantity
\[\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j) x_i) \left[\nabla T_k(u) - \nabla T_k(v_j) x_i \right] \varphi'_k(w_j) \, dx \]
as \(n \to \infty \), moreover letting \(j \) to infinity it is easy to see that
\[\int_{\Omega} a(x, T_k(u), \nabla T_k(v_j) x_i) \left[\nabla T_k(u) - \nabla T_k(v_j) x_i \right] \varphi'_k(w_j) \, dx \]
\[\to \int_{\Omega} a(x, T_k(u), \nabla T_k(u) x_i) \left[\nabla T_k(u) - \nabla T_k(u) x_i \right] \varphi'_k(0) \, dx \]
(4.45)
\[= \int_{\Omega \setminus \Omega_i} a(x, T_k(u), 0) \nabla T_k(u) \varphi'_k(0) \, dx. \]

Combining (4.40), (4.43) and (4.45), we get
\[\int_{\Omega} a(x, T_k(u), \nabla u_n) \nabla w_{n,j} \varphi'_k(w_{n,j}) \, dx \]
\[\geq \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) x_i) \right] \]
\[\times \left[\nabla T_k(u_n) - \nabla T_k(v_j) x_i \right] \varphi'_k(w_{n,j}) \, dx \]
(4.46)
\[+ \int_{\Omega \setminus \Omega_i} l_k \nabla T_k(u) \varphi'_k(0) \, dx \]
\[+ \int_{\Omega \setminus \Omega_i} a(x, T_k(u), 0) \nabla T_k(u) \varphi'_k(0) \, dx + \epsilon(n, j). \]
We now return to the second term of the left-hand side of (4.37), we have, by using (A₄) and (G₂)

\[
\left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) \varphi_k(w_{n,j}) \, dx \right|
\]

\[
\leq b(k) \int_{\Omega} (h(x) + M(\nabla T_k(u_n)) \varphi_k(w_{n,j})) \, dx
\]

\[
\leq b(k) \int_{\Omega} h(x) \varphi_k(w_{n,j}) \, dx + \frac{b(k)}{\alpha} \int_{\Omega} \delta(x) \varphi_k(w_{n,j}) \, dx
\]

\[
+ \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \varphi_k(w_{n,j}) \right] \, dx
\]

\[
- \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) \nabla v_0 \varphi_k(w_{n,j}) \right] \, dx
\]

\[
\leq \epsilon(n, j) + \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \varphi_k(w_{n,j}) \, dx.
\]

The last term of the last side of this inequality write as

\[
\frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi^j) \right]
\times \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi^j \right] \varphi_k(w_{n,j}) \, dx
\]

\[
+ \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(v_j) \chi^j) \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi^j \right] \right] \varphi_k(w_{n,j}) \, dx
\]

\[
+ \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi^j \right] \varphi_k(w_{n,j}) \, dx.
\]

(4.47)

and reasoning as above, it is easy to see that

\[
\frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(v_j) \chi^j) \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi^j \right] \right] \varphi_k(w_{n,j}) \, dx = \epsilon(n, j),
\]

\[
- \frac{b(k)}{\alpha} \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(v_j) \chi^j \varphi_k(w_{n,j}) \, dx = \epsilon(n, j).
\]

(4.49)

So that by (4.47) and (4.48) we deduce that

\[
\left| \int_{\{|u_n| \leq k\}} g_n(x, u_n, \nabla u_n) \varphi_k(w_{n,j}) \, dx \right|
\]

\[
\leq \frac{b(k)}{\alpha} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi^j) \right]
\times \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi^j \right] \varphi_k(w_{n,j}) \, dx + \epsilon(n, j).
\]

(4.50)
Combining (4.37), (4.46) and (4.50), we obtain

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i) \right] \\
\times \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^i \right] \phi_k'(w_n) - \frac{b(k)}{\alpha} | \varphi_k(w_n, j) | \, dx
\leq \int_{\Omega \setminus \Omega_0} l_k \nabla T_k(u) \varphi_k'(0) \, dx + \int_{\Omega \setminus \Omega_0} a(x, T_k(u), 0) \nabla T_k(u) \varphi_k'(0) \, dx + \epsilon(n, j),
\]

which implies that, by using (4.2)

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i) \right] \times \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^i \right] \, dx
\leq 2 \int_{\Omega \setminus \Omega_0} l_k \nabla T_k(u) \varphi_k'(0) \, dx + 2 \int_{\Omega \setminus \Omega_0} a(x, T_k(u), 0) \nabla T_k(u) \varphi_k'(0) \, dx + \epsilon(n, j).
\]

Now, remark that

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i) \right] \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_j^i \right] \, dx
\]

\[
= \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i) \right] \\
\times \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^i \right] \, dx
\]

\[
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i) \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^i \right] \, dx
\]

\[
- \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi_j^i) \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_j^i \right] \, dx
\]

\[
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u_n)) \left[\nabla T_k(v_j) \chi_j^i - \nabla T_k(u) \chi_j^i \right] \, dx.
\]

We will pass to the limit in \(n\) and \(j\) in the last three terms of the right-hand side of the last inequality, we get

\[
\int_{\Omega} a\left(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i \right) \left[\nabla T_k(u_n) - \nabla T_k(v_j) \chi_j^i \right] \, dx
\]

\[
= \int_{\Omega \setminus \Omega_0} a(x, T_k(u), 0) \nabla T_k(u) \, dx + \epsilon(n, j),
\]

\[
\int_{\Omega} a\left(x, T_k(u_n), \nabla T_k(u) \chi_j^i \right) \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_j^i \right] \, dx
\]

\[
= \int_{\Omega \setminus \Omega_0} a(x, T_k(u), 0) \nabla T_k(u) \, dx + \epsilon(n, j),
\]

\[
\int_{\Omega} a\left(x, T_k(u_n), \nabla T_k(v_j) \chi_j^i \right) \left[\nabla T_k(v_j) \chi_j^i - \nabla T_k(u) \chi_j^i \right] \, dx = \epsilon(n, j),
\]
which implies that

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \left[\nabla T_k(u_n) - \nabla T_k(u) \right] dx = 0
\]

Combining (4.27), (4.52) and (4.55), we have

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \left[\nabla T_k(u_n) - \nabla T_k(u) \right] dx + \epsilon(n, j).
\]

By passing to the limsup over \(n \), and letting \(j, s \) tend to infinity, we obtain

\[
\lim_{n \to +\infty} \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) - a(x, T_k(u_n), \nabla T_k(u)) \right] \left[\nabla T_k(u_n) - \nabla T_k(u) \right] dx = 0,
\]

thus implies by the same method used in [4] that

\[
\nabla u \longrightarrow \nabla u_n \quad \text{a.e. in} \ \Omega.
\]

Step 5. Modular convergence of the truncation:

Thanks to (4.58), we have \(l_k = a(x, T_k(u), \nabla T_k(u)) \), which implies by using (4.56)

\[
\int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla \nu_0 \right) + \delta(x) \right] dx
\]

\[
\leq \int_{\Omega} \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u) \chi_s - \nabla \nu_0 \right) + \delta(x) \right] dx
\]

\[
+ \int_{\Omega} a(x, T_k(u_n), \nabla T_k(u) \chi_s) \left(\nabla T_k(u_n) - \nabla T_k(u) \chi_s \right) dx
\]

\[
+ 2 \int_{\Omega \setminus \Omega} a(x, T_k(u), \nabla T_k(u)) \nabla T_k(u) \phi_k'(0) dx
\]

\[
+ 2 \int_{\Omega \setminus \Omega} a(x, T_k(u), 0) \nabla T_k(u) \phi_k'(0) dx + \epsilon(n, j),
\]
which implies, by using the Fatou's lemma

\[
\int_\Omega \left[a(x, T_k(u), \nabla T_k(u)) \left(\nabla T_k(u) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \liminf_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \limsup_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \limsup_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
+ \limsup_{n \to +\infty} \int_\Omega a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla T_k(u) \chi_s \right) dx
\]

\[
+ 2 \int_{\Omega \setminus \Omega_s} l_k \nabla T_k(u) \varphi'_k(0) dx + 2 \int_{\Omega \setminus \Omega_s} a(x, T_k(u), 0) \nabla T_k(u) \varphi'_k(0) dx + c(n, j).
\]

(4.60)

Reasoning as above, we have

\[
\limsup_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) \chi_s - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
= \int_\Omega \left[a(x, T_k(u), \nabla T_k(u)) \left(\nabla T_k(u) \chi_s - \nabla v_0 \right) + \delta(x) \right] dx,
\]

(4.61)

\[
\limsup_{n \to +\infty} \int_\Omega a(x, T_k(u_n), \nabla T_k(u)) \left(\nabla T_k(u_n) - \nabla T_k(u_n) \chi_s \right) dx
\]

\[
= \int_{\Omega \setminus \Omega_s} a(x, T_k(u), 0) \nabla T_k(u) dx,
\]

which implies that

\[
\int_\Omega \left[a(x, T_k(u), \nabla T_k(u)) \left(\nabla T_k(u) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \liminf_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \limsup_{n \to +\infty} \int_\Omega \left[a(x, T_k(u_n), \nabla T_k(u_n)) \left(\nabla T_k(u_n) - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
\leq \int_\Omega \left[a(x, T_k(u), \nabla T_k(u)) \left(\nabla T_k(u) \chi_s - \nabla v_0 \right) + \delta(x) \right] dx
\]

\[
+ 2 \int_{\Omega \setminus \Omega_s} l_k \nabla T_k(u) \varphi'_k(0) dx
\]

\[
+ 2 \int_{\Omega \setminus \Omega_s} a(x, T_k(u), 0) \nabla T_k(u) \varphi'_k(0) dx + \int_{\Omega \setminus \Omega_s} a(x, T_k(u), 0) \nabla T_k(u) dx.
\]

(4.62)
Finally, we have

\[\int_{\Omega} [a(x, T_k(u), \nabla T_k(u)) (\nabla T_k(u) - \nabla v_0) + \delta(x)] dx \]

\[\leq \liminf_{n \to +\infty} \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla v_0) + \delta(x)] dx \]

\[\leq \limsup_{n \to +\infty} \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla v_0) + \delta(x)] dx \]

\[\leq \int_{\Omega} [a(x, T_k(u), \nabla T_k(u)) (\nabla T_k(u) - \nabla v_0) + \delta(x)] dx.\]

(4.63)

Finally, we have

\[\lim_{n \to +\infty} \int_{\Omega} [a(x, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla v_0) + \delta(x)] dx \]

\[= \int_{\Omega} [a(x, T_k(u), \nabla T_k(u)) (\nabla T_k(u) - \nabla v_0) + \delta(x)] dx\]

(4.64)

and by using (A3), one obtains, by Lemma 2.4

\[M(\nabla T_k(u_n)) \to M(\nabla T_k(u)) \quad \text{in} \quad L^1(\Omega).\]

(4.65)

Step 6. Equi-integrability of the nonlinearities.

We need to prove that

\[g_n(x, u_n, \nabla u_n) \to g(x, u, \nabla u) \quad \text{strongly in} \quad L^1(\Omega),\]

(4.66)

in particular it is enough to prove the equi-integrable of \(g_n(x, u_n, \nabla u_n).\) To this purpose, we take \(u_n - T_1(u_n - v_0 - T_2(u_n - v_0))\) as test function in \((P_n),\) we obtain

\[
\int_{|u_n - v_0| > h + 1} |g_n(x, u_n, \nabla u_n)| dx \leq \langle f, T_1(u_n - v_0 - T_2(u_n - v_0)) \rangle + \int_{|u_n - v_0| > h} \delta(x) dx
\]

\[
\leq \int_{|u_n - v_0| > h} (|f_0| + \delta)(x) dx + C\|F_{\chi_{\{|u_n - v_0| > h\}}}\|_{E}.
\]

(4.67)

Since \(|f_0| + \delta \in L^1(\Omega), F \in E_{\overline{M}}(\Omega),\) using \([14, \text{Lemma 4.16}],\) for all \(\varepsilon > 0,\) then there exists \(h(\varepsilon) \geq 1\) such that

\[\int_{|u_n - v_0| > h(\varepsilon)} |g(x, u_n,\nabla u_n)| dx < \varepsilon/2.\]

(4.68)

For any measurable subset \(E \subset \Omega,\) we have

\[
\int_E |g_n(x, u_n, \nabla u_n)| dx \leq \int_E b(h(\varepsilon))(c(x) + M(\nabla T_{h(\varepsilon)}(u_n))) dx
\]

\[+ \int_{|u_n| > h(\varepsilon)} |g(x, u_n, \nabla u_n)| dx. \]

(4.69)
In view of (4.65) there exists \(\eta(\varepsilon) > 0 \) such that
\[
\int_E b(h(\varepsilon)) \left(c(x) + M(\nabla T_{h(\varepsilon)}(u_n)) \right) dx < \varepsilon/2 \quad \forall E \text{ such that } |E| < \eta(\varepsilon).
\] (4.70)

Finally, combining (4.75) and (4.76), one easily has
\[
\int_E |g_n(x, u_n, \nabla u_n)| dx < \varepsilon \quad \forall E \text{ such that } |E| < \eta(\varepsilon),
\] (4.71)
which implies (4.66).

Moreover, if we take \(v_0 \) as function test in \((P_n)\), we get
\[
\int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \leq \int_{\Omega} \delta(x) + \int_{\Omega} g_n(x, u_n, \nabla u_n) v_0 dx + \langle f, u_n - v_0 \rangle,
\] (4.72)
hence
\[
\int_{\Omega} g_n(x, u_n, \nabla u_n) u_n dx \leq \beta,
\] (4.73)
where \(\beta \) is some positive constant, then by using Fatou’s lemma, we have
\[
g(x, u, \nabla u) u \in L^1(\Omega).
\] (4.74)

Step 7. Passing to the limit.

We take \(v \in K_\psi \cap W_0^1 EM(\Omega) \cap L^\infty(\Omega) \), in \((P_n)\), we can write
\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla (u_n - v) dx + \int_{\Omega} g(x, u_n, \nabla u_n) (u_n - v) dx \leq \langle f, u_n - v \rangle,
\] (4.75)
which implies that
\[
\int_{\Omega} a(x, u_n, \nabla u_n) \nabla (u_n - v_0) dx + \int_{\Omega} a(x, u_n, \nabla u_n) \nabla (v_0 - v) dx
\]
\[
+ \int_{\Omega} g(x, u_n, \nabla u_n) (u_n - v) dx \leq \langle f, u_n - v \rangle.
\] (4.76)

By Fatou’s lemma and the fact that
\[
a(x, u_n, \nabla u_n) \rightharpoonup a(x, u, \nabla u)
\] (4.77)
weakly in \((L^M_\ast(\Omega))^N\) for \(\sigma(PL_{\ast M}, PL_{EM}) \) one easily sees that
\[
\int_{\Omega} a(x, u, \nabla u) \nabla (u - v_0) dx + \int_{\Omega} a(x, u, \nabla u) \nabla (v_0 - v) dx
\]
\[
+ \int_{\Omega} g(x, u, \nabla u)(u - v) dx \leq \langle f, u - v \rangle.
\] (4.78)

Hence
\[
\int_{\Omega} a(x, u, \nabla u) \nabla (u - v) dx + \int_{\Omega} g(x, u, \nabla u)(u - v) dx \leq \langle f, u - v \rangle.
\] (4.79)
Now, let $v \in K_\psi \cap L^\infty(\Omega)$, by the condition (A3) there exists $v_j \in K_\psi \cap W_0^1 E_M(\Omega) \cap L^\infty(\Omega)$ such that v_j converges to v modular, let $h > \|v_0\|_\infty$, taking $v = T_h(v_j)$ in (4.79), we have

$$\int_\Omega a(x,u,\nabla u)\nabla (u - T_h(v_j)) \, dx + \int_\Omega g(x,u,\nabla u)(u - T_h(v_j)) \, dx \leq \langle f,u - T_h(v_j) \rangle.$$

(4.80)

We can easily pass to the limit as $j \to +\infty$ to get

$$\int_\Omega a(x,u,\nabla u)\nabla (u - T_h(v)) \, dx + \int_\Omega g(x,u,\nabla u)(u - T_h(v)) \, dx \leq \langle f,u - T_h(v) \rangle \quad \forall v \in K_\psi \cap L^\infty(\Omega),$$

(4.81)

the same, we pass to the limit as $h \to +\infty$, we deduce

$$\int_\Omega a(x,u,\nabla u)\nabla (u - v) \, dx + \int_\Omega g(x,u,\nabla u)(u - v) \, dx \leq \langle f,u - v \rangle \quad \forall v \in K_\psi \cap L^\infty(\Omega).$$

(4.82)

This completes the proof of the theorem.

References

Variational unilateral problems

L. Aharouch: Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah B.P. 1796, Atlas Fès, Morocco

E-mail address: laharouch@fsdmfes.ac.ma

A. Benkirane: Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah B.P. 1796, Atlas Fès, Morocco

E-mail address: abdelmoujib@iam.net.ma

M. Rhoudaf: Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah B.P. 1796, Atlas Fès, Morocco

E-mail address: mrhoudaf@fsdmfes.ac.ma