Common Fixed Theorem on Intuitionistic Fuzzy 2-Metric Spaces

Mona S. Bakry

Department of Mathematics, Faculty of Science
Shaqra University, El-Dawadmi, K. S. A.
E-mail: monabak_1000@yahoo.com; mbakery@su.edu.sa

(Received: 23-2-15 / Accepted: 5-4-15)

Abstract

The aim of this paper is to prove the existence and uniqueness of common fixed point theorem for four mappings in complete intuitionistic fuzzy 2-metric spaces.

Keywords: Fuzzy metric spaces, fuzzy 2-metric spaces, intuitionistic fuzzy metric spaces, common fixed point, intuitionistic fuzzy 2-metric spaces.

1 Introduction

The concept of fuzzy sets was introduced by L. A. Zadeh [24] in 1965, which became active field of research for many researchers. In 1975, Karmosil and Michalek [16] introduced the concept of a fuzzy metric space based on fuzzy sets, this notion was further modified by George and Veermani [11] with the help of t-norms. Many authors made use of the definition of a fuzzy metric space in proving fixed point theorems. In 1976, Jungck [14] established common fixed point theorems for commuting maps generalizing the Banach’s fixed point theorem. Sessa [23] defined a generalization of commutativity, which is called weak commutativity. Further Jungck [15] introduced more generalized commutativity, so called compatibility. Mishra et. al. [21] introduced the concept of compatibility in fuzzy metric spaces. Atanassov [1-8] introduced the notion of intuitionistic fuzzy sets and developed its theory. Park [22] using the idea of intuitionistic fuzzy sets to define the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norm and continuous t co-norm as a
generalization of fuzzy metric space. Muralisankar and Kalpana [20] proved a common fixed point theorem in an intuitionistic fuzzy metric space for point-wise R-weakly commuting mappings using contractive condition of integral type and established a situation in which a collection of maps has a fixed point which is a point of discontinuity. Gahler [10] introduced and studied the concept of 2-metric spaces in a series of his papers. Iseki et. al. [13] investigated, for the first time, contraction type mappings in 2-metric spaces. In 2002 Sharma [18] introduced the concept of fuzzy 2- metric spaces. Mursaleen et. al. [19] introduced the concept of intuitionistic fuzzy 2-metric space. In this paper, we prove the existence and uniqueness of common fixed point theorem for four mappings in complete intuitionistic fuzzy 2-metric spaces.

2 Preliminaries

Definition 2.1 (17) A binary operation \(\ast : [0, 1] \times [0, 1] \longrightarrow [0, 1] \) is called continuous \(t \)-norm if \(\ast \) is satisfying the following conditions:

- (TN1) \(\ast \) is commutative and associative;
- (TN2) \(\ast \) is continuous;
- (TN3) \(a \ast 1 = a \) for all \(a \in [0, 1] \);
- (TN4) \(a \ast b \leq c \ast d \) whenever \(a \leq c \) and \(b \leq d \) and \(a, b, c, d \in [0, 1] \).

Examples of \(t \)-norms are \(a \ast b = ab \) and \(a \ast b = \min\{a, b\} \).

Definition 2.2 (16) A binary operation \(\triangle : [0, 1] \times [0, 1] \longrightarrow [0, 1] \) is called continuous \(t \)-conorm if \(\triangle \) is satisfying the following conditions:

- (TCN1) \(\triangle \) is commutative and associative;
- (TCN2) \(\triangle \) is continuous;
- (TCN3) \(a \triangle 0 = a \) for all \(a \in [0, 1] \);
- (TCN4) \(a \triangle b \leq c \triangle d \) whenever \(a \leq c \) and \(b \leq d \) and \(a, b, c, d \in [0, 1] \).

Definition 2.3 (16) A fuzzy metric space (shortly, \(FM \)-space) is a triple \((X, M, \ast)\), where \(X \) is a nonempty set, \(\ast \) is a continuous \(t \)-norm and \(M \) is a fuzzy set on \(X^2 \times [0, \infty) \) satisfying the following conditions: for all \(x, y, z \in X \) and \(s, t > 0 \),

- (FM1) \(M(x, y, 0) = 0 \)
(FM2) \(M(x, y, t) = 1\), for all \(t > 0\) if and only if \(x = y\),

(FM3) \(M(x, y, t) = M(y, x, t)\),

(FM4) \(M(x, y, t + s) \geq M(x, z, t) * M(z, y, s)\),

(FM5) \(M(x, y,) : [0, 1) \rightarrow [0, 1]\) is left continuous.

Note that \(M(x, y, t)\) can be thought of as the degree of nearness between \(x\) and \(y\) with respect to \(t\). We identify \(x = y\) with \(M(x, y, t) = 1\) for all \(t > 0\) and \(M(x, y, t) = 0\) with \(\infty\).

Definition 2.4 (9) The 5-tuple \((X, M, N, *, \Diamond)\) is said to be an intuitionistic fuzzy metric space (shortly, IFM-space) if \(X\) is an arbitrary set, \(*\) is a continuous \(t\)-norm, \(\Diamond\) is a continuous \(t\)-conorm, and \(M, N\) are fuzzy sets on \(X^2 \times [0, \infty)\) satisfying the following conditions:

(IFM1) \(M(x, y, t) + N(x, y, t) \leq 1\);

(IFM2) \(M(x, y, 0) = 0\);

(IFM3) \(M(x, y, t) = 1\), for all \(t > 0\) if and only if \(x = y\);

(IFM4) \(M(x, y, t) = M(y, x, t)\);

(IFM5) \(M(x, y, t + s) \geq M(x, z, t) * M(z, y, s)\) for all \(x, y, z \in X\) and \(s, t > 0\);

(IFM6) \(M(x, y,) : [0, \infty) \rightarrow [0, 1]\) is left continuous.

(IFM7) \(\lim_{t \to \infty} M(x, y, t) = 1\) for all \(x, y \in X\);

(IFM8) \(N(x, y, 0) = 1\);

(IFM9) \(N(x, y, t) = 0\), for all \(t > 0\) if and only if \(x = y\);

(IFM10) \(N(x, y, t) = N(y, x, t)\);

(IFM11) \(N(x, z, t + s) \leq N(x, y, t) \Diamond N(y, z, s)\) for all \(x, y, z \in X\) and \(s, t > 0\);

(IFM12) \(N(x, y,) : [0, \infty) \rightarrow [0, 1]\) is right continuous.

(IFM13) \(\lim_{t \to \infty} N(x, y, t) = 0\) for all \(x, y \in X\);

Then \((M, N)\) is called an intuitionistic fuzzy metric on \(X\).

The function \(M(x, y, t)\) and \(N(x, y, t)\) denote the degree of nearness and the degree of non-nearness between \(x\) and \(y\) with respect to \(t\) respectively.
Remark 2.5 Every fuzzy metric \((X, M, \ast)\) is an intuitionistic fuzzy metric space of the form \((X, M, 1 - M, \ast, \Diamond)\) such that \(t\)-norm \(\ast\) and \(t\)-conorm \(\Diamond\) are associated [12] i.e., \(x \Diamond y = 1 - ((1 - x) \ast (1 - y))\) for any \(x, y \in X\).

Remark 2.6 In intuitionistic fuzzy metric space \(X, M(x, y, .)\) is non-decreasing and \(N(x, y, .)\) is non-increasing for any \(x, y \in X\).

Definition 2.7 (10) A 2-metric space is a set \(X\) with a real-valued function \(d\) on \(X^3\) satisfying the following conditions:

(2M1) For distinct elements \(x, y \in X\), there exists \(z \in X\) such that \(d(x, y, z) \neq 0\).

(2M2) \(d(x, y, z) = 0\) if at least two of \(x, y\) and \(z\) are equal.

(2M3) \(d(x, y, z) = d(x, z, y) = d(y, z, x)\) for all \(x, y, z \in X\).

(2M4) \(d(x, y, z) \leq d(x, y, w) + d(x, w, z) + d(w, y, z)\) \(\forall x, y, z, w \in X\).

The function \(d\) is called a 2-metric for the space \(X\) and the pair \((X, d)\) denotes a 2-metric space. It has shown by Gähler [10] that a 2-metric \(d\) is non-negative and although \(d\) is a continuous function of any one of its three arguments, it need not be continuous in two arguments. A 2-metric \(d\) which is continuous in all of its arguments is said to be continuous.

Geometrically a 2-metric \(d(x, y, z)\) represents the area of a triangle with vertices \(x, y\) and \(z\).

Example 2.8 Let \(X = \mathbb{R}^3\) and let \(d(x, y, z)\) is the area of the triangle spanned by \(x, y\) and \(z\) which may be given explicitly by the formula, \(d(x, y, z) = [x_1(y_2z_3 - y_3z_2) - x_2(y_1z_3 - y_3z_1) + x_3(y_1z_2 - y_2z_1)],\) where \(x = (x_1, x_2, x_3), y = (y_1, y_2, y_3), z = (z_1, z_2, z_3).\) Then \((X, d)\) is a 2-metric space.

Definition 2.9 (18) The 3-tuple \((X, M, N, \ast)\) is said to be a fuzzy 2-metric space (shortly, F2M-space) if \(X\) is an arbitrary set, \(\ast\) is a continuous \(t\)-norm, and \(M\) is fuzzy sets on \(X^3 \times [0, \infty)\) satisfying the following conditions: for all \(x, y, z, u \in X\) and \(r, s, t > 0\).

(IFM2) \(M(x, y, z, 0) = 0,\)

(IFM3) \(M(x, y, z, t) = 1,\) if and only if at least two of the three points are equal,

(IFM4) \(M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t).\)

(Symmetry about first three variables)
(IFM5) $M(x, y, z, r + s + t) \geq M(x, y, u, r) \ast M(x, u, z, s) \ast M(u, y, z, t)$.
(This corresponds to tetrahedron inequality in 2-metric space, the function value $M(x, y, z, t)$ may be interpreted as the probability that the area of triangle is less than t.)

(IFM6) $M(x, y, z, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous.

Definition 2.10 (19) The 5-tuple $(X, M, N, *, \Diamond)$ is said to be an intuitionistic fuzzy 2-metric space (shortly, IF2M-space) if X is an arbitrary set, $*$ is a continuous t-norm, \Diamond is a continuous t-conorm, and M, N are fuzzy sets on $X^3 \times [0, \infty)$ satisfying the following conditions:

for all $x, y, z, w \in X$ and $r, s, t > 0$.

(IF2M1) $M(x, y, z, t) + N(x, y, z, t) \leq 1$,

(IF2M2) given distinct elements x, y, z of X there exists an element z of X such that $M(x, y, z, 0) = 0$,

(IF2M3) $M(x, y, z, t) = 1$, if at least two of x, y, z of X are equal,

(IF2M4) $M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t)$,

(IF2M5) $M(x, y, z, r + s + t) \geq M(x, y, w, r) \ast M(x, w, z, s) \ast M(w, y, z, t)$;

(IF2M6) $M(x, y, z, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous,

(IF2M7) $N(x, y, z, 0) = 1$,

(IF2M8) $N(x, y, z, t) = 0$, if at least two of x, y, z of X are equal,

(IF2M9) $N(x, y, z, t) = N(x, z, y, t) = N(y, z, x, t)$,

(IF2M10) $N(x, y, z, r + s + t) \leq N(x, y, w, r) \Diamond N(x, w, z, s) \Diamond N(w, y, z, t)$;

(IF2M11) $N(x, y, z, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous,

In this case (M, N) is called an intuitionistic fuzzy 2-metric on X. The function $M(x, y, z, t)$ and $N(x, y, z, t)$ denote the degree of nearness and the degree of non-nearness between x, y and z with respect to t, respectively.

Example 2.11 Let (X, d) be a 2-metric space. Denote $a \ast b = ab$ and $a \Diamond b = min\{1, a + b\}$ for all $a, b \in [0, 1]$ and M_d and N_d be fuzzy sets on $X^3 \times [0, \infty)$ defined by

$$M_d(x, y, z, t) = \frac{ht^n}{ht^n + md(x, y, z)}, N_d(x, y, z, t) = \frac{d(x, y, z)}{kt^n + md(x, y, z)}$$

for all $h, k, m, n \in R^+$. Then $(X, M_d, N_d, *, \Diamond)$ is IF2M-space.
Definition 2.12 Let \((X, M, N, *, \triangleleft)\) be an IF2M-space.

(a) A sequence \(\{x_n\}\) in IF2M-space \(X\) is said to be convergent to a point \(x \in X\) (denoted by \(\lim_{n \to \infty} x_n = x\) or \(x_n \to x\)) if for any \(\lambda \in (0, 1)\) and \(t > 0\), there exists \(n_0 \in \mathbb{N}\) such that for all \(n \geq n_0\) and \(a \in X\),
\[
M(x_n, x, a, t) > 1 - \lambda \quad \text{and} \quad N(x_n, x, a, t) < \lambda.
\]
That is \(\lim_{n \to \infty} M(x_n, x, a, t) = 1\) and \(\lim_{n \to \infty} N(x_n, x, a, t) = 0\), for \(a \in X\) and \(t > 0\).

(b) A sequence \(\{x_n\}\) in IF2M-space \(X\) is called a Cauchy sequence, if for any \(\lambda \in (0, 1)\) and \(t > 0\), there exists \(n_0 \in \mathbb{N}\) such that for all \(m, n \geq n_0\) and \(a \in X\),
\[
M(x_m, x_n, a, t) > 1 - \lambda \quad \text{and} \quad N(x_m, x_n, a, t) < \lambda.
\]
That is \(\lim_{m, n \to \infty} M(x_m, x_n, a, t) = 1\) and \(\lim_{m, n \to \infty} N(x_m, x_n, a, t) = 0\), for \(a \in X\) and \(t > 0\).

(c) The IF2M-space \(X\) is said to be complete if and only if every Cauchy sequence is convergent.

Definition 2.13 Self mappings \(A\) and \(B\) of an IF2M-space \((X, M, N, *, \triangleleft)\) is said be compatible, if
\[
\lim_{n \to \infty} M(ABx_n, BAx_n, a, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(ABx_n, BAx_n, a, t) = 0
\]
for all \(a \in X\) and \(t > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Bx_n = z\) for some \(z \in X\).

3 Main Results

Lemma 3.1 Let \((X, M, N, *, \triangleleft)\) be an IF2M-space. Then \(M(x, y, z, t)\) is non-decreasing and \(N(x, y, z, t)\) is non-increasing for all \(x, y, z \in X\).

Proof: Let \(s, t > 0\) be any points such that \(t > s\). \(t = s + \frac{t-s}{2} + \frac{t-s}{2}\). Hence we have
\[
N(x, y, z, t) = N(x, y, z, s + \frac{t-s}{2} + \frac{t-s}{2})
\leq N(x, y, z, s)\triangleleft N(x, z, z, \frac{t-s}{2})\triangleleft N(z, y, z, \frac{t-s}{2})
= N(x, y, z, s)
\]
Thus \(N(x, y, z, t) < N(x, y, z, s)\). Similarly, \(M(x, y, z, t) > M(x, y, z, s)\). Therefore, \(M(x, y, z, t)\) is non-decreasing and \(N(x, y, z, t)\) is non-increasing.

From Lemma 3.1, let \((X, M, N, *, \triangleleft)\) be an IF2M-space with the following conditions:
\[
\lim_{t \to \infty} M(x, y, z, t) = 1, \quad \lim_{t \to \infty} N(x, y, z, t) = 0
\]
Lemma 3.2 Let \((X, M, N, *, \Diamond)\) be an IF2M-space. If there exists \(q \in (0, 1)\) such that \(M(x, y, z, q t + 0) \geq M(x, y, z, t)\) and \(N(x, y, z, q t + 0) \leq N(x, y, z, t)\) for all \(x, y, z \in X\) with \(z \neq x, z \neq y\) and \(t > 0\). Then \(x = y\).

Proof: Since
\[
M(x, y, z, t) \geq M(x, y, z, q t + 0) \geq M(x, y, z, t), \quad \text{and}
\]
\[
N(x, y, z, t) \leq N(x, y, z, q t + 0) \leq N(x, y, z, t)
\]
for all \(t > 0\), \(M(x, y, z, t)\) and \(N(x, y, z, t)\) are constant. Since \(\lim_{t \to \infty} M(x, y, z, t) = 1\), \(\lim_{t \to \infty} N(x, y, z, t) = 0\). Then \(M(x, y, z, t) = 1\) and \(N(x, y, z, t) = 0\). Consequently, for all \(t > 0\). Hence \(x = y\) because \(z \neq x, z \neq y\).

Lemma 3.3 Let \((X, M, N, *, \Diamond)\) be an IF2M-space and let \(\lim_{t \to \infty} x_n = x, \lim_{t \to \infty} y_n = y\). Then the following are satisfied for all \(a \in X\) and \(t \geq 0\)

(1) \(\lim_{n \to \infty} \inf M(x_n, y_n, a, t) \geq M(x, y, a, t)\) and
\[
\lim_{n \to \infty} \sup N(x_n, y_n, a, t) \leq N(x, y, a, t)
\]

(2) \(M(x, y, a, t + 0) \geq \lim_{n \to \infty} \sup M(x_n, y_n, a, t)\) and
\[
N(x, y, a, t + 0) \leq \lim_{n \to \infty} \inf N(x_n, y_n, a, t)
\]

Proof: (1) For all \(a \in X\) and \(t \geq 0\) we have
\[
M(x_n, y_n, a, t) \geq M(x_n, y_n, x, t_1) * M(x_n, x, a, t_2) * M(x_n, y_n, a, t), t_1 + t_2 = 0
\]
\[
\geq M(x, y, a, t_4) * M(y, y, a, t), t_3 + t_4 = 0
\]
which implies \(\lim_{n \to \infty} \inf M(x_n, y_n, a, t) \geq M(x, y, a, t)\)

Also,
\[
N(x_n, y_n, a, t) \leq N(x_n, y_n, x, t_1) \Diamond N(x_n, x, a, t_2) \Diamond N(x_n, y_n, a, t), t_1 + t_2 = 0
\]
\[
\leq N(x, y, a, t_4) \Diamond N(y, y, a, t), t_3 + t_4 = 0
\]
which implies \(\lim_{n \to \infty} \sup N(x_n, y_n, a, t) \leq 0 \Diamond 0 \Diamond N(x, y, a, t) \Diamond 0 = N(x, y, a, t)\)

(2) Let \(\epsilon > 0\) be given. For all \(a \in X\) and \(t > 0\) we have
\[
M(x, y, a, t + 2\epsilon) \geq M(x, y, x_n, \frac{\epsilon}{2}) * M(x, x_n, a, \frac{\epsilon}{2}) * M(x_n, y, a, t + \epsilon)
\]
\[
\geq M(x, y, x_n, \frac{\epsilon}{2}) * M(x, x_n, a, \frac{\epsilon}{2}) * M(x_n, y_n, \frac{\epsilon}{2})
\]
\[
* M(x_n, y_n, a, t) * M(y_n, y_n, a, \frac{\epsilon}{2}).
\]
Consequently,

\[M(x, y, a, t + 2\epsilon) \geq \lim_{n \to \infty} \sup M(x_n, y_n, a, t). \]

Letting \(\epsilon \to 0 \), we have

\[M(x, y, a, t + 0) \geq \lim_{n \to \infty} \sup M(x_n, y_n, a, t). \]

Also, we have

\[
N(x, y, a, t + 2\epsilon) \leq N(x, y, x_n, \frac{\epsilon}{2}) \Diamond N(x, y, a, \frac{\epsilon}{2}) \Diamond N(x_n, y_n, \frac{\epsilon}{2}) \Diamond N(y, y, a, \frac{\epsilon}{2}).
\]

Consequently,

\[N(x, y, a, t + 2\epsilon) \leq \lim_{n \to \infty} \inf N(x_n, y_n, a, t). \]

Letting \(\epsilon \to 0 \), we have

\[N(x, y, a, t + 0) \leq \lim_{n \to \infty} \inf N(x_n, y_n, a, t). \]

Lemma 3.4 Let \((X, M, N, *, \Diamond)\) be an IF2M-space and let \(A\) and \(B\) be continuous self mappings of \(X\) and \([A, B]\) are compatible. Let \(x_n\) be a sequence in \(X\) such that \(Ax_n \to z\) and \(Bx_n \to z\). Then \(ABx_n \to Bz\).

Proof: Since \(A, B\) are continuous maps, \(ABx_n \to Az, BAx_n \to Bz\) and so, \(M(ABx_n, Az, a, \frac{t}{3}) \to 1\) and \(M(BAx_n, Bz, a, \frac{t}{3}) \to 1\) for all \(a \in X\) and \(t > 0\).

Since the pair \([A, B]\) is compatible, \(M(BAx_n, ABx_n, a, \frac{t}{3}) \to 1\) for all or all \(a \in X\) and \(t > 0\). Thus

\[
M(ABx_n, Bz, a, t) \geq M(ABx_n, Bz, BAx_n, \frac{t}{3}) \ast M(ABx_n, BAx_n, a, \frac{t}{3})
\]
\[
\ast M(BAx_n, Bz, a, \frac{t}{3})
\]
\[
\geq M(BAx_n, Bz, ABx_n, \frac{t}{3}) \ast M(BAx_n, ABx_n, a, \frac{t}{3})
\]
\[
\ast M(BAx_n, Bz, a, \frac{t}{3})
\]
\[
\to 1
\]
Also we have
\[N(ABx_n, Bz, a, t) \leq N(ABx_n, Bz, BAx_n, \frac{t}{3}) \triangle N(ABx_n, Bz, A, \frac{t}{3}) \]
\[\leq N(BAx_n, Bz, ABx_n, \frac{t}{3}) \triangle N(BAx_n, Bz, a, \frac{t}{3}) \]
\[\rightarrow 0 \]
for all \(a \in X \) and \(t > 0 \).
Hence \(ABx_n \rightarrow Bz \).

Theorem 3.5 Let \((X, M, N, *, \triangle)\) be a complete IF2M-space with continuous \(t \)-norm \(*\) and continuous \(t \)-conorm \(\triangle\). Let \(S \) and \(T \) be continuous self mappings of \(X \). Then \(S \) and \(T \) have a unique common fixed point in \(X \) if and only if there exists two self mappings \(A, B \) of \(X \) satisfying

1. \(AX \subset TX, BX \subset SX \),
2. the pair \(\{A, S\} \) and \(\{B, T\} \) are compatible,
3. there exists \(q \in (0, 1) \) such that for every \(x, y, a \in X \) and \(t > 0 \)
 \[M(Ax, By, a, qt) \geq \min\{M(Sx, Ty, a, t), M(Ax, Sx, a, t), M(By, Ty, a, t), M(Ax, Ty, a, t)\} \]
 \[N(Ax, By, a, qt) \leq \max\{N(Sx, Ty, a, t), N(Ax, Sx, a, t), N(By, Ty, a, t), N(Ax, Ty, a, t)\} \]
 Then \(A, B \) and \(T \) have a unique common fixed point in \(X \).

Proof: Suppose that \(S \) and \(T \) have a (unique) common fixed point say \(z \in X \). Define \(A : X \rightarrow X \) be \(Ax = z \) for all \(x \in X \), and \(B : X \rightarrow X \) be \(Bx = z \) for all \(x \in X \).

Then one can see that (1)-(3) are satisfied.

Conversely, assume that there exist two self mappings \(A, B \) of \(X \) satisfying condition (1)-(3). From condition (1) we can construct two sequences \(x_n \) and \(y_n \) of \(X \) such that \(y_{2n-1} = Tx_{2n-1} = Ax_{2n-2} \) and \(y_{2n} = Sx_{2n} = Bx_{2n-1} \) for \(n = 1, 2, 3, \ldots \). Putting \(x = x_{2n} \) and \(x = x_{2n+1} \) in condition (3), we have that for all \(a \in X \) and \(t > 0 \)
\[M(y_{2n+1}, y_{2n+2}, a, qt) = M(Ax_{2n}, Bx_{2n+1}, a, qt) \geq \min\{M(Sx_{2n}, Tx_{2n+1}, a, t), M(Ax_{2n}, Sx_{2n}, a, t)\} \]
Let

\[\left\{ \right. \]

We now show that

\[\geq \min \{ M(yx_{2n}, yx_{2n+1}, a, qt), M(yx_{2n+1}, yx_{2n+1}, a, qt) \} \]

and

\[N(yx_{2n+1}, yx_{2n+2}, a, qt) = N(Ax_{2n}, Bx_{2n+1}, a, qt) \]
\[\leq \max \{ N(Sx_{2n}, Tx_{2n+1}, a, t), N(Ax_{2n}, Sx_{2n}, a, t) \} \]
\[N(Bx_{2n+1}, Tx_{2n+1}, a, t), N(Ax_{2n}, Tx_{2n+1}, a, t) \} \]
\[\leq \max \{ N(yx_{2n}, yx_{2n+1}, a, qt), N(yx_{2n+1}, yx_{2n+1}, a, qt) \} \]

which implies

\[M(yx_{2n+1}, yx_{2n+1}, a, qt) \geq M(yx_{2n+1}, yx_{2n+1}, a, qt) \]

by Lemma 3.1. Also, letting \(x = x_{2n+2} \) and \(y = x_{2n+1} \) in condition (3), we have that

\[M(y_{2n+2}, y_{2n+3}, a, qt) \geq M(y_{2n+1}, y_{2n+2}, a, t) \]
\n
In general we obtain that for all \(a \in X \) and \(t > 0 \) and \(n = 1, 2, ... \)

\[M(y_{n}, y_{n+1}, a, qt) \geq M(y_{n-1}, y_{n}, a, t) \]
\n
Thus, for all \(a \in X \) and \(t > 0 \) and \(n = 1, 2, ... \)

\[M(y_{n}, y_{n+1}, a, t) \geq M(0, y_{1}, a, \frac{t}{q^n}) \quad (3.1) \]

and

\[N(y_{n}, y_{n+1}, a, t) \leq N(y_{0}, y_{1}, a, \frac{t}{q^n}) \quad (3.2) \]

We now show that \(\{ y_{n} \} \) is a Cauchy sequence in \(X \).

Let \(m > n \). Then for all \(a \in X \) and \(t > 0 \) we have

\[M(y_{m}, y_{n}, a, t) \]
\[\geq M(y_{m}, y_{n}, y_{n+1}, \frac{t}{3}) * M(y_{n+1}, y_{n}, a, \frac{t}{3}) * M(y_{m}, y_{n+1}, y_{n+2}, \frac{t}{32}) * M(y_{n+2}, y_{n+1}, a, \frac{t}{32}) \]
\[M(y_{m}, y_{n+2}, a, \frac{t}{32}) \]
\[
M(y_m, y_{m-n}, a, \frac{t}{3m-n})
\]

and
\[
N(y_m, y_n, a, t) \leq N(y_m, y_{n+1}, \frac{t}{3}) \triangleq N(y_{n+1}, y_n, a, \frac{t}{3})
\]
\[
N(y_m, y_{n+1}, a, \frac{t}{3})
\]
\[
N(y_m, y_{n+1}, y_{n+2}, \frac{t}{3^2}) \triangleq N(y_{n+2}, y_{n+1}, a, \frac{t}{3^2})
\]
\[
N(y_m, y_{n+2}, a, \frac{t}{3^2})
\]
\[
N(y_m, y_{m-n}, a, \frac{t}{3m-n})
\]

letting \(m, n \to \infty\) we have
\[
\lim_{n \to \infty} M(y_m, y_n, a, t) = 1, \lim_{n \to \infty} N(y_m, y_n, a, t) = 0. \text{ Thus } \{y_n\} \text{ is a Cauchy sequence in } X.
\]

It follows from completeness of \(X\) that there exists \(z \in X\) such that \(\lim_{n \to \infty} y_n = z\). Hence \(\lim y_{2n-1} = \lim_{n \to \infty} Tx_{2n-1} = \lim_{n \to \infty} Ax_{2n-2} = z\) and \(\lim y_{2n} = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} Bx_{2n-1} = z\). From Lemma 3.4, \(ASx_{2n+1} = Sz\) and \(BTx_{2n+1} = Tz\) (3.3)

Meanwhile, for all \(a \in X\) with \(a \neq Sz\) and \(a \neq Tz\) and \(t > 0\),
\[
M(ASx_{2n+1}, BTx_{2n+1}, a, qt) \geq \min\{M(SSx_{2n+1}, TTx_{2n+1}, a, t), \newline M(ASx_{2n+1}, Sx_{2n+1}, a, t), \newline M(BTx_{2n+1}, TTx_{2n+1}, a, t), \newline M(ASx_{2n+1}, TTx_{2n+1}, a, t)\}
\]

and
\[
N(ASx_{2n+1}, BTx_{2n+1}, a, qt) \leq \max\{N(SSx_{2n+1}, TTx_{2n+1}, a, t), \newline N(ASx_{2n+1}, Sx_{2n+1}, a, t), \newline N(BTx_{2n+1}, TTx_{2n+1}, a, t), \newline N(ASx_{2n+1}, TTx_{2n+1}, a, t)\}.
\]
Taking limit as \(n \to \infty \) and using (3.3), we have for all \(a \in X \) with \(a \neq Sz \) and \(a \neq Tz \) and \(t > 0 \).

\[
M(Sz, Tz, a, qt + 0) \geq \min \{ M(Sz, Tz, a, t), M(Sz, Sz, a, t), \\
M(Tz, Tz, a, t), M(Sz, Tz, a, t) \}
\]

and

\[
N(Sz, Tz, a, qt + 0) \leq \max \{ N(Sz, Tz, a, t), N(Sz, Sz, a, t), \\
N(Tz, Tz, a, t), N(Sz, Tz, a, t) \}
\]

By Lemma 3.2, we have \(Sz = Tz \) \hspace{1cm} (3.4)

From condition (3), we get for all \(a \in X \) with \(a \neq Az, a \neq Tz \) and \(t > 0 \)

\[
M(Az, BTx_{2n+1}, a, qt) \geq \min \{ M(Sz, TTx_{2n+1}, a, t), M(Az, Sz, a, t), \\
M(BTx_{2n+1}, TTx_{2n+1}, a, t), M(Az, TTx_{2n+1}, a, t) \}
\]

and

\[
N(Az, BTx_{2n+1}, a, qt) \leq \max \{ N(Sz, TTx_{2n+1}, a, t), N(Az, Sz, a, t), \\
N(BTx_{2n+1}, TTx_{2n+1}, a, t), N(Az, TTx_{2n+1}, a, t) \}
\]

Taking limit as \(n \to \infty \) and using condition (3), and Lemma 3.3, we have for all \(a \in X \)

\[
M(Az, Tz, a, qt + 0) \geq \min \{ M(Sz, Tz, a, t), M(Az, Sz, a, t), \\
M(Tz, Tz, a, t), M(Az, Tz, a, t) \}
\]

and

\[
N(Az, Tz, a, qt + 0) \leq \max \{ N(Sz, Tz, a, t), N(Az, Sz, a, t), \\
N(Tz, Tz, a, t), N(Az, Tz, a, t) \}
\]

By Lemma 3.2, we have, \(Az = Tz \) \hspace{1cm} (3.5)

And for all \(a \in X \) with \(a \neq Az \) and \(a \neq Bz \), and \(t > 0 \).

\[
M(Az, Bz, a, qt) \geq \min \{ M(Sz, Tz, a, t), M(Az, Sz, a, t), \\
M(Bz, Tz, a, t), M(Az, Tz, a, t) \} \\
\geq \min \{ M(Tz, Tz, a, t), M(Tz, Tz, a, t), \\
M(Bz, Az, a, t), M(Tz, Tz, a, t) \} \\
M(Az, Bz, a, t)
\]
and

\[N(Az, Bz, a, qt) \leq \min\{N(Sz, Tz, a, t), N(Az, Sz, a, t), \\
N(Bz, Tz, a, t), N(Az, Tz, a, t)\} \]
\[\leq \max\{N(Tz, Tz, a, t), N(Tz, Tz, a, t), \\
N(Bz, Az, a, t), N(Tz, Tz, a, t)\} \]
\[N(Az, Bz, a, t) \]

By Lemma 3.2, \(Az = Bz \)

(3.6)

It follows that \(Az = Bz = Sz = Tz \). For all \(a \in X \) with \(a \neq Bz \) and \(a \neq z \), and \(t > 0 \).

\[M(Ax_{2n}, Bz, a, qt) \geq \min\{M(Sx_{2n}, Tz, a, t), M(Ax_{2n}, Sx_{2n}, a, t), \\
M(Bz, Tz, a, t), M(Ax_{2n}, Tz, a, t)\} \]

and

\[N(Ax_{2n}, Bz, a, qt) \leq \max\{N(Sx_{2n}, Tz, a, t), N(Ax_{2n}, Sx_{2n}, a, t), \\
N(Bz, Tz, a, t), N(Ax_{2n}, Tz, a, t)\} \]

Taking limit as \(n \to \infty \) and using (3.3) and Lemma 3.3, we have for all \(a \in X \) with \(a \neq Bz, a \neq z \) and \(t > 0 \).

\[M(z, Bz, a, qt + 0) \geq \min\{M(z, Tz, a, t), M(z, z, a, t), \\
M(Bz, Bz, a, t), M(z, Tz, a, t)\} \]
\[\geq M(z, Tz, a, t) \geq M(z, Bz, a, t) \]

and

\[N(z, Bz, a, qt + 0) \leq \max\{N(z, Tz, a, t), N(z, z, a, t), \\
N(Bz, Bz, a, t), N(z, Tz, a, t)\} \]
\[\leq N(z, Tz, a, t) \leq N(z, Bz, a, t), \]

and so we have, \(M(z, Bz, a, qt) \geq M(z, Bz, a, t) \) and \(N(z, Bz, a, qt) \leq N(z, Bz, a, t) \), and hence \(Bz = z \). Thus, \(z = Az = Bz = Sz = Tz \), and so \(z \) is a common fixed point of \(A, B, C \) and \(T \).

For uniqueness, let \(w \) be another common fixed point of \(A, B, S, T \). Then, for all \(a \in X \) with \(a \neq z \), \(a \neq w \) and \(t > 0 \).

\[M(z, w, a, qt) = M(Az, Bw, a, qt) \]
\[\geq \min\{M(Sz, Tw, a, t), M(Az, Sz, a, t), \\
M(Bw, Tw, a, t), M(Az, Tw, a, t)\} \]
\[\geq \min\{M(z, w, a, t), M(z, z, a, t), \\
M(w, w, a, t), M(z, w, a, t)\} \]
\[\geq M(z, w, a, t). \]

and
\[N(z, w, a, qt) = N(Az, Bw, a, qt) \]
\[\leq \max\{N(Sz, Tw, a, t), N(Az, Sz, a, t), \\
N(Bw, Tw, a, t), N(Az, Tw, a, t)\} \]
\[\leq \max\{N(z, w, a, t), N(z, z, a, t), \\
N(w, w, a, t), N(z, w, a, t)\} \]
\[\leq N(z, w, a, t). \]

which implies that \(M(z, w, a, qt) \geq M(z, w, a, t)\) and \(N(z, w, a, qt) \geq N(z, w, a, t)\), hence \(z = w\). This complete the proof of.

References

