A Common Fixed Point Theorem for Sub Compatibility and Occasionally Weak Compatibility in Intuitionistic Fuzzy Metric Spaces

Krishnapal Singh Sisodia1, Deepak Singh2 and M.S. Rathore3

1Department of Mathematics, SISTec-E, Ratibad, Bhopal
\hspace{1cm} E-mail: sisodiakps@gmail.com
2NITTTR, Bhopal, Ministry of HRD, Govt. of India
\hspace{1cm} E-mail: dk.singh1002@gmail.com
3C.S.A. Government P.G College, Sehore
\hspace{1cm} E-mail: dr.rathore11@gmail.com

(Received: 27-11-13 / Accepted: 18-1-14)

Abstract

In this paper, we establish a common fixed point theorem for six maps using concept of subcompatibility and occasionally weak compatibility in Intuitionistic Fuzzy metric space. S. kutukcu [10] obtained a fixed point theorem for Menger spaces; we obtain its Intuitionistic Fuzzy metric space version with more generalized conditions relaxing completeness criteria. We also justify our findings with an example.

Keywords: Intuitionistic fuzzy metric space, Subcompatible mapping, Occasionally weakly compatible mapping, Common fixed point.
1 Introduction

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since, then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and applications. Atanassov [4] introduced and studied the concept of intuitionistic fuzzy sets. Intuitionistic fuzzy sets as a generalization of fuzzy sets can be useful in situations when description of a problem by a (fuzzy) linguistic variable, given in terms of a membership function only, seems too rough. Coker [6] introduced the concept of intuitionistic fuzzy topological spaces. Alaca et al. [2] proved the well-known fixed point theorems of Banach [5] in the setting of intuitionistic fuzzy metric spaces. Later on, Turkoglu et al. [16] proved Jungck’s [8] common fixed point theorem in the setting of intuitionistic fuzzy metric space. Turkoglu et al. [16] further formulated the notions of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric spaces and proved the intuitionistic fuzzy version of pants theorem [12]. Gregori et al. [7], Saadati and Park [13] studied the concept of intuitionistic fuzzy metric space and its applications.

Recently, Saurabh Manro et al. [11] introduced the notion of subcompatibility and subsequential continuity in Intuitionistic Fuzzy metric space and proved some result for four self maps. Inspired by the result of Saurabh Manro et al. [11], in this paper we prove a common fixed point theorem for six self maps which is a generalization of [10].

2 Preliminaries

Definition 2.1[14] A binary operation $*: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norm, if $*$ is satisfying the following conditions:

(i) $*$ is commutative and associative
(ii) $*$ is continuous
(iii) $a * 1 = a$ for all $a \in [0,1]$
(iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for $a, b, c, d \in [0,1]$.

Definition 2.2[14] A binary operation $\diamondsuit: [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-conorm if \diamondsuit it satisfies the following conditions:

(i) \diamondsuit is commutative and associative
(ii) \diamondsuit is continuous
(iii) $a \diamondsuit 0 = a$ for all $a \in [0, 1]$
(iv) $a \diamondsuit b \leq c \diamondsuit d$ whenever $a \leq c$ and $b \leq d$ for $a, b, c, d \in [0,1]$.

Definition 2.3[2] A 5-tuple $(X, M, N, *, \diamondsuit)$ is said to be an intuitionistic fuzzy metric space (shortly IFM-Space) if X is an arbitrary set, $*$ is a continuous t-
norm. ϕ is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions:

For all $x, y, z \in X$ and $s, t > 0$,

1. (IFM-1) $M(x, y, t) + N(x, y, t) \leq 1$
2. (IFM-2) $M(x, y, 0) = 0$
3. (IFM-3) $M(x, y, t) = 1$ if and only if $x = y$
4. (IFM-4) $M(x, y, t) = M(y, x, t)$
5. (IFM-5) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$
6. (IFM-6) $M(x, y, \cdot): [0, \infty) \to [0,1]$ is left continuous
7. (IFM-7) $\lim_{t \to \infty} M(x, y, t) = 1$
8. (IFM-8) $N(x, y, 0) = 1$
9. (IFM-9) $N(x, y, t) = 0$ if and only if $x = y$
10. (IFM-10) $N(x, y, t) = N(y, x, t)$
11. (IFM-11) $N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t + s)$
12. (IFM-12) $N(x, y, \cdot): [0, \infty) \to [0,1]$ is right continuous.
13. (IFM-13) $\lim_{t \to \infty} N(x, y, t) = 0$

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and degree of non-nearness between x and y with respect to t, respectively.

Remark 2.1 ([1], [3]) Every fuzzy metric space $(X, M, *)$ is an intuitionistic fuzzy metric space if X is of the form $(X, M, 1 - M, \ast, \diamond)$ such that t-norm \ast and t-conorm \diamond are associated, that is, $x \diamond y = 1 - ((1 - x) \ast (1 - y))$ for any $x, y \in X$. But the converse is not true.

Example 2.1 Let (X, d) be a metric space. Define $a \ast b = \min \{a, b\}$ and t-conorm $a \diamond b = \max \{a, b\}$ for all $x, y \in X$ and $t > 0$, $M_d(x, y, t) = \frac{t}{t + d(x, y)}$ and $N_d(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$.
Then \((X, M, N, \ast, \bowtie)\) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric \((M, N)\) induced by the metric \(d\) the standard intuitionistic fuzzy metric.

Definition 2.4[2] Let \((X, M, N, \ast, \bowtie)\) be an Intuitionistic Fuzzy metric space, then

(a) A sequence \(\{x_n\}\) in \(X\) is said to be convergent to \(x\) in \(X\) if for all \(t > 0\),
\[
\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_n, x, t) = 0.
\]

(b) A sequence \(\{x_n\}\) in \(X\) is said to be Cauchy if for all \(t > 0\) and \(p > 0\),
\[
\lim_{n \to \infty} M(x_n + p, x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_n + p, x_n, t) = 0.
\]

(c) An Intuitionistic Fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.5[15] Self mappings \(\varphi\) and \(\psi\) of an intuitionistic fuzzy metric space \((X, M, N, \ast, \bowtie)\) are said to be compatible if for all \(\epsilon > 0\),
\[
\lim_{n \to \infty} M(\varphi x_n, \psi x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(\varphi x_n, \psi x_n, t) = 0
\]
whenever \(\{x_n\}\) is a sequence in \(X\) such that...

Definition 2.6[9] Self mappings \(\varphi\) and \(\psi\) of an intuitionistic fuzzy metric space \((X, M, N, \ast, \bowtie)\) are said to be weakly compatible if
\[
\varphi x = \psi x \quad \text{when} \quad \varphi x = \psi x
\]
for some \(x \in X\).

Definition 2.7[11] Self mappings \(\varphi\) and \(\psi\) of an intuitionistic fuzzy metric space \((X, M, N, \ast, \bowtie)\) are said to be occasionally weakly compatible (owc) iff there is a point \(x \in X\) which is a coincidence point of \(A\) and \(B\) at which \(A\) and \(B\) commute.

Definition 2.8[11] Self mappings \(\varphi\) and \(\psi\) of an intuitionistic fuzzy metric space \((X, M, N, \ast, \bowtie)\) are said to be sub compatible if there exists a sequence \(\{x_n\}\) in \(X\) such that
\[
\lim_{n \to \infty} M(\varphi x_n, \psi x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(\varphi x_n, \psi x_n, t) = 0
\]
for all \(t > 0\).

Lemma 2.1[1] Let \((X, M, N, \ast, \bowtie)\) be an intuitionistic fuzzy metric space and for all \(x, y \in X\) and \(t > 0\) if for a number \(k \in (0, 1)\),
\[
M(x, y, kt) \geq M(x, y, t) \quad \text{and} \quad N(x, y, kt) \leq N(x, y, t).
\]
Then \(x = y\).

Lemma 2.2[1] Let \((X, M, N, \ast, \bowtie)\) be an intuitionistic fuzzy metric space and \(\{y_n\}\) be a sequence in \(X\). If there exists a number \(k \in [0, 1]\) such that
\[
M(y_n, y_{n+1}, kt) \geq M(y_{n-1}, y_n, t), \quad N(y_n, y_{n+1}, kt) \leq N(y_{n-1}, y_n, t)
\]
for all \(t > 0\) and \(n \in N\), then \(\{y_n\}\) is a Cauchy sequence in \(X\).
3 Main Result

Theorem 3.1 Let A, B, S, T, P and Q be self maps on an intuitionistic fuzzy metric space $(X, M, N, *, \Diamond)$ with $t * t \geq t$ and $(1 - t) \Diamond (1 - t) \leq (1 - t)$ for some $t \in [0,1]$ such that

(i) There exists a number $k \in (0,1)$ such that

$$M^2(Px, Qy, kt) \ast [M(ABx, Px, kt), M(STy, Qy, kt)] \geq [pM(ABx, Px, t) + qM(ABx, STy, t)]. M(ABx, Qy, 2kt)$$

and

$$N^2(Px, Qy, kt) \Diamond [N(ABx, Px, kt), N(STy, Qy, kt)] \leq [pN(ABx, Px, t) + qN(ABx, STy, t)]. N(ABx, Qy, 2kt)$$

for all $x, y \in X$ and $t > 0$, where $0 < p, q < 1$ such that $p+q=1$.

(ii) $AB=BA$, $ST=TS$, $PB=BP$, $QT=TQ$

(iii) AB is continuous.

(iv) The pair (P, AB) is subcompatible and (Q, ST) is occasionally weakly compatible (owc).

Then A, B, S, T, P and Q have a unique common fixed point in X.

Proof: Since the pair (P, AB) is subcompatible, then there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} Px_n = \lim_{n \to \infty} ABx_n = z$ for some $z \in X$ and satisfy $\lim_{n \to \infty} P(AB)x_n = \lim_{n \to \infty} AB(P)x_n$.

Since AB is continuous, $AB(AB)x_n \to ABz$ and $(AB)Px_n \to ABz$.

Since (P, AB) is subcompatible, $P(AB)x_n \to ABz$.

Since (Q, ST) is occasionally weakly compatible, then there exists a point $v \in X$ such that $Qv = STv$ and $QSTv = STQv$.

Step-1: By taking $x = x_n$ and $y = v$ in (i), we have

$$M^2(Px_n, Qv, kt) \ast [M(ABx_n, Px_n, kt), M(STv, Qv, kt)] \geq [pM(ABx_n, Px_n, t) + qM(ABx_n, STv, t)]. M(ABx_n, Qv, 2kt)$$

and

$$N^2(Px_n, Qv, kt) \Diamond [N(ABx_n, Px_n, kt), N(STv, Qv, kt)] \leq [pN(ABx_n, Px_n, t) + qN(ABx_n, STv, t)]. N(ABx_n, Qv, 2kt)$$

Taking limit as $n \to \infty$ and using $Qv = STv$, we have

$$M^2(z, Qv, kt) \ast [M(z, z, kt), M(Qv, Qv, kt)] \geq [pM(z, z, t) + qM(z, Qv, t)]. M(z, Qv, 2kt)$$
\[M^{2}(z, Qv, kt) \geq [p + qM(z, Qv, t)]. M(z, Qv, 2kt) \]

\[M^{2}(z, Qv, kt) \geq [p + qM(z, Qv, t)]. M(z, Qv, kt) \]

\[\Rightarrow M(z, Qv, kt) \geq \frac{p}{1 - q} = 1. \]

and \[N^{2}(z, Qv, kt) \geq [N(z, z, kt). N(Qv, Qv, kt)] \]
\[\geq [pN(z, z, t) + qN(z, Qv, t)]. N(z, Qv, 2kt) \]

\[\Rightarrow N^{2}(z, Qv, kt) \leq qN(z, Qv, t). N(z, Qv, 2kt) \]
\[\leq qN(z, Qv, t). N(z, Qv, kt) \]

\[\Rightarrow N(z, Qv, kt) \leq 0 \text{ for } k \in (0,1) \text{and all } t > 0. \]

Therefore, we have \(z = Qv \) and so \(z = Qv = STv \), then we get \(Qz = STz \).

Step-2: By taking \(x = ABx_{n} \) and \(y = v \) in (i), we have

\[M^{2}(P(AB)x_{n}, Qv, kt) \geq [M(AB(AB)x_{n}, P(AB)x_{n}, kt). M(STv, Qv, kt)] \]
\[\geq [pM(AB(AB)x_{n}, P(AB)x_{n}, t) + qM(AB(AB)x_{n}, STv, t)]. M(AB(AB)x_{n}, Qv, 2kt) \]

and \[N^{2}(P(AB)x_{n}, Qv, kt) \geq [N(AB(AB)x_{n}, P(AB)x_{n}, kt). N(STv, Qv, kt)] \]
\[\leq [pN(AB(AB)x_{n}, P(AB)x_{n}, t) + qN(AB(AB)x_{n}, STv, t)]. N(AB(AB)x_{n}, Qv, 2kt) \]

Taking limit as \(n \rightarrow \infty \) and using \(z = Qv = STv \), we have

\[M^{2}(ABz, z, kt) \geq [M(ABz, ABz, kt). M(z, z, kt)] \]
\[\geq [pM(ABz, ABz, t) + qM(ABz, z, t)]. M(ABz, z, 2kt) \]

\[\Rightarrow M^{2}(ABz, z, kt) \geq [p + qM(ABz, z, t)]. M(ABz, z, 2kt) \]
\[\geq [p + qM(ABz, z, t)]. M(ABz, z, kt) \]
\[\Rightarrow M(ABz, z, kt) \geq [p + qM(ABz, z, t)] \]
\[\geq [p + qM(ABz, z, kt)] \]
\[\Rightarrow M(ABz, z, kt) \geq \frac{p}{1 - q} = 1. \]

and \[N^{2}(ABz, z, kt) \geq [N(ABz, ABz, kt). N(z, z, kt)] \]
\[\leq [pN(ABz, ABz, t) + qN(ABz, z, t)]. N(ABz, z, 2kt) \]
\[N^2(ABz, z, kt) \leq qN(ABz, z, t) \cdot N(ABz, z, 2kt) \]
\[\leq qN(ABz, z, t) \cdot N(ABz, z, kt) \]
\[N(ABz, z, kt) \leq qN(ABz, z, t) \leq qN(ABz, z, kt) \]
\[N(ABz, z, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0. \]

Thus, we have \(z = ABz \).

Step-3: By taking \(x = z \) and \(y = v \) in (i), we have

\[
M^2(Pz, Qv, kt) \ast [M(ABz, Pz, kt) \cdot M(STv, Qv, kt)] \\
\geq [pM(ABz, Pz, t) + qM(ABz, STv, t)]. M(ABz, Qv, 2kt)
\]

and \(N^2(Pz, Qv, kt) \ast [N(ABz, Pz, kt) \cdot N(STv, Qv, kt)] \\
\leq [pN(ABz, Pz, t) + qN(ABz, STv, t)]. N(ABz, Qv, 2kt) \)

Using \(z = Qv = STv = ABz \); we have

\[
M^2(Pz, z, kt) \ast [M(z, Pz, kt) \cdot M(z, z, kt)] \\
\geq [pM(z, Pz, t) + qM(z, z, t)]. M(z, z, 2kt)
\]

\[\Rightarrow M^2(z, Pz, kt) \ast M(z, Pz, kt) \geq [pM(z, Pz, t) + q] \]

Since \(M^2(Pz, z, kt) \leq 1 \) and using (iii) in definition 2.1, we have

\[M(z, Pz, kt) \geq [pM(z, Pz, t) + q] \geq pM(z, Pz, kt) + q \]

\[\Rightarrow M(z, Pz, kt) \geq \frac{q}{1 - p} = 1. \]

and \(N^2(Pz, z, kt) \ast [N(z, Pz, kt) \cdot N(z, z, kt)] \\
\leq [pN(z, Pz, t) + qN(z, z, t)]. N(z, z, 2kt) \)

\[\Rightarrow N^2(Pz, z, kt) \leq 0 \]

\[\Rightarrow N(Pz, z, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0. \]

Thus, we have \(z = Pz = ABz \).

Step-4: By taking \(x = x_n \) and \(y = z \) in (i), we have

\[
M^2(Px_n, Qz, kt) \ast [M(ABx_n, Px_n, kt) \cdot M(STz, Qz, kt)] \\
\geq [pM(ABx_n, Px_n, t) + qM(ABx_n, STz, t)]. M(ABx_n, Qz, 2kt)
\]
and $N^2(P_{x_n}, Qz, kt) \diamond [N(ABx_{n}, P_{x_n}, kt). N(STz, Qz, kt)]$
\[\leq [pN(ABx_{n}, P_{x_n}, t) + qN(ABx_{n}, STz, t)]. N(ABx_{n}, Qz, 2kt) \]

Taking limit as $n \to \infty$ and using $Qz = STz$, we have

\[
M^2(z, Qz, kt) \geq [pM(z, z, t) + qM(z, Qz, t)]. M(z, Qz, 2kt) \geq [p + qM(z, Qz, t)]. M(z, Qz, kt) \]

\[\Rightarrow M(z, Qz, kt) \geq [p + qM(z, Qz, t)]. M(z, Qz, 2kt) \geq [p + qM(z, Qz, kt)]. \]

\[\Rightarrow M(z, Qz, kt) \geq \frac{p}{1-q} = 1. \]

and $N^2(z, Qz, kt) \diamond [N(z, z, kt). N(Qz, Qz, kt)]$
\[\geq [pN(z, z, t) + qN(z, Qz, t)]. N(z, Qz, 2kt) \]

\[\Rightarrow N^2(z, Qz, kt) \leq qN(z, Qz, t). N(z, Qz, 2kt) \leq qN(z, Qz, kt) \]

\[\Rightarrow N(z, Qz, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0. \]

Thus, we have $z = Qz$ and therefore $z = ABz = Pz = Qz = STz$.

Step-5: By taking $x = Bz$ and $y = z$ in (i), we have

\[
M^2(P(B)z, Qz, kt) \geq [pM(AB(B)z, P(B)z, t) + qM(AB(B)z, STz, t)]. M(AB(B)z, Qz, 2kt) \]

and $N^2(P(B)z, Qz, kt) \diamond [N(AB(B)z, P(B)z, kt). N(STz, Qz, kt)]$
\[\leq [pN(AB(B)z, P(B)z, t) + qN(AB(B)z, STz, t)]. N(AB(B)z, Qz, 2kt) \]

Since $AB = BA$ and $PB = BP$, we have $P(B)z = B(P)z = Bz$ and $AB(B)z = B(AB)z = Bz$ and using $Qz = STz = z$, we have

\[
M^2(Bz, z, kt) \geq [pM(Bz, Bz, t) + qM(Bz, z, t)]. M(Bz, z, 2kt) \]
A Common Fixed Point Theorem for Sub…

⇒ $M^2(Bz, z, kt) \geq [p + qM(Bz, z, t)] \cdot M(Bz, z, 2kt)$

≥ $[p + qM(Bz, z, t)] \cdot M(Bz, z, kt)$

$M(Bz, z, kt) \geq [p + qM(Bz, z, t)] \geq [p + qM(Bz, z, kt)]$

⇒ $M(Bz, z, kt) \geq \frac{p}{1-q} = 1.$

and $N^2(Bz, z, kt) \leq [N(Bz, Bz, kt) \cdot N(z, z, kt)]$

$\leq [pN(Bz, Bz, t) + qN(Bz, z, t)] \cdot N(Bz, z, 2kt)$

⇒ $N^2(Bz, z, kt) \leq qN(Bz, z, t) \cdot N(Bz, z, 2kt)$

≤ $qN(Bz, z, t) \cdot N(Bz, z, kt)$

⇒ $N(Bz, z, kt) \leq 0$ for $k \in (0,1)$ and all $t > 0.$

Thus, we have $z = Bz.$ Since $z = ABz,$ we also have $z = Az,$ therefore $z = Az = Bz = Pz = Qz = STz.$

Step-6: By taking $x = x_n$ and $y = Tz$ in (i), we have

\[
M^2(Px_n, Q(Tz), kt) \ast [M(ABx_n, Px_n, kt) \cdot M(ST(Tz), Q(Tz), kt)] \\
\geq [pM(ABx_n, Px_n, t) + qM(ABx_n, ST(Tz), t)] \cdot M(ABx_n, Q(Tz), 2kt)
\]

and $N^2(Px_n, Q(Tz), kt) \cdot [N(ABx_n, Px_n, kt) \cdot N(ST(Tz), Q(Tz), kt)]$

\[
\leq [pN(ABx_n, Px_n, t) + qN(ABx_n, ST(Tz), t)] \cdot N(ABx_n, Q(Tz), 2kt)
\]

Since $QT = TQ$ and $ST = TS,$ we have $QTz = TQz = Tz$ and $ST(Tz) = T(STz) = Tz.$

Letting $n \to \infty,$ we have

\[
M^2(z, Tz, kt) \ast [M(z, z, kt) \cdot M(Tz, Tz, kt)] \\
\geq [pM(z, z, t) + qM(z, Tz, t)] \cdot M(z, Tz, 2kt)
\]

⇒ $M^2(z, Tz, kt) \geq [p + qM(z, Tz, t)] \cdot M(z, Tz, 2kt)$

≥ $[p + qM(z, Tz, t)]M(z, Tz, kt)$

⇒ $M(z, Tz, kt) \geq [p + qM(z, Tz, t)] \geq [p + qM(z, Tz, kt)].$
\[\Rightarrow M(z, Tz, kt) \geq \frac{p}{1 - q} = 1. \]

and \[N^2(z, Tz, kt) \leq [N(z, z, kt) \cdot N(Tz, Tz, kt)] \]
\[\geq [pN(z, z, t) + qN(z, Tz, t)] \cdot N(z, Tz, 2kt) \]
\[\Rightarrow N^2(z, Tz, kt) \leq qN(z, Tz, t) \cdot N(z, Tz, 2kt) \]
\[\leq qN(z, Tz, t) \cdot N(z, Tz, kt) \]
\[\Rightarrow N(z, Tz, kt) \leq qN(z, Tz, t) \leq qN(z, Tz, kt) \]
\[\Rightarrow N(z, Tz, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0. \]

Thus, we have \(z = Tz \). Since \(Tz = STz \), we also have \(z = Sz \). Therefore \(z = Az = Bz = Pz = Qz = Sz = Tz \), that is, \(z \) is the common fixed point of the six maps.

Step-7: For uniqueness, let \(w, (w \neq z) \) be another common fixed point of \(A, B, S, T, P \) and \(Q \).

By taking \(x = z \) and \(y = w \) in (i), we have

\[M^2(Pz, Qw, kt) * [M(ABz, Pz, kt) \cdot M(STw, Qw, kt)] \]
\[\geq [pM(ABz, Pz, t) + qM(ABz, STw, t)] \cdot M(ABz, Qw, 2kt) \]

and \[N^2(Pz, Qw, kt) \triangleq [N(ABz, Pz, kt) \cdot N(STw, Qw, kt)] \]
\[\leq [pN(ABz, Pz, t) + qN(ABz, STw, t)] \cdot N(ABz, Qw, 2kt) \]

Which implies that

\[M^2(z, w, kt) * [M(z, z, kt) \cdot M(w, w, kt)] \]
\[\geq [pM(z, z, t) + qM(z, w, t)] \cdot M(z, w, 2kt) \]
\[\Rightarrow M^2(z, w, kt) \geq [p + qM(z, w, t)] \cdot M(z, w, 2kt) \]
\[\geq [p + qM(z, w, t)] \cdot M(z, w, kt) \]
\[\Rightarrow M(z, w, kt) \geq p + qM(z, w, t) \geq p + qM(z, w, kt) \]
\[\Rightarrow M(z, w, kt) \geq \frac{p}{1 - q} = 1. \]

and \[N^2(z, w, kt) \triangleq [N(z, z, kt) \cdot N(w, w, kt)] \]
\[\geq [pN(z, z, t) + qN(z, w, t)] \cdot N(z, w, 2kt) \]
\[\Rightarrow N^2(z, w, kt) \leq qN(z, w, t) \cdot N(z, w, 2kt) \]
\[\leq qN(z, w, t).N(z, w, kt) \]
\[\Rightarrow N(z, w, kt) \leq qN(z, w, t)q \leq N(z, w, kt) \]
\[\Rightarrow N(z, w, kt) \leq 0 \text{ for } k \in (0,1) \text{ and all } t > 0. \]

Thus, we have \(z = w \). This completes the proof of the theorem.

If we take \(B=T=I_X \text{ (the identity map on } X) \) in the main theorem, we have the following:

Corollary 3.2: Let \(A, S, P \) and \(Q \) be self maps on an intuitionistic fuzzy metric space \((X, M, N, *, \bowtie) \) with \(t \ast t \geq t \) and \((1 - t) \bowtie (1 - t) \leq (1 - t) \) for some \(t \in [0,1] \) such that

(i) There exists a number \(k \in (0,1) \) such that
\[
M^2(Px, Qy, kt) \ast [M(Ax, Px, kt).M(Sy, Qy, kt)] \\
\geq [pM(Ax, Px, t) + qM(Ax, Sy, t)].M(Ax, Qy, 2kt)
\]
\[
N^2(Px, Qy, kt) \bowtie [N(Ax, Px, kt).N(Sy, Qy, kt)] \\
\leq [pN(Ax, Px, t) + qN(Ax, Sy, t)].N(Ax, Qy, 2kt)
\]

for all \(x, y \in X \) and \(t>0 \), where \(0<p, q<1 \) such that \(p+q=1 \).

(ii) \(A \) is continuous.

(iii) The pair \((P, A) \) is subcompatible and \((Q, S) \) is occasionally weakly compatible (owc).

Then \(A, S, P \) and \(Q \) have a unique common fixed point in \(X \).

Example 3.3 Let \(X = \{ \frac{1}{n} : n \in \mathbb{N} \cup \{0\} \} \) with metric \(d \) defined by \(d(x, y) = |x - y| \).

For all \(x, y \in X \) and \(t \in (0, \infty) \), define
\[
M(x, y, t) = \frac{t}{t+|x-y|}, \quad N(x, y, t) = \frac{|x-y|}{t+|x-y|}, \quad M(x, y, 0) = 0, \quad N(x, y, 0) = 1.
\]

Clearly \((X, M, N, *, \bowtie) \) is an Intuitionistic Fuzzy metric space, where \(* \) and \(\bowtie \) are defined by \(a \ast b = \min\{a, b\} \) and \(a \bowtie b = \min\{1, a + b\} \).

Let \(A, B, S, T, P \) and \(Q \) be maps from \(X \) into itself defined as \(Ax = x, Bx = \frac{x}{2}, Sx = \frac{x}{5}, Tx = \frac{x}{3}, Px = 0, Qx = \frac{x}{6} \) for all \(x \in X \).
Clearly AB=BA, ST=TS, PB=BP, QT=TQ and AB is continuous. If we take $k = 0.5$ and $t = 1$, we see that the condition (i) of the main theorem is also satisfied. Moreover, the maps P and AB are subcompatible if $\lim_{n \to \infty} x_n = 0$, where $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Px_n = \lim_{n \to \infty} ABx_n = 0$ for $0 \in X$. The maps Q and ST are occasionally weakly compatible at 0. Thus, all conditions of the main theorem are satisfied and 0 is the unique common fixed point of A, B, S, T, P and Q.

References

