Intuitionistic Fuzzy Sets in Ordered Γ-Semigroups

S. Lekkoksung

Rajamangala University of Technology Isan
Khon Kaen Campus
E-mail: lekkoksung_somsak@hotmail.com

(Received: 18-3-11/Accepted:28-6-11)

Abstract

We consider the intuitionistic fuzzification of the concept of several ideal in an ordered Γ-semigroup, and investigate some properties of such ideals.

Keywords: Ordered Γ-semigroup, intuitionistic fuzzy Γ-subsemigroup, intuitionistic left (resp. right) ideal, intuitionistic fuzzy interior ideal, intuitionistic fuzzy left (resp. right) simple.

1 Introduction

The concept of a fuzzy set given by L.A. Zadeh in his classic paper of 1965 [11] has been used by many authors to generalize some of the basic notions of algebra. Fuzzy semigroups have been first considered by N. Kuroki [5], and fuzzy ordered groupoids and ordered semigroups, by Kehayopulu and Tsingelis [7]. The notion of a Γ-semigroup was introduced by Sen [9]. Many classical notions of semigroups have been extended to Γ-semigroups. The concept of intuitionistic fuzzy set was introduced by K. T. Atanassov [10]. In [4], N. Kuroki gave some properties of fuzzy ideals and fuzzy semiprime ideals in semigroups [6]. In [1], K. H. Kim gave some properties of several ideals in an ordered semigroup. In this paper, we consider the intuitionistic fuzzification of the concept of several ideals in an ordered Γ-semigroup, and investigate some properties of such ideal.
2 Preliminaries

We include some elementary aspects of ordered Γ-semigroups that are necessary for this paper.

Definition 2.1 Let S and Γ be two non-empty sets. Then S is called a Γ-semigroup if it satisfies

(i) $x\gamma y \in S$,

(ii) $(x\beta y)\gamma z = x\beta (y\gamma z)$,

for all $x, y, z \in S$ and $\beta, \gamma \in \Gamma$.

Definition 2.2 Let S be a Γ-semigroup and (S, \leq) a partially ordered set. Then S is called an ordered Γ-semigroup if $x \leq y$ implies $a\gamma z \leq b\gamma z$ and $z\gamma a \leq z\gamma b$, for all $x, y, z \in S$ and $\gamma \in \Gamma$.

Definition 2.3 Let S be an ordered Γ-semigroup. A non-empty subset A of an ordered Γ-semigroup S is said to be a Γ-subsemigroup of S if $A \Gamma A \subseteq A$.

Let S be an ordered Γ-semigroup. For $A \subseteq S$, we denote

$$(A] := \{t \in S \mid t \leq h \text{ for some } h \in A\}.$$

For $A, B \subseteq S$, we denote

$$(A \Gamma B) := \{a\gamma b \mid a \in A, b \in B, \gamma \in \Gamma\}.$$

Definition 2.4 Let S be an ordered Γ-semigroup. A non-empty subset A of S is called a left ideal of S if it satisfies

(i) $S \Gamma A \subseteq A$.

(ii) For any $b \in S$ and $a \in A$ such that $b \leq a$ implies $b \in A$.

Definition 2.5 Let S be an ordered Γ-semigroup. A non-empty subset A of S is called a right ideal of S if it satisfies

(i) $A \Gamma S \subseteq A$.

(ii) For any $b \in S$ and $a \in A$ such that $b \leq a$ implies $b \in A$.

Definition 2.6 Let S be an ordered Γ-semigroup. A non-empty subset A of S is called an ideal of S if it satisfies

(i) $S \Gamma A \subseteq A$.
(ii) $A \Gamma S \subseteq A$.

(iii) For any $b \in S$ and $a \in A$ such that $b \leq a$ implies $b \in A$.

Definition 2.7 Let S be an ordered Γ-semigroup. A non-empty subset A of S is called a bi-ideal of S if it satisfies

(i) $A \Gamma S \subseteq A$.

(ii) For any $b \in S$ and $a \in A$ such that $b \leq a$ implies $b \in A$.

Definition 2.8 Let S be an ordered Γ-semigroup. A Γ-subsemigroup A of S is called an interior ideal of S if it satisfies

(i) $S \Gamma A \subseteq A$.

(ii) For any $b \in S$ and $a \in A$ such that $b \leq a$ implies $b \in A$.

An ordered Γ-semigroup S is called left-zero (resp. right-zero) if $x \leq x \alpha y$ (resp. $y \leq x \alpha y$) for all $x, y \in S$ and $\alpha \in \Gamma$. An ordered Γ-semigroup S is said to be left (resp. right) simple if for every left (resp. right) ideal A of S, we have $A = S$. An ordered Γ-semigroup S is said to be regular if for every $a \in S$ there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a \leq \alpha a x \beta a$. $L[x]$ denote the principal left ideal of a Γ-semigroup S generated by x in S, that is, $L[x] = (x \cup S \Gamma x)$. By a fuzzy set μ in a non-empty set X, we mean a function $\mu : X \rightarrow [0, 1]$ and the complement of μ, denoted by μ', is the fuzzy set in X given by $\mu'(x) := 1 - \mu(x)$ for all $x \in X$. For any fuzzy subset μ in S and $t \in [0, 1]$, we define

$$U(\mu; f) := \{x \in S \mid \mu(x) \geq t\},$$

which is called an upper t-level cut of μ and can be used to the characterization of μ.

An intuitionistic fuzzy set (briefly, IFS) A in a non-empty set X is an object having the form

$$A := \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$$

where the function $\mu_A : X \rightarrow [0, 1]$ and $\gamma_A : X \rightarrow [0, 1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \leq \mu_A(x) + \gamma_A(x) \leq 1$$

for all $x \in X$. For the sake of simplicity, we shall use the symbol $A := (\mu_A, \gamma_A)$ for the IFS $A := \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$.

Let χ_U denote the characteristic function of a non-empty subset U of an ordered Γ-semigroup.
Definition 2.9 Let S be an ordered Γ-semigroup. A fuzzy set μ is called a fuzzy Γ-subsemigroup of S if

$$\mu(x\gamma y) \geq \min\{\mu(x), \mu(y)\}$$

for all $x, y \in S$ and $\gamma \in \Gamma$.

Definition 2.10 Let S be an ordered Γ-semigroup. A fuzzy Γ-subsemigroup μ of S is called a fuzzy bi-ideal of S, if the following axioms are satisfied:

1. If $x \leq y$, then $\mu(x) \geq \mu(y)$, for all $x, y \in S$,
2. $\mu(x\alpha a\beta y) \geq \min\{\mu(x), \mu(y)\}$, for all $a, x, y \in S$ and $\alpha, \beta \in \Gamma$.

3 Main Results

In what follows, we use S to denote an ordered Γ-semigroup unless otherwise specified.

Definition 3.1 For an IFS $A = (\mu_A, \gamma_A)$ in S, consider the following axioms:

1. $\text{(IFS}_1) \mu_A(x\alpha y) \geq \min\{\mu_A(x), \mu_A(y)\}$,
2. $\text{(IFS}_2) \gamma_A(x\alpha y) \leq \max\{\gamma_A(x), \gamma_A(y)\}$, for all $x, y \in S$ and $\alpha \in \Gamma$.

Then $A = (\mu_A, \gamma_A)$ is called a first (resp. second) intuitionistic fuzzy Γ-subsemigroup (briefly, IFTSS$_1$ (resp. IFTSS$_2$)) of S if satisfies (IFS$_1$) (resp. (IFS$_2$)). Also, $A = (\mu_A, \gamma_A)$ is said to be an intuitionistic fuzzy Γ-semigroup (briefly, IFTSS) of S if it is both a first and a second intuitionistic fuzzy Γ-semigroup.

Theorem 3.2 If U is a Γ-subsemigroup of ordered Γ-semigroup S, then $U' = (\chi_U, \chi'_U)$ is an IFTSS of S.

Let $x, y \in S$ and $\alpha \in \Gamma$. From the hypothesis, $x\alpha y \in U$ if $x, y \in U$. In this case,

$$\chi_U(x\alpha y) = 1 \geq \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\chi'_U(x\alpha y) = 1 - \chi_U(x\alpha y)$$

$$\leq 1 - \min\{\chi_U(x), \chi_U(y)\}$$

$$= \max\{1 - \mu_U(x), 1 - \mu_U(y)\}$$

$$= \max\{\mu'_U(x), \mu'_U(y)\}.$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus $\min\{\chi_U(x), \chi_U(y)\} = 0$, which is implies that

$$\chi_U(x\alpha y) \geq 0 = \min\{\chi_U(x), \chi_U(y)\}$$
and
\[\chi_U(x\alpha y) \leq 1 \]
\[= 1 - \min\{\chi_U(x), \chi_U(y)\} \]
\[= \max\{1 - \chi_U(x), 1 - \chi_U(y)\} \]
\[= \max\{\chi_U(x), \chi_U(y)\}. \]

This completes the proof.

Theorem 3.3 Let \(U \) be a non-empty subset of ordered \(\Gamma \)-semigroup \(S \). If \(U' = (\chi_U, \chi_U') \) is an IFTSS1 or IFTSS2 of \(S \), then \(U \) is a \(\Gamma \)-subsemigroup of \(S \).

Suppose that \(U' = (\chi_U, \chi_U') \) is an IFTSS1 of \(S \) and \(x \in UTU \). In this case \(x = u\alpha v \) for some \(u, v \in U \) and \(\alpha \in \Gamma \). It follows from \((\Gamma IS_1)\) that
\[\chi_U(x) = \chi_U(u\alpha v) \geq \min\{\chi_U(u), \chi_U(v)\} = 1. \]

Hence \(\chi_U(x) = 1 \), that is, \(x \in U \). Thus \(U \) is a \(\Gamma \)-subsemigroup of \(S \). Now, assume that \(U' = (\chi_U, \chi_U') \) is an IFTSS2 of \(S \) and \(x' \in UTU \). Then \(x' = u'\alpha' v' \) for some \(u', v' \in U \) and \(\alpha' \in \Gamma \). Using \((\Gamma IS_2)\), we get that
\[\chi_U(x') = \chi_U(u'\alpha' v') \]
\[\leq \max\{\chi_U(u'), \chi_U(v')\} \]
\[= \max\{1 - \chi_U(u'), 1 - \chi_U(v')\} \]
\[= 0, \]
and so \(1 - \chi_U(x') = \chi_U(x') = 0 \), which implies that \(\chi_U(x') = 1 \), i.e. \(x' \in U \). Thus \(U \) is a \(\Gamma \)-subsemigroup of \(S \). This completes the proof.

Definition 3.4 For an IFS \(A = (\mu_A, \gamma_A) \) in \(S \), consider the following axioms:

\((\Gamma IL1)\) \(x \leq y \) implies \(\mu_A(x) \geq \mu_A(y) \) and \(\mu_A(x\alpha y) \geq \mu_A(y) \),
\((\Gamma IL2)\) \(x \leq y \) implies \(\gamma_A(x) \leq \gamma_A(y) \) and \(\gamma_A(x\alpha y) \leq \gamma_A(y) \), for all \(x, y \in S \) and \(\alpha \in \Gamma \).

Then \(A = (\mu_A, \gamma_A) \) is called a first (resp. second) intuitionistic fuzzy left ideal (briefly, IFTL1 (resp. IFTL2)) of \(S \) if it satisfies \((\Gamma IL1)\) (resp. \((\Gamma IL2)\)). Also, \(A = (\mu_A, \gamma_A) \) is said to be an intuitionistic fuzzy left ideal (briefly, IFTL1) of \(S \) if it is both a first and a second intuitionistic fuzzy left ideal.

Definition 3.5 For an IFS \(A = (\mu_A, \gamma_A) \) in \(S \), consider the following axioms:

\((\Gamma IR1)\) \(x \leq y \) implies \(\mu_A(x) \geq \mu_A(y) \) and \(\mu_A(x\alpha y) \geq \mu_A(x) \),
\((\Gamma IR2)\) \(x \leq y \) implies \(\gamma_A(x) \leq \gamma_A(y) \) and \(\gamma_A(x\alpha y) \leq \gamma_A(x) \), for all \(x, y \in S \) and \(\alpha \in \Gamma \).

Then \(A = (\mu_A, \gamma_A) \) is called a first (resp. second) intuitionistic fuzzy right ideal (briefly, IFTRI1 (resp. IFTRI2)) of \(S \) if it satisfies \((\Gamma IR1)\) (resp. \((\Gamma IR2)\)). Also, \(A = (\mu_A, \gamma_A) \) is said to be an intuitionistic fuzzy right ideal (briefly, IFTRI) of \(S \) if it is both a first and a second intuitionistic fuzzy right ideal.
Definition 3.6 Let $A = (\mu_A, \gamma_A)$ be an IFS in S. Then A is called an intuitionistic fuzzy ideal of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right ideal.

Let U be a left-zero Γ-subsemigroup of S. If $A = (\mu_A, \gamma_A)$ is an IFTLI of S. Then the restriction of A to U is constant, that is, $A(x) = A(y)$ for all $x, y \in S$.

Let $x, y \in S$ and $\alpha \in \Gamma$. Since U is a left-zero of Γ-subsemigroup of S, we have $x \leq x\alpha y$ and $y \leq y\alpha x$. In this case, from the hypothesis, we have

$$
\mu_A(x) \geq \mu_A(x\alpha y) \geq \mu_A(y), \quad \mu_A(y) \geq \mu_A(y\alpha x) \geq \mu_A(x)
$$

and

$$
\gamma_A(x) \leq \gamma_A(x\alpha y) \leq \gamma_A(y), \quad \gamma_A(y) \leq \gamma_A(y\alpha x) \leq \gamma_A(x).
$$

Thus we obtain $\mu_A(x) = \mu_A(y)$ and $\gamma_A(x) = \gamma_A(y)$ for all $x, y \in U$. Hence $A(x) = A(y)$.

Lemma 3.7 If U is a left ideal of S, then $U' = (\chi_U, \chi_U')$ is an IFTLI of S.

Let $x, y \in S$ and $\alpha \in \Gamma$ be such that $x \leq y$. Since U is a left ideal of S, we have $x \in U$ and $x\alpha y \in U$ if $y \in U$. It follows that $x \leq y$ implies

$$
\chi_U(x) = 1 = \chi_U(y)
$$

and

$$
\chi_U'(x) = 1 - \chi_U(x) = 0 = 1 - \chi_U(y) = \chi_U'(y).
$$

Also, we have

$$
\chi_U(x\alpha y) = 1 = \chi_U(y)
$$

and

$$
\chi_U'(x\alpha y) = 1 - \chi_U(x\alpha y) = 0 = 1 - \chi_U(y) = \chi_U'(y).
$$

If $y \notin U$, then $\chi_U(y) = 0$. In this case, $x \leq y$ implies $\chi_U(x) \geq 0 = \chi_U(y)$ and $\chi_U'(x) \leq \chi_U'(y) = 1 - \chi_U(y) = 1$. Also, we obtain $\chi_U(x\alpha y) \geq 0 = \chi_U(y)$ and $\chi_U'(y) = 1 - \chi_U(y) = 1 \geq \chi_U'(x\alpha y)$. Consequently, $U' = (\chi, \chi_U')$ is an IFTLI of S.

An element e in an ordered Γ-semigroup S is called an idempotent if $eae \geq e$, for all $\alpha \in \Gamma$. Let E_S denote the set of all idempotents in an ordered Γ-semigroup S.

Theorem 3.8 Let $A = (\mu_A, \gamma_A)$ be an IFTLI of S. If E_S is a left-zero Γ-subsemigroup of S, then $A(e) = A(e')$ for all $e, e' \in E_S$.

Let \(e, e' \in E_S \). From the hypothesis, \(eae' \geq e \) and \(e' \beta e \geq e' \) for all \(\alpha, \beta \in \Gamma \). Thus, since \(A = (\mu_A, \gamma_A) \) is an IFTLI of \(S \), we get that
\[
\mu_A(e) \geq \mu_A(eae') \geq \mu_A(e'), \quad \mu_A(e' \beta e) \geq \mu_A(e')
\]
and
\[
\gamma_A(e) \leq \gamma_A(eae') \leq \gamma_A(e'), \quad \gamma_A(e' \beta e) \leq \gamma_A(e).
\]
Hence we have \(\mu_A(e) = \mu_A(e') \) and \(\gamma_A(e) = \gamma_A(e') \) for all \(e, e' \in E_S \). This completes the proof.

Definition 3.9 Let \(S \) be an ordered \(\Gamma \)-semigroup. A fuzzy \(\Gamma \)-subsemigroup \(\mu \) of \(S \) is called a fuzzy interior ideal of \(S \), if the following axioms are satisfied:
\[
(1) \quad \mu(xo\alpha\beta y) \geq \mu(a),
\]
\[
(2) \quad \text{if } x \leq y, \text{ then } \mu(x) \geq \mu(y) \text{ for all } a, x, y \in S \text{ and } \alpha, \beta \in \Gamma.
\]

Definition 3.10 For an IFS \(A = (\mu_A, \gamma_A) \) in \(S \), consider the following axioms:
\[
(\Gamma I1) \quad x \leq y \implies \mu_A(x) \geq \mu_A(y) \text{ and } \mu_A(xo\alpha\beta y) \geq \mu_A(s),
\]
\[
(\Gamma I2) \quad x \leq y \implies \gamma_A(x) \leq \gamma_A(y) \text{ and } \gamma_A(xo\alpha\beta y) \leq \gamma_A(s) \text{ for all } s, x, y \in S \text{ and } \alpha, \beta \in \Gamma.
\]

Then \(A = (\mu_A, \gamma_A) \) is called a first (resp. second) intuitionistic fuzzy interior ideal (briefly, IFTL1 (resp. IFTL2)) of \(S \) if it is an IFTS1 (resp. IFTS2) satisfying \((\Gamma I1)\) (resp. \((\Gamma I2)\)). Also, \(A = (\mu_A, \gamma_A) \) is said to be an intuitionistic fuzzy interior ideal (briefly, IFTI) of \(S \) if it is both a first and a second intuitionistic fuzzy interior ideal of \(S \).

Theorem 3.11 If \(S \) is regular, then every IFTI of \(S \) is an IFTI of \(S \).

Let \(A = (\mu_A, \gamma_A) \) be an IFTI of \(S \) and \(x, y \in S \). In this case, because \(S \) is regular, there exist \(s, s' \in S \) and \(\alpha, \beta, \alpha', \beta' \in \Gamma \) such that \(x \leq xo\alpha\beta x \) and \(y \leq yo\alpha' s' \beta' y \). Thus
\[
\mu_A(xy) \geq \mu_A(x\gamma' yo\alpha s' \beta' y) = \mu_A(x\gamma' yo\alpha (s' \beta' y)) \geq \mu_A(y).
\]
and
\[
\gamma_A(xy) \leq \gamma_A(x\gamma' yo\alpha s' \beta' y) = \gamma_A(x\gamma' yo\alpha (s' \beta' y)) \leq \gamma_A(y),
\]
for some \(\gamma' \in \Gamma \). It follows that \(A = (\mu_A, \gamma_A) \) is an IFTLI of \(S \). Similarly, we can show that \(A = (\mu_A, \gamma_A) \) is an IFTRI of \(S \). This completes the proof.

Theorem 3.12 If \(U \) is an interior ideal of \(S \), then \(U' = (\chi_U, \chi_U') \) is an IFTI of \(S \).
Since U is a Γ-subsemigroup of S, we have $U' = (\chi_U, \chi'_U)$ is an $IFTSS$ of S by Theorem 3.2. Let $x, y \in S$ be such that $x \leq y$. Then we have $x \in U$ if $y \in U$. Thus $x \leq y$ implies $\chi_U(x) = 1 = \chi_U(y)$ and
\[
\chi_U(x) = 1 - \chi_U(x)
\]
\[= 0
\]
\[= 1 - \chi_U(y)
\]
\[= \chi'_U(y).
\]
If $y \notin U$, then $\chi_U(x) \geq 0 = \chi_U(y)$ and $\chi'_U(x) \leq \chi'_U(y) = 1 - \chi_U(y) = 1$.
Now, let $s, x, y \in S$ and $\alpha, \beta \in \Gamma$. From the hypothesis, $x\alpha s\beta y \in U$ if $s \in U$.
In this case, $\chi_U(x\alpha s\beta y) = 1 = \chi_U(s)$ and
\[
\chi'_U(x\alpha s\beta y) = 1 - \chi_U(x\alpha s\beta y)
\]
\[= 0
\]
\[= 1 - \chi_U(s) = \chi'_U(s).
\]
If $s \notin U$, then $\chi_U(s) = 0$. Thus $\chi(x\alpha s\beta y) \geq 0 = \chi_U(s)$ and
\[
\chi'_U(s) = 1 - \chi_U(s)
\]
\[= 1
\]
\[\geq \chi'_U(x\alpha s\beta y).
\]
Consequently, $U' = (\chi_U, \chi'_U)$ is an $IFTII$ of S.

Theorem 3.13 Let S be regular and U a non-empty subset of S. If $U' = (\chi_U, \chi'_U)$ is an $IFTII_1$ or $IFTII_2$ of S, then U is an interior ideal of S.

It is clear that U is a Γ-subsemigroup of S be Theorem 3.3. Suppose that $U' = (\chi_U, \chi'_U)$ is an $IFTII_1$ of S and $x \in STUTS$. In this case, $x = s\alpha u\beta t$ for some $s, t \in S, u \in U$ and $\alpha, \beta \in \Gamma$. It follows from (ΓII_i) that
\[
\chi_U(x) = \chi_U(s\alpha u\beta t) \geq \chi_U(u) = 1.
\]
Hence $\chi_U(x) = 1$, i.e. $x \in U$. Let $x \leq y$ and $y \in U$. Then
\[
\chi_U(x) \geq \chi_U(y) = 1.
\]
Hence $\chi_U(x) = 1$, i.e. $x \in U$. Thus U is an interior ideal of S. Now, assume that $U' = (\chi_U, \chi'_U)$ is an $IFTII_2$ of S and $x' = s'\alpha' u'\beta' t'$ for some $s, t' \in S, u \in U$ and $\alpha, \beta \in \Gamma$. Using (ΓII_2), we obtain
\[
\chi'_U(x') = \chi'_U(s'\alpha' u'\beta' t')
\]
\[\leq \chi'_U(u')
\]
\[= 1 - \chi_U(u') = 0,
\]
and so $\chi'_U(x') = 1 - \chi_U(x') = 0$. Therefore, $\chi_U(x') = 1$, i.e. $x' \in U$. Also, let $x, y \in S$ be such that $x \leq y$ and $y \in U$. Then we have $\chi'_U(x) \leq \chi'_U(y)$, i.e.
\[1 - \chi_U(x) \leq 1 - \chi_U(y).
\]
Thus $\chi_U(x) \geq \chi_U(y)$, i.e. $\chi_U(x) = 1$, and so $x \in U$. This completes the proof.
Definition 3.14 S is called first (resp. second) intuitionistic fuzzy left simple if IFTLI₁ (resp. IFTLI₂) of S is constant. Also, S is said to be intuitionistic fuzzy left simple if it is both first and second intuitionistic fuzzy left simple, i.e. every IFTLI of S is constant.

Lemma 3.15 An ordered Γ-semigroup S is left (resp. right) simple if and only if (SΓa) = S (resp. (aΓS) = S) for every a ∈ S.

Theorem 3.16 If S is left simple, then S is intuitionistic fuzzy left simple.

Let A = (µ_A, γ_A) be an IFTLI of S and x, x' ∈ S. In this case, because S is left simple, there exist s, s' ∈ S and α, β ∈ Γ such that x ≤ sax' and x' ≤ s'βx. Thus, since A = (µ_A, γ_A) is an IFTLI of S, we get that

\[µ_A(x) ≥ µ_A(sax') ≥ µ_A(x'), \quad µ_A(x') ≥ µ_A(s'βx) ≥ µ_A(x) \]

and

\[γ_A(x) ≤ γ_A(sax') ≤ γ_A(x'), \quad γ_A(x') ≤ γ_A(s'βx) ≤ γ_A(x). \]

Hence we have µ_A(x) = µ_A(x') and γ_A(x) = γ_A(x') for all x, x' ∈ S, that is, A(x) = A(x') for all x, x' ∈ S. Consequently, S is intuitionistic fuzzy left simple. This completes the proof.

Theorem 3.17 If S is first or second intuitionistic fuzzy left simple, then S is left simple.

Let U be a left ideal of S. Suppose that S is first (or second) intuitionistic fuzzy left simple. Because U' = (χ_U, χ'_U) is an IFTLI of S by Lemma 3.8, U' = (χ_U, χ'_U) is an IFTLI₁ (and IFTLI₂) of S. From the hypothesis, χ_U (and χ'_U) is constant. Since U is non-empty, it follows that χ_U = 1 (or χ'_U = 0), where 1 and 0 are fuzzy sets in χ_U defined by 1(x) = 1 and 0(x) = 0 for all x ∈ S, respectively. Thus x ∈ U for all x ∈ S. This completes the proof.

Lemma 3.18 An ordered Γ-semigroup S is simple if and only if for every a ∈ S, we have S = (SΓaS).

Theorem 3.19 If S is simple, then every IFTLI of S is constant.

Let A = (µ_A, γ_A) be an IFTLI of S and x, x' ∈ S. In this case, because S is simple, there exist s, s', t, t' ∈ S and α, β, α', β' ∈ Γ such that x ≤ sax'βt and x' ≤ s'α'x'β't. Thus, since A = (µ_A, γ_A) is an IFTLI of S, we obtain that

\[µ_A(x) ≥ µ_A(sax'βt) ≥ µ_A(x'), \quad µ_A(x') ≥ µ_A(s'α'x'β't) ≥ µ_A(x) \]

and

\[γ_A(x) ≤ γ_A(sax'βt) ≤ γ_A(x'), \quad γ_A(x') ≤ γ_A(s'α'x'β't) ≤ γ_A(x). \]

Hence we get µ_A(x) = µ_A(x') and γ_A(x) = γ_A(x') for all x, x' ∈ S. Consequently, A = (µ_A, γ_A) is constant.
Definition 3.20 For an IFS $A = (\mu_A, \gamma_A)$ in S, consider the following axioms:

\((TIB_1)\) $x \leq y$ implies $\mu_A(x) \geq \mu_A(y)$ and $\mu_A(x \alpha s \beta y) \geq \min\{\mu_A(x), \mu_A(y)\}$,

\((TIB_2)\) $x \leq y$ implies $\gamma_A(x) \leq \gamma_A(y)$ and $\gamma_A(x \alpha s \beta y) \leq \max\{\gamma_A(x), \gamma_A(y)\}$

for all $s, x, y \in S$ and $\alpha, \beta \in \Gamma$. Then $A = (\mu_A, \gamma_A)$ is called an intuitionistic fuzzy bi-ideal (briefly, IFTB) of S if it satisfies (TIB_1) and (TIB_2).

Theorem 3.21 If S is left simple, then every IFTB of S is an IFTRI of S. Let $A = (\mu_A, \gamma_A)$ be an IFTB of S and $x, y \in S$. In this case, from the hypothesis, there exist $s \in S$ and $\alpha, \beta \in \Gamma$ such that $y \leq s \alpha x$. Thus, because $A = (\mu_A, \gamma_A)$ is an IFTB of S, we have that

$$\mu_A(x \beta y) \geq \mu_A(x \beta s \alpha x) \geq \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$$

and

$$\gamma_A(x \beta y) \leq \gamma_A(x \beta s \alpha x) \leq \max\{\gamma_A(x), \gamma_A(x)\} = \gamma_A(x).$$

It follows that $A = (\mu_A, \gamma_A)$ is an IFTRI of S.

Theorem 3.22 If U is a bi-ideal of S, then $U' = (\chi_U, \chi'_U)$ is an IFTB of S.

Since U is a Γ-subsemigroup of S, we obtain that $U' = (\chi_U, \chi'_U)$ is an IFTS of S by Theorem 3.2. Let $x, y \in S$ be such that $x \leq y$ and $y \in U$. Then $x \in U$, and so $\chi_U(x) = 1 = \chi_U(y)$ and $\chi'_U(x) = 1 - \chi_U(x) = 0 = 1 - \chi_U(y) = \chi'_U(y)$. Let $s, x, y \in S$ and $\alpha, \beta \in \Gamma$. From the hypothesis, $x \alpha s \beta y \in U$ if $x, y \in U$. In this case,

$$\chi_U(x \alpha s \beta y) = 1 = \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\chi'_U(x \alpha s \beta y) = 1 - \chi_U(x \alpha s \beta y) = 0 = \max\{\chi'_U(x), \chi'_U(y)\}.$$

If $x \notin U$ or $y \notin U$, then $\chi_U(x) = 0$ or $\chi_U(y) = 0$. Thus

$$\chi_U(x \alpha s \beta y) \geq 0 = \min\{\chi_U(x), \chi_U(y)\}$$

and

$$\max\{\chi'_U(x), \chi'_U(y)\} = \max\{1 - \chi_U(x), 1 - \chi_U(y)\}$$

$$= 1 - \min\{\chi_U(x), \chi_U(y)\}$$

$$= 1$$

$$\geq \chi'_U(x \alpha s \beta y).$$

Consequently, $U' = (\chi_U, \chi'_U)$ is an IFTB of S.
References

