A Study on \((Q, L)\) - Fuzzy Subsemiring of a Semiring

S. Sampathu\(^1\), S. Anita Shanthi\(^2\) and A. Praveen Prakash\(^3\)

\(^1\)Department of Mathematics, Sri Muthukumaran College of Education
Chikkarayapuram, Chennai – 600069, Tamil Nadu, India
E-mail: sampathugokul@yahoo.in

\(^2\)Department of Mathematics, Annamalai University
Annamalainagar – 608002, Tamil Nadu, India
E-mail: shanthi.Anita@yahoo.com

\(^3\)Department of Mathematics, Hindustan University
Padur, Chennai - 603103, Tamil Nadu, India
E-mail: apraveenprakash@gmail.com

(Received: 13-4-15 / Accepted: 28-5-15)

Abstract

In this paper, we introduce the concept of \((Q,L)\)- fuzzy subsemirings of a semiring and establish some results on these. We also made an attempt to study the properties of \((Q,L)\)-fuzzy subsemirings of semiring under homomorphism and anti-homomorphism, and study the main theorem for this. We shall also give new results on this subject.

Keywords: \((Q,L)\)-fuzzy subset, \((Q,L)\)-fuzzy subsemiring, \((Q,L)\)-fuzzy relation, Product of \((Q,L)\)-fuzzy subsets, pseudo \((Q,L)\)-fuzzy coset, \((Q,L)\)-anti-fuzzy subsemiring.
Introduction

There are many concepts of universal algebras generalizing an associative ring \((R; +, \cdot)\). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. An algebra \((R; +, \cdot)\) is said to be a semiring if \((R; +)\) and \((R; \cdot)\) are semigroups satisfying \(a.(b+c)=a.b+a.c\) and \((b+c).a=b.a+c.a\) for all \(a, b, c\) in \(R\). A semiring \(R\) is said to be additively commutative if \(a+b=b+a\) for all \(a, b\) in \(R\). A semiring \(R\) may have an identity \(1\), defined by \(1 \cdot a = a = a \cdot 1\) and a zero \(0\), defined by \(0+a=a=a+0\) and \(a.0=0=0.a\) for all \(a\) in \(R\). After the introduced of fuzzy sets by L.A. Zadeh [7], several researchers explored on the generalization of the notion of fuzzy set. Azriel Rosenfeld [2] defined a fuzzy group. Asok Kumer Ray [1] defined a product of fuzzy subgroups and Fuzzy subgroups and Anti-fuzzy subgroups have introduced R. Biswas [14] A. Solairaju and R. Nagarajan [3] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of \((Q, L)\)-fuzzy subsemiring of a semiring and established some results.

1 Preliminaries:

1.1 Definition: Let \(X\) be a non–empty set. A fuzzy subset \(A\) of \(X\) is a function \(A : X \rightarrow [0, 1]\).

1.2 Definition: Let \(X\) be a non-empty set and \(L = (L, \leq)\) be a lattice with least element 0 and greatest element 1 and \(Q\) be a non-empty set. A \((Q, L)\)-fuzzy subset \(A\) of \(X\) is a function \(A: X \times Q \rightarrow L\).

1.3 Definition: Let \((R, +, \cdot)\) be a semiring and \(Q\) be a non-empty set. A \((Q, L)\)-fuzzy subset \(A\) of \(R\) is said to be a \((Q, L)\)-fuzzy subsemiring (QLFSSR) of \(R\) if the following conditions are satisfied:

(i) \(A(x+y, q) \geq A(x, q) \land A(y, q),\)
(ii) \(A(xy, q) \geq A(x, q) \land A(y, q),\) for all \(x\) and \(y\) in \(R\) and \(q\) in \(Q\).

1.4 Definition: Let \(A\) and \(B\) be any two \((Q, L)\)-fuzzy subsets of sets \(R\) and \(H\), respectively. The product of \(A\) and \(B\), denoted by \(A \times B\), is defined as \(A \times B = \{(x, y) \in \{x \in R \land y \in H\}, q \in Q\}, \) where \(A \times B((x, y), q) = A(x, q) \land B(y, q)\).

1.5 Definition: Let \((R, +, \cdot)\) and \((R', +, \cdot)\) be any two semirings and \(Q\) be a non empty set. Let \(f: R \rightarrow R'\) be any function and \(A\) be a \((Q, L)\)-fuzzy subsemiring in \(R\), \(V\) be a \((Q, L)\)-fuzzy subsemiring in \(f(R)=R'\), defined by \(V(y, q) = \sup_{x \in f^{-1}(y)} A(x, q)\), for all \(x\) in \(R\) and \(y\) in \(R'\) and \(q\) in \(Q\). Then \(A\) is called a pre-image of \(V\) under \(f\) and is denoted by \(f^{-1}(V)\).
1.6 Definition: Let A be an (Q, L)-fuzzy subsemiring of a semiring $(R, +, \cdot)$ and a in R. Then the pseudo (Q, L)-fuzzy coset $(aA)_p^q$ is defined by $(aA)_p^q(x, q) = p(a)A(x, q)$, for every x in R and for some p in P and q in Q.

1.7 Definition: Let A be a (Q, L)-fuzzy subset in a set S, the strongest (Q, L)-fuzzy relation on S, that is a (Q, L)-fuzzy relation V with respect to A given by $V((x, y), q) = A(x, q) \land A(y, q)$, for all x and y in S and q in Q.

1.8 Definition: Let $(R, +, \cdot)$ be a semiring and Q be a non empty set. A (Q, L)-fuzzy subset A of R is said to be a (Q, L)-anti-fuzzy subsemiring (QLAFSSR) of R if the following conditions are satisfied:

(i) $A(x+y, q) \leq A(x, q) \lor A(y, q)$,
(ii) $A(xy, q) \leq A(x, q) \lor A(y, q)$, for all x and y in R and q in Q.

1.9 Definition: Let X be a non-empty set and A be a (Q, L)-fuzzy subsemiring of a semiring R. Then A^0 is defined as $A^0(x, q) = A(x, q)/A(0, q)$, for all x in R and q in Q, where 0 is the identity element of R.

1.10 Definition: Let A be a (Q, L)-fuzzy subset of X. For α in L, a Q-level subset of A is the set $A_\alpha = \{ x \in X : A(x, q) \geq \alpha \}$.

2 Properties of (Q, L)-Fuzzy Subsemiring of a Semiring

2.1 Theorem: If A and B are two (Q, L)-fuzzy subsemiring of a semiring R, then their intersection $A \cap B$ is a (Q, L)-fuzzy subsemiring of R.

Proof: Let x and y belongs to R and q in Q, $A = \{ <(x, q), A(x, q) > \}$ in R and q in Q and $B = \{ <(x, q), B(x, q) > \}$ in R and q in Q. Let $C = A \cap B$ and $C = \{ <(x, q), C(x, q) > \}$ in R and q in Q.

(i) $C(x+y, q) = A(x+y, q) \land B(x+y, q) \geq \{ A(x, q) \land A(y, q) \} \land \{ B(x, q) \land B(y, q) \} \geq \{ A(x, q) \land B(x, q) \} \land \{ A(y, q) \land B(y, q) \} = C(x, q) \land C(y, q)$.

Therefore, $C(x+y, q) \geq C(x, q) \land C(y, q)$, for all x and y in R and q in Q.

(ii) $C(xy, q) = A(xy, q) \land B(xy, q) \geq \{ A(x, q) \land A(y, q) \} \land \{ B(x, q) \land B(y, q) \} \geq \{ A(x, q) \land B(x, q) \} \land \{ A(y, q) \land B(y, q) \} = C(x, q) \land C(y, q)$.

Therefore, $C(xy, q) \geq C(x, q) \land C(y, q)$, for all x and y in R and q in Q. Hence $A \cap B$ is a (Q, L)-fuzzy subsemiring of a semiring R.

2.2 Theorem: The intersection of a family of (Q, L)-fuzzy subsemiring of a semiring R is a (Q, L)-fuzzy subsemiring of R.
Proof: Let \(\{A_i\}_{i \in I} \) be a family of \((Q, L)\)-fuzzy subsemiring of a semiring \(R \) and \(A = \bigcap_{i \in I} A_i \). Then for \(x \) and \(y \) belongs to \(R \) and \(q \) in \(Q \), we have \(A(x+y, q) = \inf_{i \in I} A_i(x, q) \wedge A_i(y, q) \). Therefore, \(A(x+y, q) \geq \inf_{i \in I} A_i(x, q) \wedge A_i(y, q) \). Hence the intersection of a family of \((Q, L)\)-fuzzy subsemiring of a semiring \(R \) is a \((Q, L)\)-fuzzy subsemiring of \(R \).

2.3 Theorem: If \(A \) and \(B \) are \((Q, L)\)-fuzzy subsemiring of a semiring \(R \) and \(H \), respectively, then \(A \times B \) is a \((Q, L)\)-fuzzy subsemiring of \(R \times H \).

Proof: Let \(A \) and \(B \) be \((Q, L)\)-fuzzy subsemiring of a semiring \(R \) and \(H \), respectively. Let \(x_1 \) and \(x_2 \) be in \(R \), \(y_1 \) and \(y_2 \) be in \(H \). Then \((x_1, y_1) \) and \((x_2, y_2) \) are in \(R \times H \) and \(q \) in \(Q \). Now, \(A \times B[(x_1, y_1) + (x_2, y_2), q] = A \times B((x_1 + x_2, y_1 + y_2), q) = A(x_1 + x_2, q) \wedge B(y_1 + y_2, q) \geq \{ A(x_1, q) \wedge B(y_1, q) \} \wedge \{ A(x_2, q) \wedge B(y_2, q) \} = A \times B((x_1, y_1), q) \wedge A \times B((x_2, y_2), q). \)

Therefore, \(A \times B[(x_1, y_1) + (x_2, y_2), q] \geq A \times B((x_1, y_1), q) \wedge A \times B((x_2, y_2), q). \)

Hence \(A \times B \) is a \((Q, L)\)-fuzzy subsemiring of \(R \times H \).

2.4 Theorem: Let \(A \) be a \((Q, L)\)-fuzzy subset of a semiring \(R \) and \(V \) be the strongest \((Q, L)\)-fuzzy relation of \(R \). Then \(A \) is an \((Q, L)\)-fuzzy subsemiring of \(R \) if and only if \(V \) is an \((Q, L)\)-fuzzy subsemiring of \(R \times R \).

Proof: Suppose that \(A \) is an \((Q, L)\)-fuzzy subsemiring of a semiring \(R \). Then for any \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) are in \(R \times R \) and \(q \) in \(Q \). We have,

\[
V(x+y, q) = V((x_1, x_2) + (y_1, y_2), q) = V((x_1 + y_1, x_2 + y_2), q) = A((x_1 + y_1, q) \wedge A((x_2 + y_2, q) \geq \{ A(x_1, q) \wedge A(y_1, q) \} \wedge \{ A(x_2, q) \wedge A(y_2, q) \} = V((x_1, x_2), q) \wedge V(y_1, y_2), q) = V(x, q) \wedge V(y, q).
\]
Therefore, $V(x+y,q) \geq V(x,q) \land V(y,q)$, for all x and y in $R \times R$.

And,

$V(xy,q) = V((x_1y_1, x_2y_2),q) = V((x_1,y_1, x_2, y_2),q) = A(x_1,y_1,q) \land A(x_2,y_2,q) \geq [A(x_1,q) \land A(x_2,q)] \land [A(y_1,q) \land A(y_2,q)] = V((x_1,y_1),q) \land V((x_2,y_2),q) = V(x,q) \land V(y,q)$.

Therefore, $V(xy,q) \geq V(x,q) \land V(y,q)$, for all x and y in $R \times R$. This proves that V is an (Q,L)-fuzzy subsemiring of $R \times R$. Conversely assume that V is an (Q,L)-fuzzy subsemiring of $R \times R$, then for any $x=(x_1,x_2)$ and $y=(y_1,y_2)$ are in $R \times R$, we have

$A((x_1+y_1),q) \land A(x_2,y_2,q) = V((x_1+y_1),x_2, y_2),q) = V((x_1,y_1, x_2, y_2),q) = [A(x_1,q) \land A(x_2,q)] \land [A(y_1,q) \land A(y_2,q)]$

If $A((x_1+y_1),q) \leq A(x_2,y_2),q) = A(x_1,q) \land A(y_1,q) \leq A(x_2,q) \land A(y_2,q)$, we get,

$A((x_1+y_1),q) \geq A((x_1,q) \land A(y_1,q)$, for all x_1 and y_1 in R.

And,

$A((x_1y_1),q) \land A(x_2y_2,q) = V((x_1y_1, x_2y_2),q) = V((x_1,y_1, x_2, y_2),q) = [A(x_1,q) \land A(x_2,q)] \land [A(y_1,q) \land A(y_2,q)]$

If $A(x_1y_1,q) \leq A(x_2y_2),q) = A(x_1,q) \land A(x_2,q) \leq A(y_1,q) \land A(y_2,q)$, we get $A(x_1y_1,q) \geq A(x_1,q) \land A(y_1,q)$, for all x_1, y_1 in R. Therefore A is an (Q,L)-fuzzy subsemiring of R.

2.5 Theorem: A is an (Q,L)-fuzzy subsemiring of a semiring $(R, +, \cdot)$ if and only if $A((x+y),q) \geq A(x,q) \land A(y,q), A(xy,q) \geq A(x,q) \land A(y,q)$, for all x and y in R.

Proof: It is trivial.

2.6 Theorem: If A is an (Q,L)-fuzzy subsemiring of a semiring $(R, +, \cdot)$, then $H = \{ x \in R : A(x,q) = 1 \}$ is either empty or is a subsemiring of R.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A((x+y),q) \geq A(x,q) \land A(y,q) = 1 \land 1 = 1$. Therefore, $A((x+y),q) = 1$. And, $A(xy,q) \geq A(x,q) \land A(y,q) = 1 \land 1 = 1$. Therefore, $A(xy,q) = 1$. We get $x+y, xy$ in H. Therefore, H is a subsemiring of R. Hence H is either empty or is a subsemiring of R.

2.7 Theorem: If A be an (Q,L)-fuzzy subsemiring of a semiring $(R, +, \cdot)$, then if $A((x+y),q) = 0$, then either $A(x,q) = 0$ or $A(y,q) = 0$, for all x and y in R and q in Q.

Proof: Let x and y in R and q in Q. By the definition $A((x+y),q) \geq A(x,q) \land A(y,q)$, which implies that $0 \geq A(x,q) \land A(y,q)$. Therefore, either $A(x,q) = 0$ or $A(y,q) = 0$.
2.8 Theorem: Let A be a \((Q, L)\)-fuzzy subsemiring of a semiring \(R\). Then \(A^0\) is a \((Q, L)\)-fuzzy subsemiring of a semiring \(R\).

Proof: For any \(x \in R\) and \(q \in Q\), we have \(A^0(x+y,q) = A^0(x,q) \wedge A^0(y,q) \geq (1/A(0,q)) [A(x,q) \wedge A(y,q)] = [A(x,q)/A(0,q)] \wedge [A(y,q)/A(0,q)] = A^0(x,q) \wedge A^0(y,q)\).

That is \(A^0(x+y,q) \geq A^0(x,q) \wedge A^0(y,q)\) for all \(x, y \in R\) and \(q \in Q\).

\[A^0(xy,q) = A(x,y,q)/A(0,q) \geq (1/A(0,q)) [A(x,q) \wedge A(y,q)] = [A(x,q)/A(0,q)] \wedge [A(y,q)/A(0,q)] = A^0(x,q) \wedge A^0(y,q)\]

That is \(A^0(xy,q) \geq A^0(x,q) \wedge A^0(y,q)\) for all \(x, y \in R\) and \(q \in Q\). Hence \(A^0\) is a \((Q,L)\)-fuzzy subsemiring of a semiring \(R\).

2.9 Theorem: Let \(A\) be a \((Q, L)\)-fuzzy subsemiring of a semiring \(R\). \(A^+\) be a fuzzy set in \(R\) defined by \(A^+(x,q) = A(x,q) + 1 - A(0,q)\), for all \(x \in R\) and \(q \in Q\), where 0 is the identity element. Then \(A^+\) is an \((Q, L)\)-fuzzy subsemiring of a semiring \(R\).

Proof: Let \(x\) and \(y\) in \(R\) and \(q\) in \(Q\). We have,

\[A^+(x+y,q) = A^+(x,q) + A^+(y,q) \geq A(x,q) + A^0(y,q) = A(x,q) + 1 - A(0,q) = A(x,q) \wedge A^0(y,q)\]

which implies that \(A^+(x+y,q) \geq A^+(x,q) \wedge A^+(y,q)\) for all \(x, y \in R\) and \(q \in Q\).

\[A^+(xy,q) = A(x,y,q)/A(0,q) \geq A(x,q) \wedge A^0(y,q) = A(x,q)/A(0,q) \wedge A^0(y,q)\]

Therefore, \(A^+(xy,q) \geq A^+(x,q) \wedge A^+(y,q)\) for all \(x, y \in R\) and \(q \in Q\). Hence \(A^+\) is an \((Q,L)\)-fuzzy subsemiring of a semiring \(R\).

2.10 Theorem: Let \(A\) be an \((Q, L)\)-fuzzy subsemiring of a semiring \(R\), \(A^+\) be a fuzzy set in \(R\) defined by \(A^+(x,q) = A(x,q) + 1 - A(0,q)\), for all \(x \in R\) and \(q \in Q\), where 0 is the identity element. Then there exists 0 in \(R\) such that \(A(0,q) = 1\) if and only if \(A^+(x,q) = A(x,q)\).

Proof: It is trivial.

2.11 Theorem: Let \(A\) be an \((Q, L)\)-fuzzy subsemiring of a semiring \(R\), \(A^+\) be a fuzzy set in \(R\) defined by \(A^+(x,q) = A(x,q) + 1 - A(0,q)\), for all \(x \in R\) and \(q \in Q\), where 0 is the identity element. Then there exists \(x\) in \(R\) such that \(A^+(x,q) = 1\) if and only if \(x = 0\).

Proof: It is trivial.

2.12 Theorem: Let \(A\) be an \((Q, L)\)-fuzzy subsemiring of a semiring \(R\), \(A^+\) be a fuzzy set in \(R\) defined by \(A^+(x,q) = A(x,q) + 1 - A(0,q)\), for all \(x \in R\) and \(q \in Q\), where 0 is the identity element. Then \((A^+)^+ = A^+\).
Proof: Let x and y in R and q in Q. We have, $(A^+)^+(x,q) = A^+(x,q) + I - A^+(0,q) = \{A(x,q) + I - A(0,q)\} + I - \{A(0,q) + I - A(0,q)\} = A(x,q) + I - A(0,q) = A^+(x,q)$.

Hence $(A^+)^+ = A^+$.

2.13 Theorem:
Let A and B be (Q,L)-fuzzy subsets of the sets R and H respectively, and let α in L. Then $(A \times B)_\alpha = A_\alpha \times B_\alpha$.

Proof: Let α in L. Let (x, y) be in $(A \times B)_\alpha$ if and only if $A \times B((x,y),q) \geq \alpha$, if and only if $A(x,q) \wedge B(x,q) \geq \alpha$, if and only if $x \in A_\alpha$ and $y \in B_\alpha$, if and only if $(x, y) \in A_\alpha \times B_\alpha$. Therefore, $(A \times B)_\alpha = A_\alpha \times B_\alpha$.

In the following Theorem \circ is the composition operation of functions:

2.14 Theorem:
Let A be an (Q, L)-fuzzy subsemiring of a semiring H and f is an isomorphism from a semiring R onto H. Then $A \circ f$ is an (Q, L)-fuzzy subsemiring of R.

Proof: Let x and y in R and A be an (Q, L)-fuzzy subsemiring of a semiring H and Q be a non-empty set. Then we have,

$(A \circ f)((x+y), q) = A(f(x+y), q) = A(f(x,q) + f(y,q)) \geq A(f(x,q)) \wedge A(f(y,q)) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$, which implies that $(A \circ f)((x+y), q) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$.

And $(A \circ f)(xy,q) = A(f(xy), q) = A(f(x,q)f(y,q)) \geq A(f(x,q)) \wedge A(f(y,q)) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$, which implies that $(A \circ f)(xy,q) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$.

Therefore $(A \circ f)$ is an (Q, L)-fuzzy subsemiring of a semiring R.

2.15 Theorem:
Let A be an (Q, L)-fuzzy subsemiring of a semiring H and f is an anti-isomorphism from a semiring R onto H. Then $A \circ f$ is an (Q, L)-fuzzy subsemiring of R.

Proof: Let x and y in R and A be an (Q, L)-fuzzy subsemiring of a semiring H and Q be a non-empty set. Then we have,

$(A \circ f)((x+y), q) = A(f(x+y), q) = A(f(y,q) + f(x,q)) \geq A(f(y,q)) \wedge A(f(x,q)) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$, which implies that $(A \circ f)((x+y), q) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$.

And $(A \circ f)(xy,q) = A(f(xy), q) = A(f(y,q)f(x,q)) \geq A(f(x,q)) \wedge A(f(y,q)) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$, which implies that $(A \circ f)(xy,q) \geq (A \circ f)(x,q) \wedge (A \circ f)(y,q)$. Therefore $A \circ f$ is an (Q, L)-fuzzy subsemiring of a semiring R.

2.16 Theorem:
Let A be an (Q, L)-fuzzy subsemiring of a semiring $(R, +, \cdot)$, then the pseudo (Q, L)-fuzzy coset $(aA)^p$ is an (Q, L)-fuzzy subsemiring of a semiring R, for a in R and p in P.

Proof: Let A be an (Q, L)-fuzzy subsemiring of a semiring R. For every x and y in R and q in Q, we have,

$$((aA)^p)(x+y,q)=p(a)\cap A(x+y,q) \geq p(a)\cap (A(x,q) \wedge A(y,q)) = (((aA)^p)(x,q) \wedge ((aA)^p)(y,q)).$$

Therefore, $((aA)^p)(x+y,q) \geq (((aA)^p)(x,q) \wedge ((aA)^p)(y,q))$.

Hence $(aA)^p$ is an (Q, L)-fuzzy subsemiring of a semiring R.

2.17 Theorem: Let $(R, +, .)$ and $(R', +, .)$ be any two semirings Q be a non-empty set. The homomorphic image of an (Q, L)-fuzzy subsemiring of R is an (Q, L)-fuzzy subsemiring of R'.

Proof: Let $(R, +, .)$ and $(R', +, .)$ be any two semirings. Let $f: R \rightarrow R'$ be a homomorphism. Then, $f(x+y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $V = f(A)$, where A is an (Q,L)-fuzzy subsemiring of R. We have to prove that V is an (Q,L)-fuzzy subsemiring of R'. Now, for $f(x)$, $f(y)$ in R', $V(f(x)+f(y),q) = V(f(x+y),q) \geq A((x+y),q) \wedge A(y,q)$ which implies that $V(f(x)+f(y),q) \geq V(f(x),q) \wedge V(f(y),q)$.

Again, $V(f(x)f(y),q) = V(f(xy),q) \geq A(x,q) \wedge A(y,q)$ which implies that $V(f(x)f(y),q) \geq V(f(x),q) \wedge V(f(y),q)$. Hence V is an (Q, L)-fuzzy subsemiring of R'.

2.18 Theorem: Let $(R, +, .)$ and $(R', +, .)$ be any two semirings Q be a non-empty set. The homomorphic preimage of an (Q, L)-fuzzy subsemiring of R' is an (Q, L)-fuzzy subsemiring of R.

Proof: Let $(R, +, .)$ and $(R', +, .)$ be any two semirings. Let $f: R \rightarrow R'$ be a homomorphism. Then, $f(x+y) = f(x) + f(y)$ and $f(xy) = f(x)f(y)$, for all x and y in R. Let $V = f(A)$, where V is an (Q,L)-fuzzy subsemiring of R'. We have to prove that A is an (Q,L)-fuzzy subsemiring of R. Let x and y in R and q in Q. Then, $A(x+y,q) = V(f(x+y),q) = V(f(x)+f(y),q) \wedge V(f(y),q) = A(x,q) \wedge A(y,q)$ which implies that $A(x+y,q) \geq A(x,q) \wedge A(y,q)$.

Again, $A(xy,q) = V(f(xy),q) = V(f(x)f(y),q) \geq V(f(x),q) \wedge V(f(y),q) = A(x,q) \wedge A(y,q)$ which implies that $A(xy,q) \geq A(x,q) \wedge A(y,q)$.

Hence A is an (Q, L)-fuzzy subsemiring of R.
2.19 Theorem: Let \((R, +, \cdot)\) and \((R', +, \cdot)\) be any two semirings \(Q\) be a non-empty set. The anti-homomorphic image of an \((Q, L)\)-fuzzy subsemiring of \(R\) is an \((Q, L)\)-fuzzy subsemiring of \(R'\).

Proof: Let \((R, +, \cdot)\) and \((R', +, \cdot)\) be any two semirings. Let \(f: R \rightarrow R'\) be an anti-homomorphism. Then, \(f(x+y) = f(y)+f(x)\) and \(f(xy) = f(y)f(x)\), for all \(x, y \in R\) and \(q\) in \(Q\). Let \(V = f(A)\), where \(A\) is an \((Q, L)\)-fuzzy subsemiring of \(R\). We have to prove that \(V\) is an \((Q, L)\)-fuzzy subsemiring of \(R'\). Now, for \(x, y\) in \(R\), \(V(f(x)+f(y), q) \geq V(f(y+x), q) \geq A(y+x, q) \geq A(y, q) \land A(x, q) = A(x, q) \land A(y, q)\) which implies that \(V(f(x)+f(y), q) \geq V(f(x), q) \land V(f(y), q)\).

Again, \(V(f(x)f(y), q) = V(f(xy), q) \geq A(xy, q) \geq A(y, q) \land A(x, q) = A(x, q) \land A(y, q)\) which implies that \(V(f(x)f(y), q) \geq V(f(x), q) \land V(f(y), q)\). Hence \(V\) is an \((Q, L)\)-fuzzy subsemiring of \(R'\).

2.20 Theorem: Let \((R, +, \cdot)\) and \((R', +, \cdot)\) be any two semirings \(Q\) be a non-empty set. The anti-homomorphic preimage of an \((Q, L)\)-fuzzy subsemiring of \(R'\) is an \((Q, L)\)-fuzzy subsemiring of \(R\).

Proof: Let \((R, +, \cdot)\) and \((R', +, \cdot)\) be any two semirings. Let \(f: R \rightarrow R'\) be an anti-homomorphism. Then, \(f(x+y) = f(y)+f(x)\) and \(f(xy) = f(y)f(x)\), for all \(x, y \in R\) and \(q\) in \(Q\). Let \(V = f(A)\), where \(V\) is an \((Q, L)\)-fuzzy subsemiring of \(R'\). We have to prove that \(A\) is an \((Q, L)\)-fuzzy subsemiring of \(R\). Let \(x, y \in R\) and \(q\) in \(Q\).

Then \(A(x+y, q) = V(f(x+y), q) = V(f(x)+f(y), q) \geq V(f(y), q) \land V(f(x), q) = V(f(y), q) \land V(f(x), q) = V(f(x), q) \land V(f(y), q) = A(x, q) \land A(y, q)\), which implies that \(A(x+y, q) \geq A(x, q) \land A(y, q)\).

Again, \(A(xy, q) = V(f(xy), q) = V(f(y)f(x), q) \geq V(f(x), q) \land V(f(y), q) = V(f(x), q) \land V(f(y), q) = A(x, q) \land A(y, q)\) which implies that \(A(xy, q) \geq A(x, q) \land A(y, q)\).

Hence \(A\) is an \((Q, L)\)-fuzzy subsemiring of \(R\).

Acknowledgements

The authors would like to be thankful to the anonymous reviewers for their valuable suggestions.

References

