NONEXISTENCE RESULTS OF SOLUTIONS TO SYSTEMS OF SEMILINEAR DIFFERENTIAL INEQUALITIES ON THE HEISENBERG GROUP

ABDALLAH EL HAMIDI AND MOKHTAR KIRANE

Received 25 December 2002

We establish nonexistence results to systems of differential inequalities on the \((2N + 1)\)-Heisenberg group. The systems considered here are of the type \((ES_m)\). These nonexistence results hold for \(N\) less than critical exponents which depend on \(p_i\) and \(\gamma_i, 1 \leq i \leq m\). Our results improve the known estimates of the critical exponent.

1. Introduction

For the reader’s convenience, we recall some background facts used here. The Heisenberg group \(\mathbb{H}^N\), whose points will be denoted by \(\eta = (x, y, \tau)\), is the Lie group \((\mathbb{R}^{2N+1}, \circ)\) with the group operation \(\circ\) defined by

\[
\eta \circ \tilde{\eta} = (x + \tilde{x}, y + \tilde{y}, \tau + \tilde{\tau} + 2(\langle x, \tilde{y} \rangle - \langle \tilde{x}, y \rangle)),
\]

where \(\langle \cdot, \cdot \rangle\) is the usual inner product in \(\mathbb{R}^N\). The Laplacian \(\Delta_H\) over \(\mathbb{H}^N\) is obtained, from the vector fields \(X_i = \partial_{x_i} + 2y_i \partial_{\tau}\) and \(Y_i = \partial_{y_i} - 2x_i \partial_{\tau}\), by

\[
\Delta_H = \sum_{i=1}^{N} (X_i^2 + Y_i^2).
\]

Observe that the vector field \(T = \partial_{\tau}\) does not appear in (1.2). This fact makes us presume a “loss of derivative” in the variable \(\tau\). The compensation comes from the relation

\[
[X_i, Y_j] = -4T, \quad j, k \in \{1, 2, \ldots, N\}.
\]

The relation (1.3) proves that \(\mathbb{H}^N\) is a nilpotent Lie group of order 2. Incidentally, (1.3) constitutes an abstract version of the canonical relations of commutation of Heisenberg between momentums and positions. Explicit computation gives the expression

\[
\Delta_H = \sum_{i=1}^{N} \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + 4y_i \frac{\partial^2}{\partial x_i \partial \tau} - 4x_i \frac{\partial^2}{\partial y_i \partial \tau} + 4(x_i^2 + y_i^2) \frac{\partial^2}{\partial \tau^2} \right).
\]
A natural group of dilatations on \mathbb{H}^N is given by
\[\delta_\lambda(\eta) = (\lambda x, \lambda y, \lambda^2 \tau), \quad \lambda > 0, \] (1.5)
whose Jacobian determinant is λ^Q, where
\[Q = 2N + 2 \] (1.6)
is the homogeneous dimension of \mathbb{H}^N.

The operator $\Delta_{\mathbb{H}}$ is a degenerate elliptic operator. It is invariant with respect to the left translation of \mathbb{H}^N and homogeneous with respect to the dilatations δ_λ. More precisely, we have
\[\Delta_{\mathbb{H}}(u(\eta \circ \tilde{\eta})) = (\Delta_{\mathbb{H}}u)(\eta \circ \tilde{\eta}), \]
\[\Delta_{\mathbb{H}}(u \circ \delta_\lambda) = \lambda^2 (\Delta_{\mathbb{H}}u) \circ \delta_\lambda \quad \forall (\eta, \tilde{\eta}) \in \mathbb{H}^N \times \mathbb{H}^N. \] (1.7)

It is natural to define a distance from η to the origin by
\[|\eta|_{\mathbb{H}} = \left(\tau^2 + \sum_{i=1}^N (x_i^2 + y_i^2)^2 \right)^{1/4}. \] (1.8)

In [7], Pohozaev and Véron gave another proof of the result of Birindelli et al. [1] concerning the nonexistence of weak solutions of the differential inequality
\[\Delta_{\mathbb{H}}(au) + |\eta|^{\gamma_1}_{\mathbb{H}}|v|^p \leq 0 \quad \text{in} \quad \mathbb{H}^N \] (1.9)
for $\gamma > -2, 1 < p \leq (Q + \gamma)/(Q - 2)$, and $a \in L^\infty(\mathbb{H}^N)$.

They then addressed the question of nonexistence of weak solutions of the system (ES2):
\[-\Delta_{\mathbb{H}}(a_i u_i) \geq |\eta|^{\gamma_i}_{\mathbb{H}} |v|^p, \quad -\Delta_{\mathbb{H}}(a_2 u_i) \geq |\eta|^{\gamma_2}_{\mathbb{H}} |u|^{p_2}, \] (1.10)
where $a_i, i \in \{1,2\}$, are measurable and bounded functions defined on \mathbb{H}^N, and $p_i > 1$ and $\gamma_i, i = 1,2$, are real numbers. They showed that this system admits no solution defined in \mathbb{H}^N whenever $\gamma_i > -2$ and $1 < p_i \leq (Q + \gamma_i)/(Q - 2), i = 1,2$. The estimates on $p_i, i = 1,2$, are obtained using Young's inequality and are not optimal. Using the Hölder inequality, we obtain better estimates on $p_i, 1 \leq i \leq m$. The same strategy is suitable to study the systems (PS$_m$) and (HS$_m$).

We also studied the following systems:
\[(\text{PS}_m) \frac{\partial u_i}{\partial t} - \Delta_{\mathbb{H}}(a_i u_i) \geq |\eta|^{\gamma_{i+1}}_{\mathbb{H}} |u_{i+1}|^{p_{i+1}}, \eta \in \mathbb{H}^N, 1 \leq i \leq m, u_{m+1} = u_1, \]
\[(\text{HS}_m) \frac{\partial^2 u_i}{\partial t^2} - \Delta_{\mathbb{H}}(a_i u_i) \geq |\eta|^{\gamma_{i+1}}_{\mathbb{H}} |u_{i+1}|^{p_{i+1}}, \eta \in \mathbb{H}^N, 1 \leq i \leq m, u_{m+1} = u_1, \]
and showed the following results.
Theorem 1.1. Assume that the initial data \(u_i^{(0)} \in L^1(\mathbb{R}^{2N+1}) \) and \(\int u_i^{(0)}(\eta) d\eta \geq 0, \ 1 \leq i \leq m \). If

$$Q \leq \max \{ X_1, X_2, \ldots, X_m \}, \quad (1.11)$$

where the vector \((X_1, X_2, \ldots, X_m)^T \) is the solution of (3.1), then there is no nontrivial global weak solution \((u_1, \ldots, u_m) \) of the system \((PS_m) \).

Theorem 1.2. Assume that initial data (for the first derivatives of \(u_i \), \(1 \leq i \leq m \)) \(u_i^{(1)} \in L^1(\mathbb{R}^{2N+1}) \) and \(\int u_i^{(1)}(\eta) d\eta \geq 0, \ 1 \leq i \leq m \). If

$$Q \leq 1 + \max \{ X_1, X_2, \ldots, X_m \}, \quad (1.12)$$

where the vector \((X_1, X_2, \ldots, X_m)^T \) is the solution of (3.1), then there is no nontrivial global weak solution \((u_1, \ldots, u_m) \) of the system \((HS_m) \).

In [2], the first author and Obeid presented results for systems of evolution type with higher-order time derivatives. Their results are the generalized versions of our previous results (Theorems 1.1 and 1.2) on \((PS_m) \) and \((HS_m) \).

For interesting results on elliptic equations and systems, we refer to the recent papers of Kartsatos and Kurta [3], Kurta [4, 5], and Mitidieri and Pohozaev [6].

To render the presentation very clear, we start with the case of systems of two inequalities.

2. Systems of two inequalities

In this section, we treat the case \(m = 2 \) and consider the system \((ES_2) \).

We identify points in \(\mathbb{H}^N \) with points in \(\mathbb{R}^{2N+1} \). We also recall that the Haar measure on \(\mathbb{H}^N \) is identical to the Lebesgue measure \(d\eta = dx dy d\tau \) on \(\mathbb{R}^{2N+1} = \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} \). In the sequel, the integral \(\int_{\mathbb{R}^{2N+1}} \) will be simply denoted by \(\int \); however, the measure of integration will be specified.

Definition 2.1. Let \(a_1 \) and \(a_2 \) be two bounded measurable functions on \(\mathbb{R}^{2N+1} \). A weak solution \((u, v) \) of the system \((ES_2) \) on \(\mathbb{R}^{2N+1} \) is a pair of locally integrable functions \((u, v) \) such that

$$u \in L^p_\text{loc}(\mathbb{R}^{2N+1}, |\eta|^{y_1}_{\mathbb{H}} d\eta), \quad v \in L^p_\text{loc}(\mathbb{R}^{2N+1}, |\eta|^{y_1}_{\mathbb{H}} d\eta), \quad (2.1)$$

satisfying

$$\int_{\mathbb{R}^{2N+1}} \left(a_1 u \Delta_H \varphi + |\eta|^{y_1}_{\mathbb{H}} |v|^{p_1} \varphi \right) d\eta \leq 0,$$

$$\int_{\mathbb{R}^{2N+1}} \left(a_2 v \Delta_H \varphi + |\eta|^{y_1}_{\mathbb{H}} |u|^{p_2} \varphi \right) d\eta \leq 0 \quad (2.2)$$

for any nonnegative test function \(\varphi \in C^2_\text{c}(\mathbb{R}^{2N+1}) \).
Theorem 2.2. Assume that

\[Q \leq Q^* = 2 + \frac{1}{p_1 p_2 - 1} \max \{ (y_1 + 2) + p_1 (y_2 + 2) ; p_2 (y_1 + 2) + (y_2 + 2) \} \]

Then there is no nontrivial weak solution \((u, v)\) of the system \((ES_2)\).

Proof. Let \(\varphi_R \in \mathcal{D}(\mathbb{H}^N)\) be a nonnegative function such that

\[\varphi_R(\eta) = \Phi^\lambda \left(\frac{\tau^2 + |x|^4 + |y|^4}{R^4} \right), \]

where \(\lambda \gg 1, R > 0\), and \(\Phi \in \mathcal{D}([0, +\infty[)\) is the “standard cutoff function”

\[\Phi(r) = \begin{cases} 1, & \text{if } 0 \leq r \leq 1, \\ 0, & \text{if } r \geq 2 \end{cases} \]

Note that \(\text{supp}(\varphi_R)\) is a subset of

\[\Omega_R = \{ \eta \equiv (x, y, \tau) \in \mathbb{H}^N ; 0 \leq \tau^2 + |x|^4 + |y|^4 \leq 2R^4 \} \]

and \(\text{supp}(\Delta_{\mathbb{H}} \varphi_R)\) is included in

\[\mathcal{C}_R = \{ \eta \equiv (x, y, \tau) \in \mathbb{H}^N ; R^4 \leq \tau^2 + |x|^4 + |y|^4 \leq 2R^4 \}. \]

Let

\[\rho = \frac{\tau^2 + |x|^4 + |y|^4}{R^4}, \]

then

\[
\Delta_{\mathbb{H}} \varphi_R(\eta) = \frac{4(N + 4) \Phi'(\rho)}{R^4} \lambda \Phi^{\lambda-1}(\rho) (|x|^2 + |y|^2) \\
+ \frac{16 \Phi''(\rho)}{R^8} \lambda \Phi^{\lambda-1}(\rho) \\
\times \left((|x|^6 + |y|^6) + \tau^2 (|x|^2 + |y|^2) + 2\tau \langle x, y \rangle (|x|^2 - |y|^2) \right) \\
+ \frac{16 \Phi'^2(\rho)}{R^8} \lambda (\lambda - 1) \Phi^{\lambda-2}(\rho) \\
\times \left((|x|^6 + |y|^6) + \frac{\tau^2}{4} (|x|^2 + |y|^2) + 2\tau \langle x, y \rangle (|x|^2 - |y|^2) \right).
\]

It follows that there is a positive constant \(C > 0\), independent of \(R\), such that

\[|\Delta_{\mathbb{H}} \varphi_R(\eta)| \leq \frac{C}{R^2} \quad \forall \eta \in \Omega_R. \]
Let \((u, v)\) be a nontrivial weak solution of \((ES_2)\). Using \((2.2)\) with \(\varphi = \varphi_R\), one has
\[
\int |\eta|^{2_1}_{\mathbb{H}} |v|^{p_1} \varphi_R d\eta \leq - \int a_1 u \Delta_{\mathbb{H}} \varphi_R d\eta \\
\leq ||a_1||_{L^\infty} \int |u| |\Delta_{\mathbb{H}} \varphi_R| d\eta \\
\leq ||a_1||_{L^\infty} \left(\int |\eta|^{2_1}_{\mathbb{H}} |u|^{p_2} \varphi_R \right)^{1/p_1} \left(\int |\Delta_{\mathbb{H}} \varphi_R| \varphi_R |\eta|^{p_2}_{\mathbb{H}} \right)^{1/p_2^\prime},
\]
\[
\int |\eta|^{2_1}_{\mathbb{H}} |u|^{p_2} \varphi_R d\eta \leq - \int a_2 v \Delta_{\mathbb{H}} \varphi_R d\eta \\
\leq ||a_2||_{L^\infty} \left(\int |\eta|^{2_1}_{\mathbb{H}} |v|^{p_1} \varphi_R \right)^{1/p_1} \left(\int |\Delta_{\mathbb{H}} \varphi_R| \varphi_R |\eta|^{p_1}_{\mathbb{H}} \right)^{1/p_1^\prime},
\]
thanks to the Hölder inequality. Setting
\[
I(R) = \int |\eta|^{2_1}_{\mathbb{H}} |u|^{p_1} \varphi_R d\eta, \quad J(R) = \int |\eta|^{2_1}_{\mathbb{H}} |v|^{p_1} \varphi_R d\eta,
\]
we have
\[(2.13)\]
\[
J(R) \leq C_1 I(R)^{1/p_1} \mathcal{A}_{p_1, \gamma_1}(R)^{1/p_1^\prime},
\]
where
\[
\mathcal{A}_{p_1, \gamma_1}(R) = \int |\Delta_{\mathbb{H}} \varphi_R| \varphi_R |\eta|^{p_1}_{\mathbb{H}} d\eta
\]
and \(C_1\) is a positive constant independent of \(R\). Similarly, we have
\[(2.16)\]
\[
I(R) \leq C_2 J(R)^{1/p_1} \mathcal{A}_{p_1, \gamma_1}(R)^{1/p_1^\prime},
\]
where
\[
\mathcal{A}_{p_1, \gamma_1}(R) = \int |\Delta_{\mathbb{H}} \varphi_R| \varphi_R |\eta|^{p_1}_{\mathbb{H}} d\eta
\]
and \(C_2\) is a positive constant independent of \(R\).

Note that for \(\lambda\) sufficiently large, the integrals \(\mathcal{A}_{p_i, \gamma_i}(R), \ i \in \{1, 2\}\), are convergent. Indeed, in the expression \(\mathcal{A}_{p_i, \gamma_i}(R), \ i \in \{1, 2\}\), we have \(|\eta|_{\mathbb{H}} \geq R^4\), and the exponent of \(\varphi_R\) is positive for \(\lambda\) large enough.

In order to estimate the integrals \(\mathcal{A}_{p_i, \gamma_i}(R), \ i \in \{1, 2\}\), we introduce the scaled variables
\[
\tilde{\tau} = R^{-2} \tau, \quad \tilde{x} = R^{-1} x, \quad \tilde{y} = R^{-1} y.
\]
Using the fact that \(\text{supp} \varphi_R \subset \Omega_R\), we conclude that
\[(2.19)\]
\[
\mathcal{A}_{p_i, \gamma_i}(R) \leq CR^{2N+4-2p_i+\gamma_i(1-p_i)}, \quad i \in \{1, 2\}.
\]
Using \((2.16)\) and \((2.19)\) in \((2.14)\), we obtain
\[(2.20)\]
\[
J(R)^{1-1/p_1 p_2} \leq C \mathcal{A}_{p_1, \gamma_1}(R)^{1/p_1 p_2} \mathcal{A}_{p_2, \gamma_2}(R)^{1/p_2^\prime} \leq CR^q,
\]
Nonexistence results to semilinear inequalities

where

\[
\sigma_I = \frac{1}{p_2^2} (2N + 2 - 2p_2 + \gamma_2 (1 - p_2')) + \frac{1}{p_1 p_2} (2N + 2 - 2p_1 + \gamma_1 (1 - p_1')) \\
= Q \left(1 - \frac{1}{p_1 p_2} \right) - \frac{(2p_2 + 2 + \gamma_2)p_1 + \gamma_1}{p_1 p_2}.
\]

(2.21)

Similarly, we have

\[
I(R)^{1-1/p_1 p_2} \leq C A_{p_1, \gamma_1}(R) ^{1/p_1} A_{p_2, \gamma_2}(R) ^{1/p_2} \leq CR^{\sigma_I},
\]

(2.22)

where

\[
\sigma_I = Q \left(1 - \frac{1}{p_1 p_2} \right) - \frac{(2p_1 + 2 + \gamma_1)p_2 + \gamma_2}{p_1 p_2}.
\]

(2.23)

Now, we require that \(\sigma_I \leq 0 \) or \(\sigma_J \leq 0 \), which is equivalent to

\[
Q \leq Q^*_e = \frac{1}{p_1 p_2 - 1} \max \{ p_1 (2(p_2 + 1) + \gamma_2) + \gamma_1; p_2 (2(p_1 + 1) + \gamma_1) + \gamma_2 \} \\
= 2 + \frac{1}{p_1 p_2 - 1} \max \{ (\gamma_1 + 2) + p_1 (\gamma_2 + 2); p_2 (\gamma_1 + 2) + (\gamma_2 + 2) \}.
\]

(2.24)

In this case, the integrals \(I(R) \) and \(J(R) \), increasing in \(R \), are bounded uniformly with respect to \(R \). Using the monotone convergence theorem, we deduce that \(|\eta|^{\gamma_1} |v|^{p_1} \) and \(|\eta|^{\gamma_2} |u|^{p_2} \) are in \(L^1(\mathbb{R}^{2N+1}) \). Note that instead of (2.11) we have, more precisely,

\[
\int |\eta|^{\gamma_1} |v|^{p_1} \varphi_R d\eta \leq ||a_1||_{L^p} \left(\int_{\mathbb{R}^n} |\eta|^{\gamma_2} |u|^{p_2} \varphi_R d\eta \right)^{1/p_2} \ \mathcal{A}_{p_2, \gamma_2}(R)^{1/p_2} \\
\leq C \int_{\mathbb{R}^n} |\eta|^{\gamma_2} |u|^{p_2} \varphi_R d\eta.
\]

(2.25)

Finally, using the dominated convergence theorem, we obtain that

\[
\lim_{R \to +\infty} \int_{\mathbb{R}^n} |\eta|^{\gamma_1} |v|^{p_1} \varphi_R d\eta = 0.
\]

(2.26)

Hence,

\[
\int |\eta|^{\gamma_1} |v|^{p_1} d\eta = 0,
\]

(2.27)

which implies that \(v \equiv 0 \) and \(u \equiv 0 \) via (2.12). This contradicts the fact that \((u, v)\) is a nontrivial weak solution of \((\text{ES}_2)\), which achieves the proof. \(\square \)

Remark 2.3. The critical exponent \(Q^*_e \) can be written as

\[
Q^*_e = 2 + \max \{ X_1, X_2 \},
\]

(2.28)
where the vector \((X_1, X_2)^T\) is the solution of the linear system

\[
\begin{pmatrix}
-1 & p_1 \\
p_2 & -1
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}
= \begin{pmatrix}
\gamma_1 + 2 \\
\gamma_2 + 2
\end{pmatrix}.
\] (2.29)

Comment 2.4. In their paper, Pohozaev and Véron [7] showed that if

\[
1 < p_j \leq \frac{Q + \gamma_j}{Q - 2}, \quad j \in \{1, 2\},
\] (2.30)

then the system (ES\(_2\)) has no nontrivial weak solution. The condition (2.30) is equivalent to

\[
Q \leq 2 + \min \left\{ \frac{\gamma_1 + 2}{p_1 - 1}; \frac{\gamma_2 + 2}{p_2 - 1} \right\}.
\] (2.31)

Theorem 2.2 gives a better estimate of the exponent. Indeed,

\[
\frac{(\gamma_1 + 2) + p_1(\gamma_2 + 2)}{p_1p_2 - 1} - \frac{\gamma_2 + 2}{p_2 - 1} = -\frac{p_2(\gamma_1 + 2) + (\gamma_2 + 2)}{p_1p_2 - 1} + \frac{\gamma_1 + 2}{p_1 - 1},
\] (2.32)

which implies that

\[
\max \left\{ \frac{(\gamma_1 + 2) + p_1(\gamma_2 + 2)}{p_1p_2 - 1}; \frac{p_2(\gamma_1 + 2) + (\gamma_2 + 2)}{p_1p_2 - 1} \right\} \geq \min \left\{ \frac{\gamma_1 + 2}{p_1 - 1}; \frac{\gamma_2 + 2}{p_2 - 1} \right\}.
\] (2.33)

3. Systems of \(m\) semilinear inequalities

In this section, we give generalizations of the last results to systems with \(m\) inequalities, \(m \in \mathbb{N}^\ast\).

Let \((X_1, X_2, \ldots, X_m)\) be the solution of the linear system

\[
\begin{pmatrix}
1 & -p_1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -p_2 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_{m-1} \\
X_m
\end{pmatrix}
= \begin{pmatrix}
\gamma_1 - y_1 - 2 \\
\gamma_2 - y_2 - 2 \\
\vdots \\
\gamma_{m-1} - y_{m-1} - 2 \\
\gamma_m - y_m - 2
\end{pmatrix},
\] (3.1)

where \(p_i > 1\) and \(\gamma_i\) are given real numbers, \(i \in \{1, 2, \ldots, m\}\).

Consider the system (ES\(_m\)):

\[
-\Delta_{\mathbb{H}} (a_i u_i) \geq |\eta|^{p_{i+1}}_{H_{\mathbb{H}}} |u_{i+1}|^{p_{i+1}}_{H_{\mathbb{H}}}, \quad \eta \in \mathbb{H}_N, \quad 1 \leq i \leq m, \quad u_{m+1} = u_1,
\] (3.2)

where \(p_{m+1} = p_1, \gamma_{m+1} = \gamma_1\).
Proof. In order to simplify the proof, we treat only the case established in the same manner.

Theorem weak solution \((u_1,\ldots,u_m)\) of the system \((ES_m)\) on \(\mathbb{R}^{2N+1}\) is a vector of locally integrable functions \((u_1,\ldots,u_m)\) such that

\[
u_i \in L^{p_i}_{\text{loc}}(\mathbb{R}^{2N+1},|\eta|^{\frac{N}{N-1}}d\eta), \quad i \in \{1,2,\ldots,m\}, \tag{3.3}
\]
satisfying

\[
\int_{\mathbb{R}^{2N+1}} \left(a_i u_1 \Delta x \phi + |\eta|^{\frac{N}{N-1}} |u_{i+1}|^{p_i-1}|\phi| \right) d\eta \leq 0, \quad i \in \{1,2,\ldots,m-1\},
\]

\[
\int_{\mathbb{R}^{2N+1}} \left(a_m u_m \Delta x \phi + |\eta|^{\frac{N}{N-1}} |u|^{p_i-1}|\phi| \right) d\eta \leq 0
\]

for any nonnegative test function \(\phi \in C^2(\mathbb{R}^{2N+1})\).

Theorem 3.2. If \(Q \leq 2 + \max\{X_1,X_2,\ldots,X_m\}\), then system \((ES_m)\) has no nontrivial solution.

Proof. In order to simplify the proof, we treat only the case \(m = 3\); the general case can be established in the same manner.

Let \((u_1,u_2,u_3)\) be a nontrivial weak solution of \((ES_m)\). The inequalities (3.4), with \(\phi = \phi_R\) defined by (2.4), imply that

\[
\int |\eta|^{\frac{N}{N-1}} |u_1|^{p_1} \phi_R d\eta \leq ||a_3||_{L^\infty} \left(\int |\eta|^{\frac{N}{N-1}} |u_3|^{p_3} \phi_R \right)^{\frac{1}{p_3}} \left(\int |\Delta x \phi_R|^{\frac{N}{N-1}} (\phi_R |\eta|^{\frac{N}{N-1}})^{1-p_3} \right)^{\frac{1}{p_3}},
\]

\[
\int |\eta|^{\frac{N}{N-1}} |u_2|^{p_2} \phi_R d\eta \leq ||a_1||_{L^\infty} \left(\int |\eta|^{\frac{N}{N-1}} |u_1|^{p_1} \phi_R \right)^{\frac{1}{p_1}} \left(\int |\Delta x \phi_R|^{\frac{N}{N-1}} (\phi_R |\eta|^{\frac{N}{N-1}})^{1-p_1} \right)^{\frac{1}{p_1}},
\]

\[
\int |\eta|^{\frac{N}{N-1}} |u_3|^{p_3} \phi_R d\eta \leq ||a_2||_{L^\infty} \left(\int |\eta|^{\frac{N}{N-1}} |u_2|^{p_2} \phi_R \right)^{\frac{1}{p_2}} \left(\int |\Delta x \phi_R|^{\frac{N}{N-1}} (\phi_R |\eta|^{\frac{N}{N-1}})^{1-p_2} \right)^{\frac{1}{p_2}}. \tag{3.5}
\]

Let

\[
I_i(R) = \int |\eta|^{\frac{N}{N-1}} |u_i|^{p_i} \phi_R d\eta, \quad 1 \leq i \leq 3,
\]

\[
\mathcal{A}_i(R) = \int |\Delta x \phi_R|^{\frac{N}{N-1}} (\phi_R |\eta|^{\frac{N}{N-1}})^{1-p_i}, \quad 1 \leq i \leq 3, \tag{3.6}
\]

then there is a positive constant \(C\) such that

\[
I_1 \leq CI_3^{\frac{1}{p_3}} \mathcal{A}_3^{\frac{1}{p_3}}, \quad I_2 \leq CI_1^{\frac{1}{p_1}} \mathcal{A}_1^{\frac{1}{p_1}}, \quad I_3 \leq CI_2^{\frac{1}{p_2}} \mathcal{A}_2^{\frac{1}{p_2}}. \tag{3.7}
\]
Hence, the estimates
\[
I_{1}^{1-1/p_{1}p_{2}p_{3}} \leq C \mathcal{A}_{1}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{2}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{3}^{1/p_{1}p_{2}p_{3}},
\]
\[
I_{2}^{1-1/p_{1}p_{2}p_{3}} \leq C \mathcal{A}_{1}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{2}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{3}^{1/p_{1}p_{2}p_{3}},
\]
\[
I_{3}^{1-1/p_{1}p_{2}p_{3}} \leq C \mathcal{A}_{1}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{2}^{1/p_{1}p_{2}p_{3}} \mathcal{A}_{3}^{1/p_{1}p_{2}p_{3}},
\]
(3.8)
hold true.

In order to estimate the expressions \(I_{i}, 1 \leq i \leq 3\), we use the scaled variables (2.18) and obtain
\[
I_{1}^{1-1/p_{1}p_{2}p_{3}} \leq CR^{\sigma_{i}}, \quad 1 \leq i \leq 3,
\]
(3.9)
where
\[
\sigma_{1} = \left(1 - \frac{1}{p_{1}p_{2}p_{3}}\right)\left(Q - 2 - \frac{(y_{1} + 2) + p_{1}(y_{2} + 2) + p_{1}p_{2}(y_{3} + 2)}{p_{1}p_{2}p_{3} - 1}\right),
\]
\[
\sigma_{2} = \left(1 - \frac{1}{p_{1}p_{2}p_{3}}\right)\left(Q - 2 - \frac{p_{2}p_{3}(y_{1} + 2) + (y_{2} + 2) + p_{2}(y_{3} + 2)}{p_{1}p_{2}p_{3} - 1}\right),
\]
\[
\sigma_{3} = \left(1 - \frac{1}{p_{1}p_{2}p_{3}}\right)\left(Q - 2 - \frac{p_{3}(y_{1} + 2) + p_{1}p_{3}(y_{2} + 2) + (y_{3} + 2)}{p_{1}p_{2}p_{3} - 1}\right).
\]
(3.10)

Now, we require that, at least, one of \(\sigma_{i}, 1 \leq i \leq 3\), is less than zero, which is equivalent to \(Q \leq 2 + \max\{X_{1}, X_{2}, X_{3}\}\), where the vector \((X_{1}, X_{2}, X_{3})^{T}\) is the solution of
\[
\begin{pmatrix}
1 & -p_{1} & 0 \\
0 & 1 & -p_{2} \\
-p_{3} & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X_{1} \\
X_{2} \\
X_{3}
\end{pmatrix}
= \begin{pmatrix}
-y_{1} - 2 \\
-y_{2} - 2 \\
-y_{3} - 2
\end{pmatrix}.
\]
(3.11)

Following the arguments used in the proof of Theorem 2.2, we conclude that \((u_{1}, u_{2}, u_{3}) \equiv (0,0,0)\). This ends the proof by contradiction. \(\square\)

References

Nonexistence results to semilinear inequalities

Abdallah El Hamidi: Laboratoire de Mathématiques, Université de La Rochelle, avenue Michel Crépeau, 17000 La Rochelle Cedex 9, France
E-mail address: aelhamid@univ-lr.fr

Mokhtar Kirane: Laboratoire de Mathématiques, Université de La Rochelle, avenue Michel Crépeau, 17000 La Rochelle Cedex 9, France
E-mail address: mkirane@univ-lr.fr