On Some Ideals of Fuzzy Points Semigroups

E.H. Hamouda

Department of Basic Sciences, Faculty of Industrial Education
Beni-Suef University, Beni-Suef, Egypt
E-mail: ehamouda70@gmail.com

(Received: 20-5-13 / Accepted: 30-6-13)

Abstract

Kim [Int. J. Math. & Math. Sc. 26:11 (2001), 707-712.] Considered the semigroup S of the fuzzy points of a semigroup S. In this paper, we discuss the relation between some ideals A of S and the subset C_A of S.

Keywords: Fuzzy set; Semigroup; Fuzzy point; Minimal ideal.

1 Introduction

Zadeh [9] introduced the concept of a fuzzy set for the first time and this concept was applied by Rosenfeld [8] to define fuzzy subgroups and fuzzy ideals. Based on this crucial work, Kuroki [3, 4, 5, 6] defined a fuzzy semigroup and various kinds of fuzzy ideals in semigroups and characterized them. Authors in [1] investigated the existence of a fuzzy kernel and minimal fuzzy ideals in semigroups. They showed that a subset A of a semigroup S is minimal ideal if and only if the characteristic function of A, C_A, is minimal fuzzy ideal of S. In [2], Kim considered the semigroup S of the fuzzy points of a semigroup S, and discussed the relation between the fuzzy interior ideals and the subsets of S. In this paper, we discuss the relation between some ideals A of S and the subset C_A of S.
2 Basic Definitions and Results

Let S be a semigroup. A nonempty subset A of S is called a left (resp., right) ideal of S if $SA \subseteq A$ (resp., $AS \subseteq A$), and a two-sided ideal (or simply ideal) of S if $SAS \subseteq A$. An ideal A of S is called minimal ideal of S if A does not properly contains any other ideal of S. If the intersection K of all the ideals of a semigroup S is nonempty then we shall call K the kernel of S. A subsemigroup A of S is called a bi-ideal of S if $SA \subseteq A$ [7]. A function f from S to the closed interval $[0, 1]$ is called a fuzzy set in S. The semigroup S itself is a fuzzy set in S such that $f(x) = 1$ for all $x \in S$, denoted also by S. Let A and B be two fuzzy sets in S. Then the inclusion relation $A \subseteq B$ is defined by $f(x) \leq g(x)$ for all $x \in S$. $A \cap B$ and $A \cup B$ are fuzzy sets in S defined by $(A \cap B)(x) = \min \{A(x), B(x)\}$, $(A \cup B)(x) = \max \{A(x), B(x)\}$, for all $x \in S$. For any $\alpha \in (0, 1]$ and $x \in S$, a fuzzy set x_α in S is called a fuzzy point in S if

$$x_\alpha(y) = \begin{cases} \alpha & \text{if } x = y, \\ 0 & \text{otherwise}, \end{cases}$$

for all $x \in S$. The fuzzy point x_α is said to be contained in a fuzzy set A, denoted by $x_\alpha \in A$, iff $\alpha \leq A(x)$. The characteristic mapping of a subset A of a semigroup S is

$$C_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise}, \end{cases}$$

for all $x \in S$.

Lemma 2.1 (see [1, Lemma 3.]): For any nonempty subsets A and B of a semigroup S, we have $A \subseteq B$ if and only if $C_A \subseteq C_B$.

Lemma 2.2 (see [1, Lemma 4.]): Let A be a nonempty subset of a semigroup S, then A is an ideal of S if and only if C_A is a fuzzy ideal of S.

Let $\mathcal{F}(S)$ be the set of all fuzzy sets in a semigroup S. For each $A, B \in \mathcal{F}(S)$, the product of A and B is a fuzzy set $A \circ B$ defined as follows:

$$(A \circ B)(x) = \{ \sup_{x=ab} A(a) \wedge B(b) \} \quad \text{if } ab = x$$

otherwise.

for each $x \in S$. If S is a semigroup, then $\mathcal{F}(S)$ is a semigroup with the product "\circ" [2]. Let \mathcal{F}_S be the set of all fuzzy points in a semigroup S. Then $x_\alpha \circ y_\beta = (xy)_{\alpha\beta} \in \mathcal{F}_S$ for $x_\alpha, y_\beta \in \mathcal{F}_S$ [2]. For any $A \in \mathcal{F}(S)$, A denotes the set of all fuzzy points contained in A, that is, $A = \{ x_\alpha \in \mathcal{F}_S : A(x) \geq \alpha \}$. For any $A, B \in \mathcal{F}_S$, we define the product of A and B as $A \circ B = \{ x_\alpha \circ y_\beta : x_\alpha \in A, y_\beta \in B \}$.
Lemma 2.3 (see [2, Lemma 3.2]): Let A and B be two fuzzy subsets of a semigroup S, then

1) $A \cup B = A \cup B$.
2) $A \cap B = A \cap B$.
3) $A \circ B \subseteq A \circ B$.

Lemma 2.4: Let A be nonempty subset of a semigroup S, we have $x_\alpha \in C_A$ if and only if $x \in A$.

Proof: Suppose that $x_\alpha \in C_A$ for any $x \in S$, then $C_A(x) \geq \alpha$. Hence $C_A(x) = 1$ for any $\alpha > 0$, which implies that $x \in A$. Conversely, Let $x \in A$, then $C_A(x) = 1 \geq \alpha$ for any $\alpha > 0$. This means that $x_\alpha \in C_A$. \blacksquare

Lemma 2.5: For any nonempty subsets A and B of a semigroup S, we have

1) $A \subseteq B$ if and only if $C_A \subseteq C_B$.
2) $C_A \subseteq C_B$ if and only if $C_A \subseteq C_B$.

Proof: (1) Assume that $A \subseteq B$, and let $x_\alpha \in C_A$. By lemma 2.4, $x \in A \subseteq B$ and $x_\alpha \in C_B$, this implies that $C_A \subseteq C_B$. Conversely, suppose that $C_A \subseteq C_B$. Let $x \in A$, then by lemma 2.4, $x_\alpha \in C_A$ for any $\alpha > 0$, $x_\alpha \in C_B$ and hence $x \in B$. (2) Let $x_\alpha \in C_A \subseteq C_B$, then lemma 2.5 implies that $A \subseteq B$ and from lemma 2.1, we have $C_A \subseteq C_B$. This completes the proof. \blacksquare

3 Main Results

Lemma 3.1: Let A be a nonempty subset of a semigroup S. Then A is an ideal of S if and only if C_A is an ideal of S.

Proof: By lemma 2.2, A is an ideal of S if and only if C_A is a fuzzy ideal of S, and from lemma 3.1[2], C_A is a fuzzy ideal of S if and only if C_A is an ideal of S. \blacksquare

Theorem 3.2: Let A be a nonempty subset of a semigroup S. Then A is a minimal ideal of S if and only if C_A is a minimal ideal of S.

Proof: By theorem 7[1], A is a minimal ideal of S if and only if C_A is a fuzzy minimal ideal of S. We only need to prove that C_A is a minimal fuzzy ideal of S if and only if C_A is a minimal ideal of S. Let C_A be a minimal fuzzy ideal of S, then by lemma 3.1[2], C_A is an ideal of S. Suppose that C_A is not minimal, then there exists some ideals C_B of S such that $C_B \subseteq C_A$. Hence by lemma 2.5,
\[C_B \subseteq C_A, \text{ where } C_B \text{ is a fuzzy ideal of } S. \] This is a contradiction to \(C_A \) is a minimal fuzzy ideal of \(S \). Conversely, assume \(C_A \) is a minimal ideal of \(S \) and that \(C_A \) is not a minimal fuzzy ideal of \(S \). Then there exists a fuzzy ideal \(C_B \) of \(S \) such that \(C_B \subseteq C_A \). Now, lemma 2.5 implies that \(C_B \subseteq C_A \), where \(C_B \) is an ideal of \(S \). This contradicts that \(C_A \) is a minimal ideal of \(S \). This completes the proof of the theorem. \(\blacksquare \)

Theorem 3.3: Let \(A \) be a nonempty subset of a semigroup \(S \). Then \(A \) is the kernel of \(S \) if and only if \(C_A \) is the kernel of \(S \).

Proof: Suppose that \(A \) is the kernel of \(S \), then \(A = \bigcap_1 I_i \) where \(I_i \) is an ideal of \(S \). Let \(C_B \) be an ideal of \(S \), then by lemma 3.1, \(B \) is an ideal of \(S \). Now we need to show that, \(C_A \subseteq C_B \). Let \(x_a \in C_A \), by lemma 2.4, \(x \in A \) and also \(x \in B \) since \(A \) is the kernel of \(S \). This implies that \(x_a \in C_B \) and hence, \(C_A \) is the kernel of \(S \). Conversely, Let \(C_A \) be the kernel of \(S \), then \(C_A \subseteq C_B \), for every ideal \(C_B \) of \(S \). Thus \(A \subseteq B \), that is, \(A \) is the kernel of \(S \). \(\blacksquare \)

The following lemma weakens the condition of theorem 3.3.

Lemma 3.4: Let \(A \) be a minimal ideal of a semigroup \(S \), then \(C_A \) is the kernel of \(S \).

Proof: Since \(A \) be a minimal ideal of \(S \), then \(C_A \) is a minimal fuzzy ideal of \(S \) [1, theorem 7]. Also theorem 8 in [1] implies that \(C_A \) is the fuzzy kernel of \(S \). Now, let \(C_B \) be a fuzzy ideal of \(S \), then we have \(C_A \subseteq C_B \). By lemma 2.5, \(C_A \subseteq C_B \), so \(C_A \) is a minimal ideal contained in every ideal of \(S \). Thus \(C_A \) is the kernel of \(S \). \(\blacksquare \)

Lemma 3.5: Let \(A \) be a nonempty subset of a semigroup \(S \). Then \(A \) is an interior ideal of \(S \) if and only if \(C_A \) is an interior ideal of \(S \).

Proof: Let \(A \) be an interior ideal of \(S \), and let \(y \beta, z \gamma \in S \) and \(x_a \in C_A \). Since \(x \in A \), hence \(y \beta \circ x_a \circ z \gamma = (yxz) \beta \alpha \gamma \in C_A \). This implies that \(S \circ C_A \circ S \subseteq C_A \), thus \(C_A \) is an interior ideal of \(S \). Conversely, suppose that \(C_A \) is an interior ideal of \(S \). Let \(y, z \in S \) and \(x \in A \), then \(x_a \in C_A \). Assume that, \(y \beta \circ x_a \circ z \gamma = (yxz) \alpha \in S \circ C_A \circ S \subseteq C_A \), then \(yxz \in A \). This implies that \(SAS \subseteq A \), and hence \(A \) is an interior ideal of \(S \). \(\blacksquare \)

Lemma 3.6: Let \(A \) be a nonempty subset of a semigroup \(S \). Then \(A \) is a bi-ideal of \(S \) if and only if \(C_A \) is a bi-ideal of \(S \).
Proof: Let A be a bi-ideal of S, and let $y_\beta, z_\gamma \in \mathcal{C}_A$ and $x_\alpha \in S$. Since $y, z \in A$ and $yxz \in A$ then $y_\beta \circ x_\alpha \circ z_\gamma = (yxz)_\beta \alpha \gamma \in \mathcal{C}_A$. This implies that $\mathcal{C}_A \circ \mathcal{S} \circ \mathcal{C}_A \subseteq \mathcal{C}_A$, thus \mathcal{C}_A is a bi-ideal of S. Conversely, suppose that \mathcal{C}_A is a bi-ideal of S. Let $y, z \in A$ and $x \in S$, then by lemma 2.4, $y_\alpha, z_\alpha \in \mathcal{C}_A$. Assume that, $y_\alpha \circ x_\alpha \circ z_\alpha = (yxz)_\alpha \in \mathcal{C}_A \circ \mathcal{S} \circ \mathcal{C}_A \subseteq \mathcal{C}_A$, then $yxz \in A$. This implies that $ASA \subseteq A$, and hence A is a bi-ideal of S.

References