Differential Sandwich Theorems for Integral Operator of Certain Analytic Functions

Abbas Kareem Wanas
Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya
Diwaniya – Iraq
E-mail: k.abbaswmk@yahoo.com

(Received: 16-11-12 / Accepted: 3-2-13)

Abstract

In the present paper, we obtain some subordination and superordination results involving the integral operator \(\mathcal{I}^{\alpha}_{\beta} \) for certain normalized analytic functions in the open unit disk. These results are applied to obtain sandwich results.

Keywords: Analytic functions, Differential subordination, Superordination, Sandwich theorems, Dominant, Subordinant, Integral operator.

1 Introduction

Let \(H = H(U) \) be the class of analytic functions in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). For \(n \) a positive integer and \(a \in \mathbb{C} \). Let \(H[a, n] \) be the subclass of \(H \) consisting of functions of the form:

\[
f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \quad (a \in \mathbb{C}).
\]

(1.1)

Also, let \(T \) be the subclass of \(H \) consisting of functions of the form:
Let \(f, g \in H \). The function \(f \) is said to be subordinate to \(g \), or \(g \) is said to be superordinate to \(f \), if there exists a Schwarz function \(w \) analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) (\(z \in U \)) such that \(f(z) = g(w(z)) \). In such a case we write \(f \prec g \) or \(f(z) < g(z) \) (\(z \in U \)). If \(g \) is univalent in \(U \), then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subseteq g(U) \).

Let \(p, h \in H \) and \(\psi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C} \). If \(p \) and \(\psi(p(z), zp'(z), z^2p''(z); z) \) are univalent functions in \(U \) and if \(p \) satisfies the second-order differential superordination

\[
h(z) < \psi(p(z), zp'(z), z^2p''(z); z),
\]

then \(p \) is called a solution of the differential superordination (1.3). (If \(f \) is subordinate to \(g \), then \(g \) is superordinate to \(f \).) An analytic function \(q \) is called a subordinant of (1.3), if \(q < p \) for all the functions \(p \) satisfying (1.3). An univalent subordinant \(\tilde{q} \) that satisfies \(q < \tilde{q} \) for all the subordinants \(q \) of (1.3) is called the best subordinant. Miller and Mocanu [6] have obtained conditions on the functions \(h, q \) and \(\psi \) for which the following implication holds:

\[
h(z) < \psi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) < p(z).
\]

Komatu [4] introduced and investigated a family of integral operator \(\mathcal{I}_\mu^\lambda : T \to T \), which is defined as follows:

\[
\mathcal{I}_\mu^\lambda f(z) = \frac{\mu^\lambda}{\Gamma(\lambda)z^{\mu-1}} \int_0^z \left(\log \frac{z}{\varepsilon} \right)^{\lambda-1} f(\varepsilon) \, d\varepsilon
\]

\[
= z + \sum_{n=2}^{\infty} \left(\frac{\mu}{\mu + n - 1} \right)^\lambda a_n z^n \quad (z \in U, \mu > 0, \lambda \geq 0).
\]

We note from (1.5) that, we have

\[
z \left(\mathcal{I}_\mu^{\lambda+1} f(z) \right)' = \mu \mathcal{I}_\mu^\lambda f(z) - (\mu - 1) \mathcal{I}_\mu^{\lambda+1} f(z).
\]

Ali et al. [1] obtained sufficient conditions for certain normalized analytic functions to satisfy

\[
q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent functions in \(U \) with \(q_1(0) = q_2(0) = 1 \).

Also, Tuneski [9] obtained a sufficient conditions for star likeness of \(f \) in terms of
the quantity $\frac{f'(z)f(z)}{(f'(z))^2}$. Recently, Shanmugam et al. [7,8], Goyal et al. [3] also obtained sandwich results for certain classes of analytic functions.

The main object of the present paper is to find sufficient conditions for certain normalized analytic functions to satisfy

$$q_1(z) < \left(\mathcal{F}^{a+1}f(z)\right) < q_2(z),$$

and

$$q_1(z) < \left(\frac{t\mathcal{F}^{a+1}f(z) + (1-t)\mathcal{F}^{a}f(z)}{z}\right)^r < q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$.

2 Preliminaries

In order to prove our subordination and superordination results, we need the following definition and lemmas.

Definition 2.1 [5]: Denote by $E(f)$ the set of all functions f that are analytic and injective on $U \setminus E(f)$, where

$$E(f) = \{\zeta \in \partial U: \lim_{z \to \zeta} f(z) = \infty\} \quad (2.1)$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 2.1 [5]: Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

(i) $Q(z)$ is starlike univalent in U,

(ii) $Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$ for $z \in U$.

If p is analytic in U, with $p(0) = q(0)$, $p(U) \subset D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)), \quad (2.2)$$

then $p < q$ and q is the best dominant of (2.2).

Lemma 2.2 [6]: Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} \setminus \{0\}$ with
If \(p \) is analytic in \(U \) and
\[
\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta z q'(z),
\]
then \(p < q \) and \(q \) is the best dominant of (2.3).

Lemma 2.3 [6]: Let \(q \) be convex univalent in \(U \) and let \(\beta \in \mathbb{C} \). Further assume that \(\Re(\beta) > 0 \). If \(p \in H \{ q(0),1 \} \cap Q \) and \(p(z) + \beta z p'(z) \) is univalent in \(U \), then
\[
q(z) + \beta z q'(z) < p(z) + \beta z p'(z),
\]
which implies that \(q < p \) and \(q \) is the best subordinant of (2.4).

Lemma 2.4 [2]: Let \(q \) be convex univalent in the unit disk \(U \) and let \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(U) \). Suppose that
\begin{enumerate}
 \item \(\Re \left(\frac{\theta(q(z))}{\phi(q(z))} \right) > 0 \) for \(z \in U \),
 \item \(Q(z) = z q'(z) \phi(q(z)) \) is starlike univalent in \(U \).
\end{enumerate}
If \(p \in H \{ q(0),1 \} \cap Q \), with \(p(U) \subset D \), \(\theta(p(z)) + z p'(z) \phi(p(z)) \) is univalent in \(U \) and
\[
\theta(q(z)) + z q'(z) \phi(q(z)) < \theta(p(z)) + z p'(z) \phi(p(z)),
\]
then \(q < p \) and \(q \) is the best subordinant of (2.5).

3 Subordination Results

Theorem 3.1: Let \(q \) be convex univalent in \(U \) with \(q(0) = 1 \), \(0 \neq \eta \in \mathbb{C}, \gamma > 0 \) and suppose that \(q \) satisfies
\[
\Re \left(1 + \frac{z q''(z)}{q'(z)} \right) > \max \left\{ 0, -\Re \left(\frac{\gamma}{\eta} \right) \right\}.
\]
(3.1)

If \(f \in T \) satisfies the subordination
\[
(1 - \mu \eta) \left(\frac{\Im^{\lambda+1} f(z)}{z} \right) + \mu \eta \left(\frac{\Im^{\lambda+1} f(z)}{z} \right)^{\gamma} \left(\frac{\Im^{\lambda} f(z)}{\Im^{\lambda+1} f(z)} \right) < q(z) + \frac{\eta}{\gamma} z q'(z),
\]
(3.2)
then
\[
\left(\frac{3_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} < q(z)
\]
(3.3)
and \(q \) is the best dominant of (3.2).

Proof: Define the function \(p \) by
\[
p(z) = \left(\frac{3_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma}.
\]
(3.4)
Differentiating (3.4) with respect to \(z \) logarithmically, we get
\[
\frac{zp'(z)}{p(z)} = \gamma \left(\frac{z\left(3_{\mu}^{\lambda+1} f(z)\right)'}{3_{\mu}^{\lambda+1} f(z)} - 1 \right).
\]
(3.5)
Now, in view of (1.6), we obtain the following subordination
\[
\frac{zp'(z)}{p(z)} = \gamma \mu \left(\frac{3_{\mu}^{\lambda} f(z)}{3_{\mu}^{\lambda+1} f(z)} - 1 \right).
\]
Therefore,
\[
\frac{zp'(z)}{\gamma} = \mu \left(\frac{3_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} \left(\frac{3_{\mu}^{\lambda} f(z)}{3_{\mu}^{\lambda+1} f(z)} - 1 \right).
\]
The subordination (3.2) from the hypothesis becomes
\[
p(z) + \frac{\eta}{\gamma}zp'(z) < q(z) + \frac{\eta}{\gamma}zq'(z).
\]
An application of Lemma 2.2 with \(\beta = \frac{\eta}{\gamma} \) and \(\alpha = 1 \), we obtain (3.3).
Putting \(q(z) = \left(\frac{1+z}{1-z} \right)^{\sigma} \) \((0 < \sigma \leq 1)\) in Theorem 3.1, we obtain the following corollary:

Corollary 3.1: Let \(0 < \sigma \leq 1, 0 \neq \eta \in \mathbb{C}, \gamma > 0 \) and
\[
\text{Re} \left\{ \frac{1 + 2\sigma z + z^2}{1 - z^2} \right\} > \max \left\{ 0, -\text{Re} \left(\frac{\gamma}{\eta} \right) \right\}.
\]
If \(f \in T \) satisfies the subordination
\[(1 - \mu\eta) \left(\frac{\mathfrak{I}^{\lambda+1}_\mu f(z)}{z} \right)^\gamma + \mu\eta \left(\frac{\mathfrak{I}^{\lambda+1}_\mu f(z)}{z} \right)^\gamma \left(\frac{\mathfrak{I}^{\lambda}_\mu f(z)}{\mathfrak{I}^{\lambda+1}_\mu f(z)} \right) < \left(1 + \frac{2\eta \sigma z}{\gamma (1 - z^2)} \right) \left(\frac{1 + z}{1 - z} \right)^\sigma, \]

then
\[\left(\frac{\mathfrak{I}^{\lambda+1}_\mu f(z)}{z} \right)^\gamma < \left(\frac{1 + z}{1 - z} \right)^\sigma\]

and \(q(z) = \left(\frac{1 + z}{1 - z} \right)^\sigma\) is the best dominant.

Theorem 3.2: Let \(q\) be convex univalent in \(U\) with \(q(0) = 1, q(z) \neq 0 (z \in U)\) and assume that \(q\) satisfies
\[
\Re \left\{ 1 + \frac{um}{\eta} + \frac{v(m + 1)}{\eta} q(z) + (m - 1) \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q(z)} \right\} > 0,
\]
where \(u, v, m \in \mathbb{C}, \eta \in \mathbb{C} \setminus \{0\}\) and \(z \in U\).

Suppose that \(z(q(z))^{m-1} q'(z)\) is starlike univalent in \(U\). If \(f \in T\) satisfies
\[
\varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z) < (u + vq(z))(q(z))^m + \eta z(q(z))^{m-1} q'(z),
\]
where
\[
\varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z) = u \left(\frac{t\mathfrak{I}^{\lambda+1}_\mu f(z) + (1 - t)\mathfrak{I}^{\lambda}_\mu f(z)}{z} \right)^y + v \left(\frac{t\mathfrak{I}^{\lambda+1}_\mu f(z) + (1 - t)\mathfrak{I}^{\lambda}_\mu f(z)}{z} \right)^y (t\mathfrak{I}^{\lambda}_\mu f(z) + (1 - t)\mathfrak{I}^{\lambda-1}_\mu f(z) - 1),
\]
\[(0 \leq t \leq 1, \gamma > 0, z \in U),\]
then
\[
\left(\frac{t\mathfrak{I}^{\lambda+1}_\mu f(z) + (1 - t)\mathfrak{I}^{\lambda}_\mu f(z)}{z} \right)^\gamma < q(z)
\]
and \(q\) is the best dominant of (3.7).

Proof: Define the function \(p\) by
\[
p(z) = \left(\frac{t\mathfrak{I}^{\lambda+1}_\mu f(z) + (1 - t)\mathfrak{I}^{\lambda}_\mu f(z)}{z} \right)^\gamma.
\]
By setting
\[\theta(w) = (u + vw)w^m \quad \text{and} \quad \phi(w) = \eta w^{m-1}, w \neq 0, \]
we see that \(\theta(w) \) is analytic in \(\mathbb{C} \), \(\phi(w) \) is analytic in \(\mathbb{C} \setminus \{0\} \) and that \(\phi(w) \neq 0, w \in \mathbb{C} \setminus \{0\} \). Also, we get
\[Q(z) = zq'(z)\phi(q(z)) = \eta z(q(z))^{m-1}q'(z) \]
and
\[h(z) = \theta(q(z)) + Q(z) = (u + vq(z))(q(z))^{m} + \eta z(q(z))^{m-1}q'(z). \]
It is clear that \(Q(z) \) is starlike univalent in \(U \),
\[\text{Re} \left\{ \frac{zh'(z)}{Q(z)} \right\} = \text{Re} \left\{ 1 + \frac{um}{\eta} + \frac{v(m+1)}{\eta}q(z) + (m-1)\frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q(z)} \right\} > 0. \]
By a straightforward computation, we obtain
\[(u + vp(z))(p(z))^m + \eta z(p(z))^{m-1}p'(z) = \varphi(u,v,\lambda,t,m,\mu,\eta;z), \quad (3.11) \]
where \(\varphi(u,v,\lambda,t,m,\mu,\eta;z) \) is given by (3.8).

From (3.7) and (3.11), we have
\[(u + vp(z))(p(z))^m + \eta z(p(z))^{m-1}p'(z) < (u + vq(z))(q(z))^m + \eta z(q(z))^{m-1}q'(z). \quad (3.12) \]
Therefore, by Lemma 2.1, we get \(p(z) < q(z) \). By using (3.10), we obtain the result.

Putting \(q(z) = \frac{1+Az}{1+Bz} \) \((-1 \leq B < A \leq 1) \) in Theorem 3.2, we obtain the following corollary:

Corollary 3.2: Let \(-1 \leq B < A \leq 1\) and
\[\text{Re} \left\{ \frac{um}{\eta} + \frac{v(m+1)(1+Az)}{\eta(1+Bz)} + \frac{1 + m(A-B)z - ABz^2}{(1+Az)(1+Bz)} \right\} > 0, \]
where \(u, v, m \in \mathbb{C}, \eta \in \mathbb{C} \setminus \{0\} \) and \(z \in U \). If \(f \in T \) satisfies
\[\varphi(u,v,\lambda,t,m,\mu,\eta;z) \]
\[< \left(u + v \left(\frac{1+Az}{1+Bz} \right) \left(\frac{1+Az}{1+Bz} \right)^m + \frac{\eta(A-B)(1+Az)^{m-1}z}{(1+Bz)^{m+1}}, \]
where \(\varphi(u,v,\lambda,t,m,\mu,\eta;z) \) is given by (3.8),
then
\[
\left(t^{3\mu+1} f(z) + (1 - t) 3^{3\mu} f(z) \right) < \frac{1 + Az}{1 + Bz}
\]
and \(q(z) = \frac{1 + Az}{1 + Bz} \) is the best dominant.

4 Superordination Results

Theorem 4.1: Let \(q \) be convex univalent in \(U \) with \(q(0) = 1, \gamma > 0 \) and \(\Re[\eta] > 0 \). Let \(f \in T \) satisfies

\[
\left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} \in H[q(0), 1] \cap Q
\]

and

\[
(1 - \mu\eta) \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} + \mu\eta \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} \left(\frac{3^{3\mu} f(z)}{3^{3\mu+1} f(z)} \right)
\]

be univalent in \(U \). If

\[
q(z) + \frac{\eta}{\gamma} z q'(z) < (1 - \mu\eta) \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} + \mu\eta \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} \left(\frac{3^{3\mu} f(z)}{3^{3\mu+1} f(z)} \right),
\]

then

\[
q(z) < \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma}
\]

and \(q \) is the best subordinant of (4.1).

Proof: Define the function \(p \) by

\[
p(z) = \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma}.
\]

Differentiating (4.3) with respect to \(z \) logarithmically, we get

\[
\frac{zp'(z)}{p(z)} = \gamma \left(\frac{z \left(\frac{3^{3\mu+1} f(z)}{z} \right)'}{3^{3\mu+1} f(z)} - 1 \right).
\]

After some computations and using (1.6), from (4.4), we obtain

\[
(1 - \mu\eta) \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} + \mu\eta \left(\frac{3^{3\mu+1} f(z)}{z} \right)^{\gamma} \left(\frac{3^{3\mu} f(z)}{3^{3\mu+1} f(z)} \right) = p(z) + \frac{\eta}{\gamma} z p'(z),
\]

and now, by using Lemma 2.3, we get the desired result.
Putting \(q(z) = \left(\frac{1+z}{1-z}\right)^\sigma \) (0 < \(\sigma \leq 1 \)) in Theorem 4.1, we obtain the following corollary:

Corollary 4.1: Let 0 < \(\sigma \leq 1, \gamma > 0 \) and Re\{\(\eta \)\} > 0. If \(f \in T \) satisfies

\[
\left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma \in H[q(0),1] \cap Q
\]

and

\[
(1 - \mu\eta)\left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma + \mu\eta\left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma \left(\frac{3^{\lambda}f(z)}{3^{\lambda+1}f(z)} \right)
\]

be univalent in \(U \). If

\[
\left(1 + \frac{2\gamma\sigma z}{\gamma(1-z^2)} \right) \left(\frac{1+z}{1-z} \right)^\sigma < (1 - \mu\eta)\left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma + \mu\eta\left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma \left(\frac{3^{\lambda}f(z)}{3^{\lambda+1}f(z)} \right)
\]

then

\[
\left(\frac{1+z}{1-z} \right)^\sigma < \left(\frac{3^{\lambda+1}f(z)}{z} \right)^\gamma
\]

and \(q(z) = \left(\frac{1+z}{1-z}\right)^\sigma \) is the best subordinant.

Theorem 4.2: Let \(q \) be convex univalent in \(U \) with \(q(0) = 1 \), and assume that \(q \) satisfies

\[
\text{Re}\left\{ \frac{um}{\eta}q'(z) + \frac{v(m+1)}{\eta}q(z)q'(z) \right\} > 0,
\]

where \(u, v, m \in \mathbb{C}, \eta \in \mathbb{C} \setminus \{0\} \) and \(z \in U \).

Suppose that \(z(q(z))^{m-1} q'(z) \) is starlike univalent in \(U \). Let \(f \in T \) satisfies

\[
\left(\frac{t3^{\lambda+1}f(z) + (1-t)3^{\lambda}f(z)}{z} \right)^\gamma \in H[q(0),1] \cap Q
\]

and \(\phi(u,v,\gamma,\lambda,t,m,\mu,\eta;z) \) is univalent in \(U \), where \(\phi(u,v,\gamma,\lambda,t,m,\mu,\eta;z) \) is given by (3.8). If

\[
(u + vq(z))(q(z))^m + \eta z(q(z))^{m-1} q'(z) < \phi(u,v,\gamma,\lambda,t,m,\mu,\eta;z),
\]

then

\[
q(z) < \left(\frac{t3^{\lambda+1}f(z) + (1-t)3^{\lambda}f(z)}{z} \right)^\gamma
\]
and \(q \) is the best subordinant of (4.6).

Proof: Define the function \(p \) by

\[
p(z) = \left(\frac{t \mathcal{S}_{\mu}^{\lambda+1} f(z) + (1-t) \mathcal{S}_{\mu}^{\lambda} f(z)}{z} \right)^{\gamma}.
\]

By setting

\[
\theta(w) = (u + vw)w^m \quad \text{and} \quad \phi(w) = \eta w^{m-1}, w \neq 0,
\]

we see that \(\theta(w) \) is analytic in \(\mathbb{C} \), \(\phi(w) \) is analytic in \(\mathbb{C} \setminus \{0\} \) and that \(\phi(w) \neq 0, w \in \mathbb{C} \setminus \{0\} \). Also, we get

\[
Q(z) = zq'(z)\phi(q(z)) = \eta z(q(z))^{m-1} q'(z).
\]

It is clear that \(Q(z) \) is starlike univalent in \(U \),

\[
\Re \left(\frac{\theta(q(z))}{\phi(q(z))} \right) = \Re \left(\frac{um}{\eta} q'(z) + \frac{v(m+1)}{\eta} q(z)q'(z) \right) > 0.
\]

By a straightforward computation, we obtain

\[
\varphi(u,v,\gamma,\lambda,t,m,\mu,\eta;z) = (u + vp(z))(p(z))^m + \eta z(p(z))^{m-1} p'(z),
\]

where \(\varphi(u,v,\gamma,\lambda,t,m,\mu,\eta;z) \) is given by (3.8).

From (4.6) and (4.9), we have

\[
(u + vq(z))(q(z))^m + \eta z(q(z))^{m-1} q'(z) < (u + vp(z))(p(z))^m + \eta z(p(z))^{m-1} p'(z).
\]

Therefore, by Lemma 2.4, we get \(q(z) < p(z) \). By using (4.8), we obtain the result.

5 Sandwich Results

Concluding the results of differential subordination and superordination, we arrive at the following "sandwich results".

Theorem 5.1: Let \(q_1 \) be convex univalent in \(U \) with \(q_1(0) = 1, \Re\{\eta\} > 0 \) and let \(q_2 \) be univalent in \(U, q_2(0) = 1 \) and satisfies (3.1). Let \(f \in T \) satisfies

\[
\left(\frac{\mathcal{S}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} \in H[1,1] \cap Q
\]

and
\[
(1 - \mu \eta) \left(\frac{\mathcal{H}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} + \mu \eta \left(\frac{\mathcal{H}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} \left(\frac{\mathcal{H}_{\mu}^{\lambda} f(z)}{\mathcal{H}_{\mu}^{\lambda+1} f(z)} \right)
\]
be univalent in \(U \). If
\[
q_1(z) + \frac{\eta}{\gamma} z q_1'(z) < (1 - \mu \eta) \left(\frac{\mathcal{H}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} + \mu \eta \left(\frac{\mathcal{H}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} \left(\frac{\mathcal{H}_{\mu}^{\lambda} f(z)}{\mathcal{H}_{\mu}^{\lambda+1} f(z)} \right)
\]
\[
< q_2(z) + \frac{\eta}{\gamma} z q_2'(z),
\]
then
\[
q_1(z) < \left(\frac{\mathcal{H}_{\mu}^{\lambda+1} f(z)}{z} \right)^{\gamma} < q_2(z)
\]
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and the best dominant.

Theorem 5.2: Let \(q_1 \) be convex univalent in \(U \) with \(q_1(0) = 1 \) and satisfies (4.5) and let \(q_2 \) be univalent in \(U \), \(q_2(0) = 1 \) and satisfies (3.6). Let \(f \in T \) satisfies
\[
\left(\frac{t \mathcal{H}_{\mu}^{\lambda+1} f(z) + (1 - t) \mathcal{H}_{\mu}^{\lambda} f(z)}{z} \right)^{\gamma} \in H \ [1,1] \cap Q
\]
and \(\varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z) \) is univalent in \(U \), where \(\varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z) \) is given by (3.8). If
\[
(u + v q_1(z))(q_1(z))^{m+\eta z q_1(z)} < \varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z)
\]
\[
< (u + v q_2(z))(q_2(z))^{m+\eta z q_2(z)} < \varphi(u, v, \gamma, \lambda, t, m, \mu, \eta; z),
\]
then
\[
q_1(z) < \left(\frac{t \mathcal{H}_{\mu}^{\lambda+1} f(z) + (1 - t) \mathcal{H}_{\mu}^{\lambda} f(z)}{z} \right)^{\gamma} < q_2(z)
\]
and \(q_1 \) and \(q_2 \) are, respectively, the best subordinant and the best dominant.

References

