A THREE-POINT BOUNDARY VALUE PROBLEM
WITH AN INTEGRAL CONDITION FOR A
THIRD-ORDER PARTIAL DIFFERENTIAL EQUATION

C. LATROUS AND A. MEMOU

Received 9 February 2004

We prove the existence and uniqueness of a strong solution for a linear third-order equa-
tion with integral boundary conditions. The proof uses energy inequalities and the den-
sity of the range of the operator generated.

1. Introduction

In the rectangle $\Omega = (0,1) \times (0,T)$, we consider the equation

$$f(x,t) = \frac{\partial^3 u}{\partial t^3} + \frac{\partial}{\partial x} \left(a(x,t) \frac{\partial u}{\partial x} \right)$$ \hspace{1cm} (1.1)

with the initial conditions

$$u(x,0) = 0, \quad \frac{\partial u}{\partial t}(x,0) = 0, \quad x \in (0,1),$$ \hspace{1cm} (1.2)

the final condition

$$\frac{\partial^2 u}{\partial t^2}(x,T) = 0, \quad x \in (0,1),$$ \hspace{1cm} (1.3)

the Dirichlet condition

$$u(0,t) = 0 \quad \forall t \in (0,T),$$ \hspace{1cm} (1.4)

and the integral condition

$$\int_0^1 u(x,t) dx = 0, \quad 0 \leq l < 1, \quad t \in (0,T).$$ \hspace{1cm} (1.5)
In addition, we assume that the function $a(x,t)$ and its derivatives satisfy the conditions

$$0 < a_0 < a(x,t) < a_1 \quad \forall x, t \in \Omega,$$

$$\left| \frac{\partial a}{\partial x} \right| \leq b \quad \forall x, t \in \Omega,$$ \hspace{1cm} (1.6)

$$c_k' < \frac{\partial^k u}{\partial t^k}(x,t) < c_k \quad \forall x, t \in \Omega, \quad k = 1, 3,$$ with $c'_1 > 0$.

Over the last few years, many physical phenomena were formulated into nonlocal mathematical models with integral boundary conditions [1, 9, 10, 11]. The reader should refer to [13, 14] and the references therein. The importance of these kinds of problems has also been pointed out by Samarskii [22]. This type of boundary value problems has been investigated in [2, 3, 4, 6, 7, 8, 12, 18, 19, 20, 23, 25] for parabolic equations, in [21, 24] for hyperbolic equations, and in [15, 16, 17] for mixed-type equations. The basic tool in [5, 15, 16, 17, 20, 25] is the energy inequality method which, of course, requires appropriate multipliers and functional spaces. In this paper, we extend this method to the study of a linear third-order partial differential equation.

2. Preliminaries

In this paper, we prove the existence and uniqueness of a strong solution of the problem (1.1)–(1.5). For this, we consider the solution of problem (1.1)–(1.5) as a solution of the operator equation

$$Lu = \mathcal{F},$$ \hspace{1cm} (2.1)

where the operator L has domain of definition $D(L)$ consisting of functions $u \in L^2(\Omega)$ such that $(\partial^{k+1} u/\partial t^k \partial x)(x,t) \in L^2(\Omega)$, $k = 1, 3$ and satisfying the conditions (1.4)-(1.5).

The operator L is considered from E to F, where E is the Banach space consisting of function $u \in L^2(\Omega)$, with the finite norm

$$\|u\|_E^2 = \int_\Omega \Theta(x) \left[\left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right] dx dt$$

$$+ \int_\Omega \Theta(x) \left[\left| \frac{\partial u}{\partial x} \right|^2 + \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \right] dx dt$$

$$+ \int_\Omega \Phi(x) \left[\left| \frac{\partial u}{\partial t} \right|^2 + |u|^2 \right] dx dt.$$ \hspace{1cm} (2.2)

F is the Hilbert space of functions $\mathcal{F} = (f,0,0,0)$, $f \in L^2(\Omega)$, with the finite norm

$$\|\mathcal{F}\|_F^2 = \int_\Omega \Theta(x) \left| f(x,t) \right|^2 dx dt,$$ \hspace{1cm} (2.3)
\[\Theta(x) = \begin{cases} (1 - l)^2, & 0 < x \leq l, \\ (1 - x)^2, & l \leq x < 1, \end{cases} \]

\[\Phi(x) = \begin{cases} 0, & 0 < x < l, \\ 1, & l \leq x < 1. \end{cases} \]

3. An energy inequality and its application

Theorem 3.1. For any function \(u \in D(L) \), the a priori estimate

\[\|u\|_E \leq k \|Lu\|_F \quad \text{for } u \in D(L), \quad (3.1) \]

where \(k^2 = 40\exp(cT)/k_1 \) with \(k_1 = \inf \{1/4, (c_3' - 3cc_1' + 3c^2c_1 - c^3a_1 - b^2)/2, a_0^2/2, (3/2)(ca_0 - c_1)\} \). The constant \(c \) satisfies

\[\sup_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} \right) < c < \inf_{(x,t) \in \Omega} \left(\frac{1}{a} \frac{\partial a}{\partial t} + 1 \right), \]

\[c_3' - 3cc_1' + 3c^2c_1 - c^3a_1 - b^2 > 0, \]

\[c_2' - 2cc_1' + c^2a_1^2 + ca_0 - c_1 > 0. \]

Proof. Let

\[Mu = \begin{cases} (1 - l)^2 \frac{\partial^3 u}{\partial t^3}, & 0 < x < l, \\ (1 - x)^2 \frac{\partial^3 u}{\partial t^3} + 2(1 - x)J_x \frac{\partial^3 u}{\partial t^3}, & l \leq x < 1, \end{cases} \]

where \(J_x u = \int_x^1 u(x,t) \, dx \).

We consider the quadratic form obtained by multiplying (1.1) by \(\exp(-ct)\overline{Mu} \), with the constant \(c \) satisfying (3.2), integrating over \(\Omega = (0,1) \times (0,T) \), and taking the real part:

\[\Phi(u,u) = \text{Re} \int_\Omega \exp(-ct) f(x,t) \overline{Mu} dx \, dt. \]
By substituting the expression of \(Mu \) in (3.4), integrating with respect to \(x \), and using the Dirichlet and integral conditions, we obtain

\[
\text{Re} \left[\int_{\Omega} \exp(-ct) f(x,t) Mu \, dx \, dt \right]
\]

\[
= \int_0^T \int_0^1 \Theta(x) \exp(-ct) \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt
\]

\[
- \frac{3}{2} \int_0^T \int_0^1 \Theta(x) \exp(-ct) \left[\frac{\partial a}{\partial t} - ca \right] \left| \frac{\partial^2 u}{\partial x \partial t} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_0^1 \frac{\Theta(x)}{2} \exp(-ct) \left[\frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c \frac{\partial a}{\partial t} - c^3 a \right] \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_1^l \exp(-ct) \left| J_x \frac{\partial^3 u}{\partial x^3} \right|^2 \, dx \, dt
\]

(3.5)

Integrating by parts \(-2 \text{Re} \int_0^T \int_0^1 \exp(-ct)a(x,t)u(\frac{\partial^3 u}{\partial t^3}) \, dx \, dt\) with respect to \(t \), and using the initial conditions, the final conditions, and the elementary inequalities, we obtain

\[
\int_0^T \int_0^1 \frac{\Theta(x)}{2} \exp(-ct) \left| \frac{\partial^3 u}{\partial t^3} \right|^2 \, dx \, dt
\]

\[
- \frac{3}{2} \int_0^T \int_0^1 \Theta(x) \exp(-ct) \left[\frac{\partial a}{\partial t} - ca \right] \left| \frac{\partial^2 u}{\partial x \partial t} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_0^1 \frac{\Theta(x)}{2} \exp(-ct) \left[\frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c \frac{\partial a}{\partial t} - c^3 a \right] \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_0^1 \exp(-ct) \left| J_x \frac{\partial^3 u}{\partial x^3} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_0^1 \exp(-ct) \left[\frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c \frac{\partial a}{\partial t} - c^3 a \right] u^2 \, dx \, dt
\]

\[
- \frac{3}{2} \int_0^T \int_0^1 \exp(-ct) \left[\frac{\partial a}{\partial t} - ca \right] \left| \frac{\partial u}{\partial t} \right|^2 \, dx \, dt
\]

\[
+ \int_0^T \int_0^1 \frac{\Theta(x)}{2} \exp(-ct) \left[a - \frac{\partial a}{\partial t} - ca \right] \left| \frac{\partial^2 u}{\partial x \partial t} \right|^2 \, dx \, dt
\]

and using the initial conditions, the final conditions, and the elementary inequalities, we obtain
− \int_0^1 \Theta(x) \exp(-ct) \left[\frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a + \left| \frac{\partial a}{\partial t} - ca \right| \right] \left| \frac{\partial u}{\partial x} \right|^2 dx|_{t=T} \\
+ \int_0^1 \Phi(x) \exp(-ct) \left[a - \left| \frac{\partial a}{\partial t} - ca \right| \right] \left| \frac{\partial u}{\partial x} \right|^2 dx|_{t=T} \\
- \int_0^1 \Phi(x) \exp(-ct) \left[\frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a + \left| \frac{\partial a}{\partial t} - ca \right| \right] |u|^2 dx|_{t=T} \\
\leq 17 \int_0^T \int_1^0 \Theta(x) \exp(-ct) |f|^2 dx dt.

(3.6)

From (1.1), we get

\int_\Omega \Theta(x) a^2 \left| \frac{\partial^2 u}{\partial x^2} \right|^2 dx dt \\
\leq 2 \int_\Omega \Theta(x) \left| \frac{\partial^3 u}{\partial t^3} \right|^2 dx dt + 2 \int_\Omega \Theta(x) \left(\frac{\partial a}{\partial x} \right)^2 \left| \frac{\partial u}{\partial x} \right|^2 dx dt \\
+ 4 \int_\Omega \Theta(x) |f|^2 dx dt.

(3.7)

Combining this last inequality with (3.6) and using the conditions (3.2) yield

\int_\Omega \Theta(x) \left[\left| \frac{\partial^3 u}{\partial t^3} \right|^2 + \left| \frac{\partial^2 u}{\partial x^2} \right|^2 \right] dx dt \\
+ \int_\Omega \Theta(x) \left[\left| \frac{\partial u}{\partial x} \right|^2 + \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \right] dx dt + \int_\Omega \Phi(x) \left[\left| \frac{\partial u}{\partial t} \right|^2 + |u|^2 \right] dx dt

(3.8)

\leq k \int_\Omega \Theta(x) |f(x,t)|^2 dx dt,

which is the desired inequality.

It can be proved in a standard way that the operator \(L : E \to F \) is closable. Let \(\overline{L} \) be the closure of this operator, with the domain of definition \(D(\overline{L}) \).

Definition 3.2. A solution of the operator equation \(\overline{L}u = \overline{F} \) is called a strong solution of problem (1.1)–(1.5).

The a priori estimate (3.1) can be extended to strong solutions, that is, we have the estimate

\[\|u\|_E \leq c \|\overline{L}u\|_F \quad \forall u \in D(\overline{L}). \]

(3.9)

This last inequality implies the following corollaries.

Corollary 3.3. A strong solution of (1.1)–(1.5) is unique and depends continuously on \(\overline{F} \).

Corollary 3.4. The range \(R(\overline{L}) \) of \(\overline{L} \) is closed in \(F \) and \(R(\overline{L}) = R(L) \).
Corollary 3.4 shows that to prove that problem (1.1)–(1.5) has a strong solution for arbitrary \(\mathfrak{F} \), it suffices to prove that set \(R(L) \) is dense in \(F \).

4. Solvability of problem (1.1)–(1.5)

To prove the solvability of problem (1.1)–(1.5) it is sufficient to show that \(R(L) \) is dense in \(F \). The proof is based on the following lemma.

Lemma 4.1. Suppose that the function \(a(x, t) \) and its derivatives are bounded. Let \(u \in D_0(L) = \{ u \in D(L), u(x, 0) = 0, \frac{\partial u}{\partial t}(x, 0) = 0, (\partial^2 u/\partial t^2)(x, T) = 0 \} \). If for \(u \in D_0(L) \) and some functions \(w(x, t) \in L^2(\Omega) \),

\[
\int_{\Omega} h(x) f \, w \, dx \, dt = 0, \tag{4.1}
\]

where

\[
h(x) = \begin{cases}
1 - l, & 0 < x < l, \\
1 - x, & l < x < 1,
\end{cases}
\]

holds, for arbitrary \(u \in D_0(L) \), and then \(w = 0 \).

Proof. The equality (4.1) can be written as follows:

\[
\int_{\Omega} h(x) \frac{\partial^3 u}{\partial t^3} \, \bar{w} \, dx \, dt = \int_{\Omega} A(t)u \bar{v} \, dx \, dt, \tag{4.3}
\]

for a given \(v(x, t) \), where

\[
v = \begin{cases}
(1 - l)w, & 0 < x < l, \\
w - \int_l^x \frac{w}{1 - \zeta} d\zeta, & l < x < 1,
\end{cases}
\]

\[
A(t)u = \frac{\partial}{\partial x} \left(h(x) a(x, t) \frac{\partial u}{\partial x} \right),
\]

\[
Nv = \begin{cases}
(1 - l)v, & 0 < x < l, \\
(1 - x)v + J_x v, & l < x < 1.
\end{cases}
\]

For \(v = w - \int_l^x w/(1 - \zeta) d\zeta, l < x < 1 \) we deduce \(\int_l^x v(\zeta, t) d\zeta = (1 - x) \int_l^x w/(1 - \zeta) d\zeta \), then \(\int_l^1 v(\zeta, t) d\zeta = 0 \).

Following [25], we introduce the smoothing operators with respect to \(t \), \((J^{-1}_\epsilon) = (I - \epsilon(\partial^3/\partial t^3))^{-1} \), and \((J^{-1}_\epsilon)^* = (I + \epsilon(\partial^3/\partial t^3))^{-1} \) which provide the solution of the respective problems:

\[
\begin{align*}
\frac{\partial^3 u_\epsilon}{\partial t^3} = u, \\
\frac{\partial u_\epsilon}{\partial t}(x, 0) = 0, \\
\frac{\partial^2 u_\epsilon}{\partial t^2}(x, 0) = 0, \\
\frac{\partial^2 u_\epsilon}{\partial t^2}(x, T) = 0, \\
\frac{\partial^3 v_\epsilon^*}{\partial t^3} = v, \\
\frac{\partial v_\epsilon^*}{\partial t}(x, 0) = 0, \\
\frac{\partial^2 v_\epsilon^*}{\partial t^2}(x, 0) = 0, \\
\frac{\partial^2 v_\epsilon^*}{\partial t^2}(x, T) = 0.
\end{align*}
\]

(4.5)
And also, we have the following properties: for any \(u \in L^2(0, T) \), the function \(J_{\epsilon}^{-1}u \in W^2_2(0, T), (J_{\epsilon}^{-1})^*u \in W^2_2(0, T) \). If \(u \in D(L), J_{\epsilon}^{-1}u \in D(L) \).

\[
\lim_{\epsilon \to 0} ||J_{\epsilon}^{-1}u - u||_{L^2(0, T)} = 0, \quad \lim_{\epsilon \to 0} ||(J_{\epsilon}^{-1})^*u - u||_{L^2(0, T)} = 0. \tag{4.6}
\]

Substituting the function \(u \) in (4.3) by the smoothing function \(u_\epsilon \) and using the relation \(A(t)u_\epsilon = J_{\epsilon}^{-1}A(t)u + \epsilon J_{\epsilon}^{-1}B_\epsilon(t)u \), where \(B_\epsilon(t) = (3\partial/\partial t)((\partial A(t)/\partial t)(\partial u_\epsilon/\partial t)) + (3^3 A(t)/\partial t^3)u_\epsilon \), we obtain

\[
\int_\Omega uN \frac{\partial^3 \nu^\epsilon}{\partial t^3} \, dx \, dt = \int_\Omega A(t)u \nu^\epsilon \, dx \, dt - \epsilon \int_\Omega B_\epsilon(t)u \nu^\epsilon \, dx \, dt. \tag{4.7}
\]

The operator \(A(t) \) has a continuous inverse in \(L^2(0, 1) \) defined by

\[
A^{-1}(t)g = \begin{cases}
- \frac{1}{1-l} \int_0^x \int_0^\zeta \frac{d\zeta}{a(\zeta, t)} \int_0^\eta \frac{d\eta}{a(\zeta, t)} , & 0 < \xi < l, \\
\int_1^x \int_1^\eta \frac{-d\zeta}{(1-\zeta)a(\zeta, t)} \int_0^\eta \frac{d\eta}{a(\zeta, t)} + u(l), & l < \xi < 1,
\end{cases} \tag{4.8}
\]

where

\[
C_1(t) = \frac{(1-l)u(l) + \int_0^l (d\zeta/a(\zeta, t)) \int_0^\zeta g(\eta) \, d\eta}{\int_0^l (d\zeta/a(\zeta, t))}, \quad C_2(t) = \frac{-u(l) + \int_1^l (d\zeta/a(\zeta, t)) \int_0^\zeta g(\eta) \, d\eta}{\int_1^1 (d\zeta/a(\zeta, t))}. \tag{4.9}
\]

Then we have \(\int_1^l A^{-1}(t)u = 0 \), hence, the function \(J_{\epsilon}^{-1}u = u_\epsilon \) can be represented in the form

\[
u_\epsilon = J_{\epsilon}^{-1}A^{-1}(t)A(t)u. \tag{4.10} \]

The adjoint of \(B_\epsilon(t) \) has the form

\[
B_\epsilon^*(t)v = \frac{1}{a} (J_{\epsilon}^{-1})^* \frac{\partial^3 a}{\partial t^3} v + \frac{3}{a} (J_{\epsilon}^{-1})^* \frac{\partial (\partial a \partial v)}{\partial t} - G_\epsilon(v)(x)
\]

\[
+ \frac{\int_0^l (d\zeta/a(\zeta, t))}{\int_0^l (d\zeta/a(\zeta, t))} G_\epsilon(v)(1), \tag{4.11}
\]

where

\[
G_\epsilon(v)(x) = \int_0^x \left[\frac{3}{a} (J_{\epsilon}^{-1})^* \frac{\partial (\partial^2 a \partial v)}{\partial t (\partial a \partial v)} - \frac{3}{a^2} \frac{\partial a}{\partial \zeta} (J_{\epsilon}^{-1})^* \frac{\partial (\partial a \partial v)}{\partial t} - \frac{1}{a^2} \frac{\partial a}{\partial \zeta} (J_{\epsilon}^{-1})^* \frac{\partial^3 a}{\partial \zeta^3} v \right] \, d\zeta. \tag{4.12}
\]
Consequently, equality (4.7) becomes
\[
\int_{\Omega} u N \frac{\partial^3 v^*_\epsilon}{\partial t^3} \, dx \, dt = \int_{\Omega} A(t) u h^*_\epsilon \, dx \, dt, \tag{4.13}
\]
where \(h^*_\epsilon = v^*_\epsilon - \epsilon B^*_\epsilon(t) v^*_\epsilon \).

The left-hand side of (4.13) is a continuous linear functional of \(u \), hence the function \(h^*_\epsilon \) has the derivatives \(\partial h^*_\epsilon / \partial x \), \((1-x)(\partial h^*_\epsilon / \partial x) \in L^2(\Omega)\), and the condition \(h^*_\epsilon(0,t) = 0 \) is satisfied.

From the equality
\[
(1-x) \frac{\partial h^*_\epsilon}{\partial x} = \left[1 - \epsilon \frac{1}{a} (J^{-1}_\epsilon)^* \left(\frac{\partial^3 a}{\partial t^3} \right) \right] (1-x) \frac{\partial v^*_\epsilon}{\partial x} - 3 \epsilon \frac{1}{a} (J^{-1}_\epsilon)^* \frac{\partial}{\partial t} \left(\frac{\partial a}{\partial t} \frac{\partial}{\partial x} (1-x) \frac{\partial v^*_\epsilon}{\partial x} \right), \tag{4.14}
\]
and since the operator \((J^{-1}_\epsilon)^*\) is bounded in \(L^2(\Omega) \), for sufficiently small \(\epsilon \), we have \(\| \epsilon (1/a)(J^{-1}_\epsilon)^* (\partial^3 a/\partial t^3) \| < 1 \). Hence, the operator \(I - \epsilon (1/a)(J^{-1}_\epsilon)^* (\partial^3 a/\partial t^3) \) has a bounded inverse in \(L^2(\Omega) \). We conclude that \((1-x)(\partial v^*_\epsilon / \partial x) \in L^2(\Omega)\). Similarly, we conclude that \((\partial / \partial x)((1-x)(\partial v^*_\epsilon / \partial x)) \) exists and belongs to \(L^2(\Omega) \), and the condition \(v^*_\epsilon(0,t) = 0 \) is satisfied.

Putting \(u = \int_0^T \int_0^T \int_\eta^T \exp(ct) v^*_\epsilon \, d\tau \, d\eta \, d\zeta \) in (4.3), where the constant \(c \) satisfies (3.2) and using the properties of smoothing operator, we obtain
\[
\int_{\Omega} \exp(ct) v^*_\epsilon \, \overline{Nv} \, dx \, dt = - \int_{\Omega} A(t) u \overline{v^*_\epsilon} \, dx \, dt - \epsilon \int_{\Omega} A(t) u \frac{\partial^3 v^*_\epsilon}{\partial t^3} \, dx \, dt, \tag{4.15}
\]
and from
\[
- \epsilon \int_{\Omega} A(t) u \frac{\partial^3 v^*_\epsilon}{\partial t^3} \, dx \, dt
= 3 \int_{\Omega} h(x) \exp(-ct) \left(\frac{\partial^3 a}{\partial t^3} - c \frac{\partial^2 a}{\partial t^2} \right) \left(\frac{\partial^3 u}{\partial t^3} \right) \left(\frac{\partial^3 u}{\partial t^2 \partial x} \right) \, dx \, dt
- 3 \int_{\Omega} h(x) \exp(-ct) \left(\frac{\partial^3 a}{\partial t^3} - c \frac{\partial^2 a}{\partial t^2} \right) \left(\frac{\partial^3 u}{\partial t^3} \right) \left(\frac{\partial^2 u}{\partial t \partial x} \right) \, dx \, dt
+ 3 \int_0^T h(x) \frac{1}{2} \exp(-ct) \frac{\partial a}{\partial t} \left(\frac{\partial^3 u}{\partial t^3} \right) \left(\frac{\partial^2 u}{\partial t^2 \partial x} \right) \, dx \bigg|_{t=T}
+ 3 \int_0^T h(x) \frac{1}{2} \exp(-ct) \frac{\partial a}{\partial t} \left(\frac{\partial^3 u}{\partial t^3} \right) \left(\frac{\partial^2 u}{\partial t \partial x} \right) \, dx \bigg|_{t=T}
- \int_{\Omega} h(x) \exp(-ct) a \left(\frac{\partial^3 v^*_\epsilon}{\partial t^3} \right) \, dx \, dt
- \int_{\Omega} h(x) \exp(-ct) \frac{\partial a}{\partial t} \left(\frac{\partial^3 u}{\partial t^3} \right) \left(\frac{\partial^2 u}{\partial t \partial x} \right) \, dx \, dt, \tag{4.16}
\]

...
By using the conditions (3.2), inequalities (4.17) and (4.19), we obtain

\[
- \varepsilon \text{Re} \int_{\Omega} A(t)u \frac{\partial^3 \nu^{\varepsilon}_t}{\partial t^3} \, dx \, dt
\leq \varepsilon \left\{ \int_{\Omega} h(x) \exp(-ct) \left[\frac{\partial^2 a}{\partial t^2} + \frac{1}{2} \left| \frac{\partial^3 a}{\partial t^3} - c \frac{\partial^2 a}{\partial t^2} \right| \right] \left| \frac{\partial^3 u}{\partial t^3 \partial x} \right|^2 \, dx \, dt
+ \frac{3}{2} \int_{\Omega} h(x) \exp(-ct) \left[\frac{\partial^3 a}{\partial t^3} - c \frac{\partial a}{\partial t} + \left| \frac{\partial^3 a}{\partial t^3} - c \frac{\partial^2 a}{\partial t^2} \right| \right] \left| \frac{\partial^2 u}{\partial t^2 \partial x} \right|^2 \, dx \, dt
\right.
\]

\[
- \int_{\Omega} h(x) \exp(-ct) a \left| \frac{\partial^3 \nu^{\varepsilon}_t}{\partial t^3} \right|^2 \, dx \, dt
+ \frac{3}{2} \int_{\Omega} h(x) \exp(-ct) \left| \frac{\partial^3 a}{\partial t^3} \right|^2 \, dx \, dt
+ \frac{1}{2} \int_{\Omega} h(x) \exp(-ct) \left| \frac{\partial^3 a}{\partial t^3} \right|^2 \, dx \, dt
+ \frac{1}{2} \int_{\Omega} h(x) \exp(-ct) \frac{\partial a}{\partial t} \left| \frac{\partial^3 u}{\partial t^3 \partial x} \right|^2 \, dx \, dt \right\}.
\]

Integrating the first term on the right-hand side by parts in (4.15), we obtain

\[
- \varepsilon \text{Re} \int_{\Omega} A(t)u \nu^{\varepsilon}_t dx \, dt
= \frac{3}{2} \int_{\Omega} h(x) \exp(-ct) \left[\frac{\partial a}{\partial t} - ca \right] \left| \frac{\partial^2 u}{\partial t^2 \partial x} \right|^2 \, dx \, dt
- \int_{\Omega} h(x) \exp(-ct) \left\{ \frac{\partial^3 a}{\partial t^3} - 3c \frac{\partial^2 a}{\partial t^2} + 3c^2 \frac{\partial a}{\partial t} - c^3 a \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx \, dt
- \int_0^1 \int_{\Omega} \frac{1}{2} h(x) \exp(-ct) a \left| \frac{\partial^2 u}{\partial t \partial x} \right|^2 \, dx |_{t=T}
+ \int_0^1 \int_{\Omega} \frac{1}{2} h(x) \exp(-ct) \left\{ \frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx |_{t=T}
- \int_0^1 \int_{\Omega} h(x) \exp(-ct) \left\{ \frac{\partial a}{\partial t} - ca \right\} \frac{\partial u}{\partial x} \left| \frac{\partial^2 u}{\partial t^2 \partial x} \right| \, dx |_{t=T}.
\]

This last equality gives

\[
- \varepsilon \text{Re} \int_{\Omega} A(t)u \nu^{\varepsilon}_t dx \, dt
\leq - \int_0^1 \int_{\Omega} h(x) \exp(-ct) \left| \frac{\partial a}{\partial t} + a - ca \right| \left| \frac{\partial^2 u}{\partial x \partial t} \right|^2 \, dx |_{t=T}
+ \int_0^1 \int_{\Omega} \frac{1}{2} h(x) \exp(-ct) \left\{ \frac{\partial^2 a}{\partial t^2} - 2c \frac{\partial a}{\partial t} + c^2 a + ca \right\} \left| \frac{\partial u}{\partial x} \right|^2 \, dx |_{t=T}.
\]

By using the conditions (3.2), inequalities (4.17) and (4.19), we obtain

\[
\text{Re} \int_{\Omega} \exp(ct) \nu^{\varepsilon}_t \overline{N} \, dx \, dt \leq 0 \quad \text{as } \varepsilon \to 0.
\]
Three-point boundary value problem

This implies \(\text{Re} \int_{\Omega} \exp(ct)(v^*_e - v)\bar{N}v \, dx \, dt + \text{Re} \int_{\Omega} \exp(ct)v\bar{N}v \, dx \, dt \leq 0 \), that is,

\[
\int_0^T \int_0^l \exp(-ct)(1-l)|v|^2 \, dx \, dt + \int_0^T \int_0^1 \exp(-ct)(1-x)|v|^2 \, dx \, dt + \int_0^T \int_1^l \exp(-ct)\left|J_xv\right|^2 \, dx \, dt + \int_0^T \int_0^1 \frac{1-l}{2l} \exp(-ct)\left|J_xv\right|^2 \, dx \, dt \leq 0.
\]

Then \(v = 0 \).

Finally from (4.4), we conclude \(w = 0 \). \(\square \)

Theorem 4.2. The range \(R(\mathcal{L}) \) of \(\mathcal{L} \) coincides with \(F \).

Proof. Since \(F \) is Hilbert space, then \(R(\mathcal{L}) = F \) if and only if the relation

\[
\int_{\Omega} \Theta(x)f \overline{g} \, dx \, dt = 0 \quad (4.22)
\]

holds.

Arbitrary \(u \in D_0(L) \) and \(\mathcal{F} = (f, 0, 0, 0) \in F \) implies \(f = 0 \). Taking in (4.22), \(u \in D_0(L) \), and using Lemma 4.1, we obtain

\[
w = \begin{cases}
(1-l)g, & 0 < x < l, \\
(l-x)g, & l < x < 1,
\end{cases} \quad (4.23)
\]

then \(g = 0 \). \(\square \)

References

C. Latrous: Laboratoire Equations Differentielles, Département de Mathematiques, Université Mentouri Constantine, 25000 Constantine, Algeria

E-mail address: clatrous@wissal.dz

A. Memou: Laboratoire Equations Differentielles, Département de Mathematiques, Université Mentouri Constantine, 25000 Constantine, Algeria

E-mail address: memoua@wissal.dz