ON THE A-LAPLACIAN

NOUREDDINE AÎSSAOUI

Received 25 January 2003

We prove, for Orlicz spaces $L_A(\mathbb{R}^N)$ such that A satisfies the Δ_2 condition, the nonresolvability of the A-Laplacian equation $\Delta_A u + h = 0$ on \mathbb{R}^N, where $\int h \neq 0$, if \mathbb{R}^N is A-parabolic. For a large class of Orlicz spaces including Lebesgue spaces L^p ($p > 1$), we also prove that the same equation, with any bounded measurable function h with compact support, has a solution with gradient in $L_A(\mathbb{R}^N)$ if \mathbb{R}^N is A-hyperbolic.

1. Introduction

An important application of the nonlinear potential theory is the resolution of some equations involving the p-Laplacian operator. In [6], Gol’dshtein and Troyanov proved that the p-Laplace equation $\Delta_p u + h = 0$ on \mathbb{R}^N, $N \leq p$, has no solution if h has a nonzero average. This result remains true for the same equation on any p-parabolic manifold. The proof is essentially based on a capacity argument. Later, Troyanov proved in [9] that the equation $\Delta_p u + h = 0$, on a p-hyperbolic manifold M, has a solution with p-integrable gradient for any bounded measurable function $h : M \to \mathbb{R}$ with compact support.

Since the strongly nonlinear potential theory is sufficiently developed, we propose in this paper the generalization of these two equations on \mathbb{R}^N to the setting of Orlicz spaces. For this goal, we introduce, for a given \mathcal{N}-function A, the notion of A-parabolicity and A-hyperbolicity which reduces to p-parabolicity and p-hyperbolicity when $A(t) = p^{-1}|t|^p$. We also consider the so-called A-Laplacian Δ_A, which is the p-Laplacian Δ_p, when the Orlicz space L_A is the Lebesgue space L^p. If the \mathcal{N}-function A satisfies the Δ_2 condition and \mathbb{R}^N is A-parabolic, then the equation $\Delta_A u + h = 0$ has no weak solution for any function h having a nonzero average.
For reflexive Orlicz spaces L_A, with A satisfying the condition $s(A) > 0$, where
\[
s(A) := \inf \left\{ \frac{\log \int A \circ f \, d\lambda}{\log \|f\|_A} - 1, \ f \in L_A, \ \|f\|_A > 1 \right\}, \tag{1.1}\]
if the function h is in L^∞ and has a compact support, then the equation $\Delta_A u + h = 0$ has a weak solution when \mathbb{R}^N is A-hyperbolic. We give large classes of Orlicz spaces L_A, including Lebesgue spaces L^p ($p > 1$), which satisfies $s(A) > 0$.

This paper is organized as follows. In Section 2, we list the prerequisites from the Orlicz spaces and we introduce the notion of A-hyperbolicity. Section 3 is reserved to the resolution of the equation $\Delta_A u + h = 0$ when h has a nonzero average or bounded with compact support.

2. Preliminaries

2.1. Orlicz spaces. We recall some definitions and results about Orlicz spaces. For more details, one can consult [1, 7, 8].

Let $A : \mathbb{R} \to \mathbb{R}^+$ be an N-function, that is, A is continuous, convex, with $A(t) > 0$ for $t > 0$, $\lim_{t \to 0} A(t)/t = 0$, $\lim_{t \to +\infty} A(t)/t = +\infty$, and A is even.

Equivalently, A admits the representation: $A(t) = \int_0^{|t|} a(x) \, dx$, where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing, right continuous, with $a(0) = 0$, $a(t) > 0$ for $t > 0$, and $\lim_{t \to +\infty} a(t) = +\infty$.

The N-function A^* conjugate to A is defined by $A^*(t) = \int_0^{|t|} a^*(x) \, dx$, where a^* is given by $a^*(s) = \sup \{t : a(t) \leq s\}$.

Let A be an N-function, let λ be the Lebesgue measure on \mathbb{R}^N, and let Ω be an open set in \mathbb{R}^N. We denote by $L_A(\Omega)$ the set, called an Orlicz class, of measurable functions f, on Ω, such that
\[
\rho(f, A, \Omega) = \int_\Omega A(f(x)) \, d\lambda(x) < \infty. \tag{2.1}\]

Let A and A^* be two conjugate N-functions and let f be a measurable function defined almost everywhere in Ω. The Orlicz norm of f, $\|f\|_{A,\Omega}$, or $\|f\|_A$, if there is no confusion, is defined by
\[
\|f\|_A = \sup \left\{ \int_\Omega |f(x)g(x)| \, d\lambda(x) : g \in L_{A^*}(\Omega), \ \rho(g, A^*, \Omega) \leq 1 \right\}. \tag{2.2}\]

The set $L_A(\Omega)$ of measurable functions f such that $\|f\|_A < \infty$ is called an Orlicz space. When $\Omega = \mathbb{R}^N$, we set L_A in place of $L_A(\mathbb{R}^N)$.

If $f \in L_A(\Omega)$, then
\[
\|f\|_A = \inf \left\{ k^{-1} \left[1 + \int_\Omega A(k|f(x)|) \, d\lambda(x) \right] : k > 0 \right\}. \tag{2.3}\]
The **Luxemburg norm** \(\| f \|_{A, \Omega} \) or \(\| f \|_A \), if there is no confusion, is defined in \(L_A(\Omega) \) by

\[
\| f \|_A = \inf \left\{ r > 0 : \int_\Omega A \left(\frac{f(x)}{r} \right) d\lambda(x) \leq 1 \right\}.
\]

(2.4)

Orlicz and Luxemburg norms are equivalent. More precisely, if \(f \in L_A(\Omega) \), then

\[
\| f \|_A \leq \| f \|_A \leq 2 \| f \|_A.
\]

(2.5)

It is well known that we can suppose that \(a \) and \(a^* \) are continuous and strictly increasing. Hence the \(\mathcal{N} \)-functions \(A \) and \(A^* \) are strictly convex and \(a^* = a^{-1} \).

Let \(A \) be an \(\mathcal{N} \)-function. We say that \(A \) verifies the \(\Delta_2 \) condition if there exists a constant \(C > 0 \) such that \(A(2t) \leq CA(t) \) for all \(t \geq 0 \).

Recall that \(A \) verifies the \(\Delta_2 \) condition if and only if \(L_A = L_A \). Moreover, \(L_A \) is reflexive if and only if \(A \) and \(A^* \) satisfy the \(\Delta_2 \) condition.

Hölder inequality in Orlicz spaces is expressed in the following way:

\[
\int |f \cdot g|d\lambda \leq \| f \|_A \cdot \| g \|_{A^*}, \quad f \in L_A, \ g \in L_{A^*}.
\]

(2.6)

We recall the following results. Let \(A \) be an \(\mathcal{N} \)-function and \(a \) its derivative. Then the following occurs.

1. The \(\mathcal{N} \)-function \(A \) verifies the \(\Delta_2 \) condition if and only if one of the following holds:
 (i) for all \(r > 1 \), there exists \(k = k(r) \) (for all \(t \geq 0 \), \(A(rt) \leq kA(t) \));
 (ii) there exists \(\alpha > 1 \) (for all \(t \geq 0 \), \(ta(t) \leq \alpha A(t) \));
 (iii) there exists \(\beta > 1 \) (for all \(t \geq 0 \), \(ta^*(t) \geq \beta A^*(t) \));
 (iv) there exists \(d > 0 \) (for all \(t \geq 0 \), \((A^*(t)/t')^d \geq d(a^*(t)/t) \)).
 Moreover, \(\alpha \) in (ii) and \(\beta \) in (iii) can be chosen such that \(\alpha^{-1} + \beta^{-1} = 1 \).
 We note that \(\alpha(A) \) is the smallest \(\alpha \) such that (ii) holds.

2. If \(A \) verifies the \(\Delta_2 \) condition, then

\[
A(t) \leq A(1)t^\alpha, \quad \forall t \geq 1, \quad A(t) \geq A(1)t^\alpha, \quad \forall t \leq 1,
\]
\[
A^*(t) \geq A^*(1)t^\beta, \quad \forall t \geq 1, \quad A^*(t) \leq A^*(1)t^\beta, \quad \forall t \leq 1.
\]

(2.7)

We set \(\alpha^* = \alpha(A^*) \).

Recall also that if \(A \) verifies the \(\Delta_2 \) condition, then

\[
\int A \left(\frac{f}{\| f \|_A} \right) (x) d\lambda(x) = 1.
\]

(2.8)
2.2. A-hyperbolicity

Definition 2.1. Let A be an N-function and K a compact set in \mathbb{R}^N. The A-capacity of K is defined by

$$\Gamma_A(K) = \inf \{ \| \nabla u \|_A : u \in C_0^\infty (\mathbb{R}^N), u = 1 \text{ in a neighborhood of } K \}. \quad (2.9)$$

The space \mathbb{R}^N is said to be A-parabolic if $\Gamma_A(K) = 0$ for all compact subsets $K \subset \mathbb{R}^N$ and A-hyperbolic otherwise.

Remark 2.2. In the definition of Γ_A, a simple truncation argument shows that we may restrict ourselves to functions $u \in C_0^\infty (\mathbb{R}^N)$ such that $0 \leq u \leq 1$.

For $m < N$, the Riesz kernel is defined on \mathbb{R}^N by $R_m(x) = |x|^{m-N}$.

For $X \subset \mathbb{R}^N$, we define $R_m,A(X)$ by

$$R_m,A(X) = \inf \{ ||f||_A : f \in L_A, f \geq 0, R_m \ast f \geq 1 \text{ on } X \}. \quad (2.10)$$

The following lemma is proved in [3, Lemma 3.6].

Lemma 2.3. Let L_A be a reflexive Orlicz space. Then there is a positive constant C such that

$$C^{-1} R_{1,A}(K) \leq \Gamma_A(K) \leq CR_{1,A}(K), \quad (2.11)$$

for all compact K, C independent of K.

We recall the following result proved in [4, Theorem 3.1].

Lemma 2.4. Let A be an N-function such that $\| R_m \|_{A^*, \{|x| > 1\}} = \infty$. Then for all X, $R_m,A(X) = 0$.

We will need the following lemma in the sequel.

Lemma 2.5. Let A be any N-function such that A^* verifies the Δ_2 condition and let m be a positive integer such that $m < N$ and $\alpha^* \leq N/(N-m)$. Then $R_m,A(X) = 0$ for all X.

Proof. From Lemma 2.4, it suffices to prove that $\| R_m \|_{A^*, \{|x| > 1\}} = \infty$. Since A^* verifies the Δ_2 condition, we must establish that

$$\int_{\{|x| > 1\}} A^*(|x|^{m-N}) d\lambda(x) = \infty. \quad (2.12)$$

By a change of variable, there is a positive constant C such that

$$\int_{\{|x| > 1\}} A^* (|x|^{m-N}) d\lambda(x) = C \int_1^\infty A^* (t^{m-N}) \cdot t^{N-1} dt. \quad (2.13)$$
From the inequality \(A^*(t^{m-N}) \geq A^*(1) \cdot t^{a^*(m-N)} \), we get

\[
\int_{|x| > 1} A^*(|x|^{m-N}) d\lambda(x) \geq CA^*(1) \cdot \int_1^\infty t^{a^*(m-N)+N-1} dt.
\]

(2.14)

Now, the inequality

\[
a^*(m-N) + N - 1 \geq \frac{N}{N-m}(m-N) + N - 1 = -1
\]

(2.15)
gives the desired result. □

3. On the \(A \)-Laplacian

The Orlicz-Sobolev space \(W^1 L^A(\mathbb{R}^N) \) is defined as the space of functions \(u \) such that \(u \) and its derivatives, in a distributional sense, of order less or equal to one are in \(L^A \). The space \(W^1 L^A(\mathbb{R}^N) \) is a Banach space when equipped with the norm

\[
\|u\|_{1,A} = \sum_{|\gamma| \leq 1} \left\| D^\gamma u \right\|_A.
\]

(3.1)

Recall that \(W^1 L^A(\mathbb{R}^N) \) is reflexive if and only if \(A \) and \(A^* \) satisfy the \(\Delta_2 \) condition.

The \(A \)-Dirichlet space \(L^A(\mathbb{R}^N) \) is the space of functions \(u \in W^1_{A,loc}(\mathbb{R}^N) \) (i.e., \(u \) is locally in \(W^1 L^A(\mathbb{R}^N) \)) admitting a weak gradient such that \(\|\nabla u\|_A < \infty \).

Let \(A \) be any \(\mathcal{N} \)-function and let \(a \) be its derivative. For \(x \in \mathbb{R}^N \), we define

\[
M_A(x) = \frac{a(|x|)}{|x|} \cdot x \quad \text{if} \ x \neq 0, \ M_A(0) = 0.
\]

(3.2)

The \(A \)-Laplacian of a function \(f \) on \(\mathbb{R}^N \) is defined by \(\Delta_A f = \text{div} M_A(\nabla f) \).

A function \(u \in W^1_{A,loc}(\mathbb{R}^N) \) is said to be a weak solution to the equation

\[
\Delta_A u + h = 0
\]

(3.3)

if, for all \(\varphi \in C_0^1(\mathbb{R}^N) \), we have

\[
\int \langle M_A(\nabla u), \nabla \varphi \rangle d\lambda = \int h\varphi d\lambda.
\]

(3.4)

Let \(D \subset \mathbb{R}^N \) be a nonempty bounded domain. The Banach space \(\mathcal{E}_A(D) \) is the space of functions \(u \in W^1_{A,loc}(\mathbb{R}^N) \) such that

\[
\|u\|^D_A := \|u\|_{A,D} + \|\nabla u\|_A < \infty.
\]

(3.5)

We denote by \(\mathcal{E}_A^0(D) \) the closure of \(C_0^1(\mathbb{R}^N) \) in \(\mathcal{E}_A(D) \).
3.1. A nonresolvability result

Theorem 3.1. Let A be an N-function satisfying the Δ_2 condition. Suppose that \mathbb{R}^N is A-parabolic and let $h \in L_1(\mathbb{R}^N)$ be such that $\int h d\lambda \neq 0$. Then the equation

$$\Delta_A u + h = 0 \quad (3.6)$$

has no weak solution on $L_A^1(\mathbb{R}^N)$.

Proof. We may suppose that $\int h d\lambda > 0$. Hence there is a bounded set $D \subset \mathbb{R}^N$ such that $\lambda(D) > 0$, $s := \inf_D h > 0$, and $\int_D h d\lambda > |\int h^- d\lambda|$.

Let $0 < c < 1$ be such that $0 \leq -\int h^- d\lambda < c \int_D h d\lambda$.

By the definition of $\Gamma_{1,A}(D)$, for $\varepsilon > 0$, we can find a function $v \in C^\infty_0(\mathbb{R}^N)$ such that $0 \leq v \leq 1$, $v = 1$, on D and

$$\|\nabla v\|_A \leq \Gamma_A(D) + \varepsilon. \quad (3.7)$$

On the other hand, we have $-c \int_D vh d\lambda < \int vh^- d\lambda$. Hence

$$(1 - c) \int_D vh d\lambda < \int_D vh d\lambda + \int vh^- d\lambda$$

$$< \int_D vh d\lambda + \int vh^- d\lambda + \int vh^+ d\lambda \quad (3.8)$$

$$\leq \int vh d\lambda.$$

But $s \cdot \lambda(D) \leq \int_D vh d\lambda$. Thus

$$(1 - c) \cdot s \cdot \lambda(D) \leq \int vh d\lambda. \quad (3.9)$$

Now suppose that $u \in L_A^1(\mathbb{R}^N)$ is a weak solution of (3.6) and let $\xi := -\left(\frac{a(|\nabla u|)}{|\nabla u|} \cdot \nabla u\right)$. Then $\text{div}(\xi) = -\Delta_A u = h$, and since A satisfies the Δ_2 condition, $|\xi| \in L_{A^*}(\mathbb{R}^N)$.

An integration by part and Hölder inequality in Orlicz spaces applied to inequality (3.9) imply that

$$(1 - c) \cdot s \cdot \lambda(D) \leq \int v \cdot \text{div}(\xi) d\lambda$$

$$= -\int \langle \nabla v, \xi \rangle d\lambda \leq \|\xi\|_{A^*} \|\nabla v\|_A. \quad (3.10)$$

From (3.7), and since ε is arbitrary, we get

$$0 < \lambda(D) \leq \frac{\|\xi\|_{A^*}}{(1 - c) \cdot s} \cdot \Gamma_A(D). \quad (3.11)$$

This is impossible, and the theorem is proved. \qed
Corollary 3.2. Let L_A be a reflexive Orlicz space such that $\alpha^* \leq N/(N-1)$. Let $h \in L^1(\mathbb{R}^N)$ be such that $\int h \lambda \neq 0$. Then (3.6) has no weak solution on $L^1_A(\mathbb{R}^N)$.

Proof. By Lemmas 2.5 and 2.3, \mathbb{R}^N is then A-parabolic. We apply Theorem 3.1 to get the result. □

Remark 3.3. When $A(t) = p^{-1}|t|^p$, $L_A = L^p$ is the usual Lebesgue space and $\alpha^* = p/(p-1)$. Hence the condition $\alpha^* \leq N/(N-1)$ is exactly the condition $N \leq p$. Thus our result recovers the one in [6, Théorème 1].

3.2. A resolvability result. In this section, we resolve the equation $\Delta_A u + h = 0$ under some assumptions on the \mathcal{N}-function A and on the function h.

We begin by recalling the following Poincaré inequality for Orlicz-Sobolev functions, which is a combination of [5, Theorem 3.3] and [5, Proposition 3.9].

Lemma 3.4. Let A be an \mathcal{N}-function such that A and A^* satisfy the Δ_2 condition. Let E be any measurable set in \mathbb{R}^N such that $0 < \lambda(E) < \infty$. Then there exists a positive constant C such that

$$\|u - u_E\|_{A,E} \leq C \|\nabla u\|_{A,E},$$

(3.12)

for all $u \in W^1_{A,\text{loc}}(\mathbb{R}^N)$, where $u_E = (1/\lambda(E)) \int_E u d\lambda$ is the mean value of u on E.

An application of Hölder inequality in Orlicz spaces gives

$$\int_E |u - u_E| d\lambda \leq \|\chi_E\|_{A^*} \|u - u_E\|_{A,E},$$

(3.13)

where χ_E is the characteristic function of E.

Recall that

$$\|\chi_E\|_{A^*} = \lambda(E) \cdot A^{-1}\left(\frac{1}{\lambda(E)}\right),$$

$$\|1\|_{A,E} = \|\chi_E\|_A = \frac{1}{A^{-1}(1/\lambda(E))}.$$

(3.14)

Hence we obtain the following proposition.

Proposition 3.5. Let A be an \mathcal{N}-function such that A and A^* satisfy the Δ_2 condition. Let E be any measurable set in \mathbb{R}^N such that $0 < \lambda(E) < \infty$. Then there exists a positive constant C such that

$$\int_E |u - u_E| d\lambda \leq C \|\nabla u\|_{A,E},$$

(3.15)

for all $u \in W^1_{A,\text{loc}}(\mathbb{R}^N)$.

We will need the following proposition in what follows.
Proposition 3.6. Let A be an \mathcal{N}-function such that A and A^* satisfy the Δ_2 condition. Suppose that \mathbb{R}^N is A-hyperbolic. Let E be any nonempty bounded domain in \mathbb{R}^N. Then there exists a positive constant C such that, for all $u \in \mathcal{E}_A^0(E)$,

$$\int_E |u|d\lambda \leq C||\nabla u||_A. \quad (3.16)$$

Proof. Suppose that such constant does not exist. Then for all $\varepsilon > 0$, we can find a function $u \in \mathcal{E}_A^0(E)$ such that

$$\int_E |u|d\lambda = \lambda(E), \quad ||\nabla u||_A \leq \varepsilon. \quad (3.17)$$

We may assume that $u \geq 0$. Proposition 3.5 implies that

$$\int_E |u|d\lambda \leq C\varepsilon. \quad (3.18)$$

We now choose a ball $B \Subset E$ and a function $\phi \in C_0^1$ such that $0 \leq \phi \leq 2^{-1}$, $\text{supp}(\phi) \subset E$, and $\phi = 2^{-1}$ on B. Define the function $v \in \mathcal{E}_A^0(E)$ by $v = 2\max(u, \phi)$. Then $v \geq 1$ on B. Now, define the sets

$$S = \{x \in E: \phi(x) \geq u(x)\}, \quad S' = \{x \in E: |u(x) - 1| \geq 2^{-1}\}. \quad (3.19)$$

We have $S \subset S'$ and, by (3.18), $2^{-1}\lambda(S') \leq C\varepsilon$. Thus

$$\lambda(S) \leq 2C\varepsilon. \quad (3.20)$$

On the other hand, we have almost everywhere

$$\nabla v = \begin{cases} 2\nabla u & \text{on } cS, \\ 2\nabla \phi & \text{on } S. \end{cases} \quad (3.21)$$

This implies that

$$|\nabla v| \leq 2|\nabla u| + 2\chi_S|\nabla \phi| \quad \text{a.e.} \quad (3.22)$$

Since $v \geq 1$ on B and ε is arbitrary, we deduce that $\Gamma_A(B) = 0$. This contradicts the fact that \mathbb{R}^N is A-hyperbolic. The proof is complete. □

Lemma 3.7. Let A be an \mathcal{N}-function. If \mathbb{R}^N is A-parabolic, then $1 \in \mathcal{E}_A^0(D)$ for any nonempty bounded domain D.

Proof. Since \mathbb{R}^N is A-parabolic, $\Gamma_A(\overline{D}) = 0$. Hence for all $\varepsilon > 0$, there exists a function $u \in C_0^1$ such that $u = 1$ on D and $|||\nabla u||_A \leq \varepsilon$. Thus

$$||1 - u||_A = ||1 - u||_{A,D} + ||\nabla u||_A = ||\nabla u||_A \leq \varepsilon. \quad (3.23)$$

This means that $1 \in \mathcal{E}_A^0(D)$. □
Theorem 3.8. Let A be an N-function such that A and A^* satisfy the Δ_2 condition. Let D be nonempty bounded domain in \mathbb{R}^N. Then the following assertions are equivalent

(i) \mathbb{R}^N is A-hyperbolic;
(ii) there exists a constant C such that, for all $u \in \mathcal{C}^0_A(D)$,
\[\| u \|_{A,D} \leq C \| \nabla u \|_A; \]
(3.24)
(iii) $1 \notin \mathcal{C}^0_A(D)$.

Proof. It is easy to verify that (ii) implies (iii). The implication (iii) \Rightarrow (i) is Lemma 3.7. It remains to prove that (i) implies (ii).

Write $u = (u - u_D) + u_D$. Proposition 3.6 and Lemma 3.4 give
\[\| u \|_{A,D} \leq \| u - u_D \|_{A,D} + \| u_D \|_{A,D} \]
\[\leq C \| \nabla u \|_{A,D} + \| u_D \| \cdot \| 1 \|_{A,D} \]
\[\leq C \| \nabla u \|_{A,D} + \frac{1}{A^{-1}(1/\lambda(D))} \cdot \lambda(D)^{-1} \int_D |u|d\lambda \]
\[\leq C \| \nabla u \|_{A,D} + \frac{1}{A^{-1}(1/\lambda(D))} \cdot \lambda(D)^{-1} C' \| \nabla u \|_A \]
\[\leq C' \| \nabla u \|_A. \]
(3.25)

The proof is complete. \qed

Recall that for all $f \in L_A$ such that $\| f \|_A > 1$, we have $\int A \circ f d\lambda > \| f \|_A$. We set
\[s(A) = \inf \left\{ \frac{\log \| A \circ f \|_A}{\log \| f \|_A} - 1, \ f \in L_A, \ \| f \|_A > 1 \right\}. \]
(3.26)

Hence $s(A) \geq 0$.

Now we are ready to solve the A-Laplace equation.

Theorem 3.9. Let L_A be a reflexive Orlicz space such that $s(A) > 0$. Let $h \in L^\infty(\mathbb{R}^N)$ have compact support. Then the equation $\Delta_A u + h = 0$ has a weak solution $u \in L^1_A(\mathbb{R}^N)$ if \mathbb{R}^N is A-hyperbolic.

Proof. Let D be a bounded domain such that $\text{supp}(h) \subset D$. Define the functional $\mathcal{F} : \mathcal{C}^0_A(D) \to \mathbb{R}$ by
\[\mathcal{F}(u) = \int A(|\nabla u|)d\lambda - \int hu d\lambda. \]
(3.27)
Hence
\[\mathcal{F}(u) \geq \int A(|\nabla u|) d\lambda - \left| \int hu d\lambda \right| \geq \int A(|\nabla u|) d\lambda - \|h\|_\infty \cdot \|u\|_{L^1(D)}. \] (3.28)

Since \(\mathbb{R}^N \) is \(A \)-hyperbolic, by Proposition 3.6, we get
\[\mathcal{F}(u) \geq \int A(|\nabla u|) d\lambda - C\|h\|_\infty \cdot \|\nabla u\|_A. \] (3.29)

Hence there is a constant \(C_1 \) such that
\[\mathcal{F}(u) \geq \int A(|\nabla u|) d\lambda - C_1 \cdot \|\nabla u\|_A. \] (3.30)

By (2.3) and (2.5), there is a constant \(C_2 \) such that, for all \(k > 0 \),
\[\mathcal{F}(u) \geq \int A(|\nabla u|) d\lambda - C_2 \int A(k|\nabla u|) d\lambda - C_2 k. \] (3.31)

Now, let \(t > 0 \) and consider the continuous function \(\psi_t \) defined on \(\mathbb{R}^+ \) by
\[\psi_t(k) = (C_2/k)A(kt) - A(t). \]
\[x \leq A(x), \quad \forall x \geq 0, \]
\[\lim_{t \to 0} \frac{A(t)}{t} = 0, \quad \lim_{t \to +\infty} \frac{A(t)}{t} = +\infty, \] (3.32)
the function \(\psi_t \) increases from \(-A(t) \) to \(+\infty \). Hence there is a \(k_0 \) such that \(\psi_t(k_0) = 0 \). Thus
\[\mathcal{F}(u) \geq -\frac{C_2}{k_0}. \] (3.33)

We conclude that the functional \(\mathcal{F} \) is bounded below on the space \(\mathcal{E}^0_A(D) \).

Now \(\mathcal{E}^0_A(D) \) is a reflexive Banach space and \(\mathcal{E}^0_A(D) \) is a closed convex subspace of \(\mathcal{E}^0_A(D) \). We first prove that \(\mathcal{F} \) is lower semicontinuous. Let \(t \in \mathbb{R} \), and consider the set \(\mathcal{T}_t = \{ u \in \mathcal{E}^0_A(D) : \mathcal{F}(u) \leq t \} \). Let \((u_i)_i \subset \mathcal{E}^0_A(D) \) be such that \(\mathcal{F}(u_i) \leq t \), for all \(i \), and \((u_i)_i \) converges to \(u \) in \(\mathcal{E}^0_A(D) \). By the compactness of the imbedding \(\mathcal{E}^0_A(D) \subset L^1(D) \), we may assume that \((u_i)_i \) converges strongly in \(L^1(D) \). Hence
\[\int_D hu_i d\lambda \longrightarrow \int_D hu d\lambda. \] (3.34)

Theorem 3.8 implies that \(u \to \|\nabla u\|_A \) is an equivalent norm on \(\mathcal{E}^0_A(D) \).

Hence \(\|\nabla u - \nabla u_i\|_A \to 0 \). Since \(A \) verifies the \(\Delta_2 \) condition, \(\int A(|\nabla u - \nabla u_i|) d\lambda \to 0 \). Hence there is a subsequence of the sequence \((A(|\nabla u - \nabla u_i|))_i \), still denoted by \((A(|\nabla u - \nabla u_i|))_i \), which converges \(\lambda \)-almost everywhere to 0.
Thus \(|\nabla u_i|_i\) converges \(\lambda\)-almost everywhere to \(|\nabla u|\). By the continuity of \(A\), Fatou’s lemma, and (3.34), we get

\[
\mathcal{F}(u) = \int \lim_{i \to \infty} A(|\nabla u_i|) d\lambda - \lim_{i \to \infty} \int h u_i d\lambda \\
\leq \liminf_{i \to \infty} \int A(|\nabla u_i|) d\lambda - \lim_{i \to \infty} \int h u_i d\lambda \leq t. \tag{3.35}
\]

Hence \(\mathcal{F}\) is lower semicontinuous.

Now, \(s(A) > 0\) implies that \(\int A(|\nabla u|) d\lambda \geq \|\nabla u\| s(A) + 1\) for \(\|\nabla u\| > 1\).

Hence

\[
\mathcal{F}(u) \geq \|\nabla u\| s(A) + 1 - C_1 \cdot \|\nabla u\| \quad \text{for} \quad \|\nabla u\| > 1. \tag{3.36}
\]

This proves that \(\mathcal{F}\) is coercive.

Thus \(\mathcal{F}\) attains its minimum on \(\mathcal{E}_A^0(D)\); that is, there is \(u^* \in \mathcal{E}_A^0(D)\) such that \(\mathcal{F}(u^*) = \min\{\mathcal{F}(u) : u \in \mathcal{E}_A^0(D)\}\). By the usual arguments from variational calculus, we deduce that \(u^*\) is a weak solution to the equation \(\Delta_A u + h = 0\). The proof is complete. \(\square\)

Remark 3.10. We have in fact solved the equation in the space \(\mathcal{E}_A^0(D) \subset L_1^A(\mathbb{R}^N)\).

Remark 3.11. When \(A(t) = p^{-1} |t|^p, p > 1\), and \(L_A = L^p\) is the usual Lebesgue space, we have \(s(A) = p - 1 > 0\). Thus we recover the result in [9, Theorem 2] when the manifold \(M\) is \(\mathbb{R}^N\).

Recall the following result in [2, Lemma 3].

Lemma 3.12. Let \(A\) be an \(N\)-function satisfying the \(\Delta_2\) condition. If \(\alpha < N\), then \(R_1(A(B(x, r))) > 0\), where \(B(x, r)\) is the open ball of radius \(r > 0\), with center at \(x\).

Corollary 3.13. Let \(L_A\) be a reflexive Orlicz space such that \(s(A) > 0\) and \(\alpha < N\). Suppose that \(h \in L^\infty(\mathbb{R}^N)\) has compact support. Then the equation \(\Delta_A u + h = 0\) has a weak solution \(u \in L_A^1(\mathbb{R}^N)\).

Proof. By Lemmas 3.12 and 2.3, we deduce that \(\mathbb{R}^N\) is \(A\)-hyperbolic, and we apply Theorem 3.9 to get the result. \(\square\)

3.3. Some examples

In addition to the \(L^p\) Lebesgue case corresponding to \(A(t) = p^{-1} |t|^p, p > 1\), we consider the following \(N\)-functions:

\[
A_1(t) = \begin{cases}
 t^p & \text{for } 0 \leq |t| \leq 1, \\
 t^q & \text{for } 1 < |t|,
\end{cases} \quad 1 < p < q < \infty, \tag{3.37}
\]

\[
A_2(t) = |t|^p \log(1 + |t|), \quad p > 1,
\]

\[
A_3(t) = |t|^p \log(1 + |t|^p), \quad p > 1,
\]
(4) \(A_i(t) = |t|^p \log^p(1 + |t|), \ p > 1, \)
(5) \(A_{p,q,r}(t) = |t|^p \log^q(1 + |t|^r), \ p > 1, \ q > 0, \) and \(r > 0. \)

All these \(N \)-functions and their conjugates satisfy the \(\Delta_2 \) condition. We show that \(s(A_i) > 0, \ i = 1, 2, 3, 4, \) and \(s(A_{p,q,r}) > 0. \)

First remark that \(A_2 = A_{p,1,1} \) and \(A_3 = A_{p,1,p}. \) Thus it suffices to show that \(s(A_{p,q,r}) > 0 \) and for all \(p > 1, \ q > 0, \ r > 0. \)

(1) Let \(f \in L_{A_1} \) be such that \(\|f\|_{A_1} > 1. \) Then, by (2.8),

\[
1 = \int A_1 \left(\frac{f}{\|f\|_{A_1}} \right)(x) d\lambda(x) \\
\leq \frac{1}{\|f\|_{A_1}^p} \int_{\{|f| \leq \|f\|_{A_1}\}} |f|^p d\lambda + \frac{1}{\|f\|_{A_1}^q} \int_{\{|f| > \|f\|_{A_1}\}} |f|^q d\lambda \\
\leq \frac{1}{\|f\|_{A_1}^p} \left[\int_{\{|f| \leq \|f\|_{A_1}\}} |f|^p d\lambda + \int_{\{|f| > \|f\|_{A_1}\}} |f|^q d\lambda \right] \\
\leq \frac{1}{\|f\|_{A_1}^p} \int A_1(f)(x) d\lambda(x).
\]

Hence \(\|f\|_{A_1}^p \leq \int A_1(f)(x) d\lambda(x). \) This implies that \(s(A_1) > 0. \)

(2) Let \(p > 1, \ q > 0, \) and \(r > 0 \) and set \(A = A_{p,q,r}. \) Let \(f \in L_A \) be such that \(\|f\|_A > 1. \) Then by (2.8),

\[
1 = \int A \left(\frac{f}{\|f\|_A} \right)(x) d\lambda(x) \\
\leq \frac{1}{\|f\|_A^p} \int |f|^p \log^q \left(1 + \frac{|f|'}{\|f\|_A} \right) d\lambda \\
\leq \frac{1}{\|f\|_A^p} \int |f|^p \log^q (1 + |f'|) d\lambda \\
\leq \frac{1}{\|f\|_A^p} \int A(f)(x) d\lambda(x).
\]

Thus \(\|f\|_A^p \leq \int A(f)(x) d\lambda(x) \) and hence \(s(A) > 0. \)
Remark 3.14. Although Theorem 3.9 gives a solution for large classes of Orlicz spaces L_A, including L^p Lebesgue spaces, $p > 1$, it would be sharp if we can drop the condition $s(A) > 0$. This question is open.

References

Noureddine Aïssaoui: Département de Mathématiques École Normale Supérieure, BP 5206, Ben Souda, Fès, Morocco

E-mail address: n.aissaoui@caramail.com