Minimality Conditions on Π^c_k-Connectedness in Graphs

B. Chaluvaraju1, N. Manjunath2 and K.M. Yogeesha3

1Department of Studies and Research in Mathematics
Tumkur University, B.H. Road, Tumkur-572103, India
E-mail: bchaluvaraju@gmail.com

2Department of Mathematics, Bangalore University
Central College Campus, Bangalore-560001, India
E-mail: manjubub@gmail.com

3Department of Mathematics, Government First Grade College
Dental College Road, Davanagere-577004, India
E-mail: yogesshadvg@gmail.com

(Received: 18-6-14 / Accepted: 21-7-14)

Abstract

Let k be a positive integer. A graph $G = (V,E)$ is said to be Π^c_k - connected if for any given edge subset F of $E(G)$ with $|F| = k$, the subgraph induced by F is connected. In this paper, we explore the minimality conditions on Π^c_k-connectedness of a graph and also its properties of prism and corona graphs are obtained.

Keywords: Graph, subgraph, prism graph, corona graph, Π^c_k - connected graph.

1 Introduction

In this article, we consider finite, undirected, simple and connected graphs $G = (V,E)$ with vertex set V and edge set E. As such $p = |V|$ and $q = |E|$ denote the number of vertices and edges of a graph G, respectively. An edge-induced subgraph is a subset of the edges of a graph G together with any vertices that are their endpoints. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of edges $X \subseteq E$. A graph G is connected if it has a $u - v$ path whenever $u,v \in V(G)$ (otherwise, G is disconnected). A graph with no cycle is acyclic. A tree T is a connected acyclic graph. An edge-independent
set in a graph is a set of pairwise nonadjacent edges. A cut-edge or cut-vertex of a graph \(G \) is an edge or a vertex whose deletion increases the number of components. Difference between two sets \(A \) and \(B \) consists of the elements of \(A \) that are not in \(B \) and is denoted by \(A \setminus B \). Unless mentioned otherwise, for terminology and notation the reader may refer Harary [8] and Bondy et.al. [3].

The concept of \(\Pi_k \) - connectedness was suggested by Sampathkumar [10] and [11], and studied by Chaluvaraju et al. [4] in the following manner. For any positive integer \(k \). A graph \(G \) is said to be \(\Pi_k \) - connected if for any given subset \(S \) of \(V(G) \) with \(|S| = k \), the subgraph induced by \(S \) is connected.

Here, we shall introduce an edge analogue of this concept as follows: A graph \(G \) is said to be \(\Pi_e \) - connected if for any given edge subset \(F \) of \(E(G) \) with \(|F| = k \), the subgraph induced by \(F \) is connected. A \(\Pi_e \) - connected graph \(G \) is said to be edge minimal \(\Pi_e \) - connected if the graph \(G \) is not \(\Pi_{e-1} \) - connected. Let \(G \) be a nontrivial graph. Then a generalized vertex (edge)induced connected subsets of a graph is denoted as \(\Pi_k(G) \) (\(\Pi_e^k(G) \)). For more details on related concepts, we refer [1], [2], [5], [9] and [12].

2 \(\Pi_e^k \) - Connectedness

Theorem 2.1 Let \(s \) and \(t \) be a positive integer. If the graph \(G \) is not \(\Pi_e^t \) - connected graph, then it is also not \(\Pi_e^s \) - connected graph, where \(2 \leq s \leq t \).

Proof. Let the graph \(G \) be not a \(\Pi_e^t \) - connected graph, then there exists \(t \)-edges whose edge induced subgraph, say \(F_1 \) is disconnected. Let \(F_2, 2 \leq |F_2| \leq t \) be set of edges formed by taking at least one edge from each component of \(F_1 \). Clearly the subgraph induced by \(F_2 \) is also disconnected. Hence \(G \) is not \(\Pi_e^s \) - connected graph, where \(2 \leq s \leq t \).

Theorem 2.2 For any connected graph \(G \) is an edge minimal \(\Pi_{e}^q \) - connected graph if and only if it has a cut edge.

Proof. Let \(G \) be an edge minimal \(\Pi_{e}^q \) - connected graph then there exists an edge \(e \) such that the subgraph induced by \(E(G) \setminus \{e\} \) is disconnected. Hence \(e \) is a cut edge of a graph \(G \). Conversely, if the graph \(G \) has a cut edge \(e \), then the subgraph induced by \(E(G) \setminus \{e\} \) is disconnected and the graph on \(q \)-edges is connected. Hence the graph \(G \) is an edge minimal \(\Pi_{e}^q \) - connected graph.

Theorem 2.3 For any tree \(T \) with \(p \geq 3 \) vertices is an edge minimal \(\Pi_{e}^{p-1} \) - connected graph.

Proof. Let \(T \) be any tree with \(p \geq 3 \) vertices. Since the total number of edges in \(T \) is \(p - 1 \), the graph induced by \(p - 1 \) edges is isomorphic to \(T \) and hence
connected. Let e be an edge whose end vertices have degree greater than one, then the subgraph induced by $E(T)\setminus\{e\}$ is disconnected. Hence the tree T with $p \geq 3$ vertices is an edge minimal Π^e_{p-1} - connected graph.

Theorem 2.4 For any Complete graph K_p with $p \geq 4$ vertices is an edge minimal Π^e_k - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$.

Proof. Let K_p be a complete graph with $p \geq 4$ vertices. The maximum number of independent edges of a complete graph K_p is $\left\lfloor \frac{p}{2} \right\rfloor$. Therefore only disconnected edge induced subgraph of K_p with maximum number of vertices is $K_2 \cup K_{p-2}$. Hence K_p is not Π^e_{k-1} - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$. Addition of any edge makes the subgraph $K_2 \cup K_{p-2}$ is connected. Hence the complete graph K_p with $p \geq 4$ vertices is an edge minimal Π^e_k - connected graph, where $k = \frac{(p-2)(p-3)}{2} + 2$.

By the above two results, we have the following Theorem.

Theorem 2.5 Let $\Pi^e_k(G)$ be an edge minimal Π^e_k - connected graph of a (p,q)-graph. Then

$$q \leq \Pi^e_k(G) \leq \frac{(p-2)(p-3)}{2} + 2.$$

Theorem 2.6 For any Cycle C_p with $p \geq 4$ vertices is an edge minimal Π^e_{p-1} - connected graph.

Proof. Let C_p be any cycle on $p \geq 4$ vertices and e be any edge in C_p. The subgraph induced by $E(C_p)\setminus\{e\}$ is connected. Since an edge e is arbitrarily chosen, the cycle C_p with $p \geq 4$ vertices is Π^e_{p-1} - connected graph. Now we prove C_p is an edge minimal Π^e_{p-1} - connected graph, i.e., C_p is not Π^e_{p-2} - connected graph. Let e_1 and e_2 be two independent edges in C_p. The subgraph induced by $E(C_p)\setminus\{e_1, e_2\}$ is disconnected. Hence C_p with $p \geq 4$ vertices is an edge minimal Π^e_{p-1} - connected graph.

3 Π^e_k - Connectedness in Prism Graphs

The prism of a graph G is defined as the cartesian product $G \times K_2$. For more details, we refer [7].

Theorem 3.1 For any Prism C^*_p of a cycle C_p with $p \geq 5$ vertices is Π^e_{5p-3} - connected graph.
Proof. Let C_p be a cycle with $p \geq 5$ vertices and C_p^* be its prism. Let C_p^1 and C_p^2 be two copies of C_p in the prism. We have to prove the subgraph induced by any set of $(3p - 3)$-edges is connected. The total number of edges in C_p^* is $3p$. Let $E(C_p^*)$ be the set of edges in C_p^* and e_1, e_2, e_3 be any three edges in $E(C_p^*)$. Instead of proving the subgraph induced by any set of $3p - 3$ edges is connected, we prove the equivalent statement the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected for every set of three edges. Hence the following cases arise depending on the selection of edges in $E(C_p^*)$.

Case 1. Let $e_1 \in C_1$ and $e_2, e_3 \in C_2$. Then again we have the following two subcases,

Subcase 1.1. Let e_2 and e_3 are consecutive edges. Then both the subgraphs F_1 and F_2 induced by $E(C_1) \setminus \{e_1\}$ and $E(C_2) \setminus \{e_2, e_3\}$, respectively are connected. Now by adding all the edges between F_1 and F_2 from the C_p^*, we get a connected graph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$.

Subcase 1.2. Let e_2 and e_3 are nonconsecutive edges. Then the subgraph induced by $E(C_1) \setminus \{e_1\}$ is connected and the subgraph induced by $E(C_2) \setminus \{e_2, e_3\}$ is disconnected. But the edges between H_1 and H_2 from the C_p^* makes the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected.

Case 2. Let $e_1, e_2 \in C_1$ and $e_3 \in C_2$. Proof follows on similar lines as in Case 1.

Case 3. Let all three edges e_1, e_2 and e_3 are in the first copy of C_p in the prism C_p^*. Then the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ may be connected or disconnected. If the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ is connected, then clearly the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ is connected. If the subgraph induced by $E(C_1) \setminus \{e_1, e_2, e_3\}$ is disconnected having two or three components then the edges between each of these components and C_2 from the prism C_p^* makes the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected.

Case 4. Let all three edges e_1, e_2 and e_3 are in the second copy of C_p in the prism C_p^*. Proof of this case follows on the similar lines as in Case 3.

Case 5. Let $e_1, e_2 \in C_1$ and e_3 belongs to the set of edges between the two copies of C_p in the prism. The subgraph H_1 induced by $E(C_1) \setminus \{e_1, e_2\}$ may be connected or disconnected depending on the edges e_1 and e_2 are consecutive or not. As seen before, the subgraph induced by $E(C_p^*) \setminus \{e_1, e_2, e_3\}$ connected, since $p \geq 5$, there exists edges between the two copies of C_p even after removal of e_3, connecting each component of H_1 with the second copy of C_p in the
prism. Hence the subgraph induced by $E(C^*_p)\backslash\{e_1, e_2, e_3\}$ is connected.

Similarly we can prove the remaining cases as follows.

Case 6. $e_1 \in C_1$ and e_2, e_3 belong to the set of edges between the two copies of C_p in the prism.

Case 7. All three edges e_1, e_2 and e_3 are in the set of edges between the two copies of C_p in the prism.

Case 8. $e_1, e_2 \in C_2$ and e_3 belongs to the set of edges between the two copies of C_p in the prism.

Case 9. $e_1 \in C_2$ and e_2, e_3 belongs to the set of edges between the two copies of C_p in the prism.

Hence the result follows.

Theorem 3.2 Let T be a nontrivial tree. Then Prism T^* of T is an edge minimal Π_{3q}^e-connected graph.

Proof. Let T be any nontrivial tree and T^* be its prism. The number of edges in T^* is equal to the number of edges in the first copy of a tree $T +$ the number of edges in the second copy of $T +$ the number of edges between these two copies of a tree $T,$ i.e., $|E(T^*)| = 2q + p = 3q + 1.$ First, we prove T^* is not Π_{3q-1}^e-connected graph. Let e be an edge in the first copy of a tree T in its prism T^* and $f(e)$ in the second copy of T in T^* be the mirror image of $e.$ The subgraph induced by $E(T^*)\backslash\{e, f(e)\}$ is disconnected, since e is a bridge in the first copy of a tree T and $f(e)$ is a bridge in the second copy of a tree T in the prism $T^*.$ Hence there exist a set $E(T^*)\backslash\{e, f(e)\}$ of $3q - 1$ edges whose induced subgraph is disconnected. Hence T^* is not Π_{3q-1}^e-connected graph. The subgraph induced by $E(T^*)\backslash\{e\}$ is connected for all e in the first copy or second copy of a tree $T.$ Now suppose $e \in E(T_1 - T_2),$ where $E(T_1 - T_2)$ is the set of all edges between the two copies of a tree T in the prism $T^*,$ clearly in this case also the subgraph induced by $E(T^*)\backslash\{e\}$ is connected for all e in the $E(T_1 - T_2).$ Hence the prism T^* of any nontrivial tree T is an edge minimal Π_{3q}^e-connected graph.

4 Π_k^e-Connectedness in Corona Graphs

The corona $G_1 \circ G_2$ was defined by Frucht and Harary [6] as the graph G obtained by taking one copy of G_1 of order p_1 and p_1 copies of $G_2,$ and then joining the i^{th} node of G_1 to every node in the i^{th} copy of $G_2.$
Theorem 4.1 Let C_p be a cycle with $p \geq 3$ vertices and $G(p_1,q_1)$ be a graph. Then the corona $C_p \circ G$ is an edge minimal $\Pi_{p[p_1+q_1+1]-1}^e$-connected graph.

Proof. Let $C_p : u_1, u_2, \ldots, u_p$, $p \geq 3$ be any cycle and $G(p_1,q_1)$ be any graph of order p_1 and size q_1. Let G_1, G_2, \ldots, G_p be p copies of G in the corona $C_p \circ G$. Let $E(C_p)$ be the set of edges in C_p, E_i be the set of edges from u_i to G_i in the corona and $E(G_i)$ be the set of edges in G_i. We first prove the corona $C_p \circ G$ is not $\Pi_{p[p_1+q_1+1]-2}^e$-connected. Then there exists a set of $p[p_1+q_1+1]-2$ edges in $C_p \circ G$ whose edge induced subgraph is disconnected or equivalently we show the existence of a pair of edges e_1, e_2 in $C_p \circ G$ such that the subgraph induced by $E(C_p \circ G) \setminus \{e_1, e_2\}$ is disconnected, as the total number of edges in $C_p \circ G$ is $p[p_1+q_1+1]$. Suppose e_1 and e_2 be any two edges on the cycle C_p in the corona, then clearly the subgraph induced by $E(C_p \circ G) \setminus \{e_1, e_2\}$ is disconnected. Hence the corona $C_p \circ G$ is not $\Pi_{p[p_1+q_1+1]-2}^e$-connected. Now we prove $C_p \circ G$ is $\Pi_{p[p_1+q_1+1]-1}^e$-connected or equivalently we prove for every edge e in $C_p \circ G$, the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected. Thus the following cases arise.

Case 1. If $e \in G_i$ then the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected, since every left out edge in G_i after removal of e is connected with u_i of C_p.

Case 2. If $e \in E_i$ then the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected, u_i is adjacent to all the vertices of G_i.

Case 3. If $e \in C_p$ then the removal e does not disconnect C_p. Hence the subgraph induced by $E(C_p \circ G) \setminus \{e\}$ is connected. Hence the proof.

Acknowledgements: The authors wish to thank Prof. E. Sampathkumar for his help and valuable suggestions in the preparation of this paper.

References

