Lacunary Weak I-Statistical Convergence

Hafize Gümüş

Faculty of Eregli Education, Necmettin Erbakan University
Eregli Konya- 42310, Turkey
E-mail: hgumus@konya.edu.tr

(Received: 14-3-15 / Accepted: 26-4-15)

Abstract

In this study, we provide a new approach to I-statistical convergence. We introduce a new concept with I-statistical convergence and weak convergence together and we call it weak I-statistical convergence or $WS(I)-$convergence. Then we introduce this concept for lacunary sequences and we obtain lacunary weak I-statistical convergence i.e. $WS_{\theta}(I)-$convergence. $WN_{\theta}(I)-$convergence is any other definition in our study. After giving this description, we investigate their relationship and we have some results.

Keywords: I-statistical convergence, weak statistical convergence, lacunary sequence.

1 Introduction

In this area, statistical convergence is an important concept and Zygmund [15] gave it in the first edition of his monograph published in Warsaw in 1935. It was formally introduced by Fast and Steinhaus [5, 14] and later was reintroduced by Schoenberg, [13] This concept has a wide application area for example number theory [4], measure theory [10], trigonometric series [15], summability theory [6],
Fridy and Orhan studied statistical convergence with lacunary sequences. [8]

Let \(K \) be a subset of the set of all natural numbers \(\mathbb{N} \) and \(K_n = \{k \leq n : k \in K\} \) where the vertical bars indicate the number of elements in the enclosed set. The natural density of \(K \) is defined by \(\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K_n| \). If a property \(P(k) \) holds for all \(k \in A \) with \(\delta(A) = 1 \) we say that \(P \) holds for almost all \(k \) that is a.a.k.

Definition 1.1: [14] A number sequence \(x = (x_k) \) is statistically convergent to \(x \) provided that for every \(\varepsilon > 0 \),

\[
\lim_{n \to \infty} \frac{1}{n} |\{k \leq n : |x_k - x| \geq \varepsilon\}| = 0.
\]

In this case we write \(st - \lim x_k = x \).

Statistical convergence was extended to \(I - \) convergence in a metric space in Kostyrko, Salát and Wileżyński's study. [9]

Definition 1.2: A family of sets \(I \subseteq 2^\mathbb{N} \) is called an ideal if and only if

(i) \(\emptyset \in I \)

(ii) For each \(A, B \in I \) we have \(A \cup B \in I \)

(iii) For each \(A \in I \) and each \(B \subseteq A \) we have \(B \in I \)

An ideal is called non-trivial if \(\mathbb{N} \notin I \) and a non-trivial ideal is called admissible if \(\{n\} \in I \) for each \(n \in \mathbb{N} \).

Definition 1.3: A family of sets \(F \subseteq 2^\mathbb{N} \) is called a filter in \(\mathbb{N} \) if and only if

(i) \(\emptyset \notin F \)

(ii) For each \(A, B \in F \) we have \(A \cap B \in F \)

(iii) For each \(A \in F \) and each \(B \supseteq A \) we have \(B \in F \)

Proposition 1.1 \(I \) is a non-trivial ideal in \(\mathbb{N} \) if and only if

\[F = F(I) = \{M = N \setminus A : A \in I\} \]

is a filter in \(\mathbb{N} \).

Throughout the paper, \(I \) will be an admissible ideal.
Definition 1.4: A real sequence \(x = (x_k) \) is said to be \(I \)– convergent to \(L \in \mathbb{R} \) if and only if for each \(\varepsilon > 0 \) the set
\[
A_{\varepsilon} = \{ k \in \mathbb{N} : |x_k - L| \geq \varepsilon \}
\]
belongs to \(I \). The number \(L \) is called the \(I \)– limit of the sequence \(x \).

Example 1.1: Take for \(I \) class the \(I_f \) of all finite subsets of \(\mathbb{N} \). Then \(I_f \) is an admissible ideal and \(I_f \) – convergence coincides with the usual convergence.

In 2011, Das, Savas and Ghosal [3] have introduced the concept of \(I \) – statistical convergence and \(I \) – lacunary statistical convergence.

Definition 1.5: [3] A sequence \(x = (x_k) \) is said to be \(I \) – statistically convergent to \(L \) for each \(\varepsilon > 0 \) and \(\delta > 0 \),
\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \left\{ k \leq n : |x_k - L| \geq \varepsilon \right\} \geq \delta \right\} \in I.
\]

Example 1.2: Let us take the sequence \((y_n) \) where \(y_n = \begin{cases} 1, & n = 1 \text{ to } 10 \\ n - 10, & n \geq 10 \end{cases} \) and the ideal \(I_d \) which is the ideal of density zero sets of \(\mathbb{N} \). Let \(A = \{1^2, 2^2, 3^2, \ldots\} \).
Define \(x = (x_k) \) in a normed linear space \(X \) by,
\[
x_k = \begin{cases} ku, & \text{for } n - \left\lfloor \sqrt{y_n} \right\rfloor + 1 \leq k \leq n, n \notin A \\ ku, & \text{for } n - y_n + 1 \leq k \leq n, n \in A \\ \theta, & \text{otherwise} \end{cases}
\]
where \(u \in X \) is a fixed element with \(\|u\| = 1 \) and \(\theta \) is the null element of \(X \). Then the sequence \(x = (x_k) \) is \(I \) – statistically convergent but it is not statistically convergent.

Now, we will give the definition of \(I \) – lacunary statistically convergent sequences from the paper of Das, Savas and Ghosal. But first, we need to remind lacunary sequence.

Definition 1.6: A lacunary sequence is an increasing integer sequence \(\theta = (k_r) \) such that \(k_0 = 0 \) and \(h_r = k_r - k_{r-1} \to \infty \) as \(r \to \infty \). The intervals determined by \(\theta \) will be denoted by \(J_r = (k_{r-1}, k_r] \) and the ratio \(\frac{k_r}{k_{r-1}} \) will be denoted by \(q_r \).
Definition 1.7: [3] Let \(\theta \) be a lacunary sequence. A sequence \(x = (x_k) \) is said to be \(I \) – lacunary statistically convergent to \(L \) for each \(\varepsilon > 0 \) and \(\delta > 0 \),

\[
\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left\{ \left| k \in J_r : \left| x_k - L \right| \geq \varepsilon \right\} \right\} \geq \delta \in I.
\]

Let’s continue to remind important concepts that we need for our study.

Definition 1.8: Let \(B \) be a Banach space, \(x = (x_k) \) be a \(B \)-valued sequence and \(x \in B \). The sequence \(x = (x_k) \) is weakly convergent to \(x \) provided that for any \(f \) in the continuous dual \(B^* \) of \(B \),

\[
\lim_{k \to \infty} f(x_k - x) = 0
\]

and in this case we write \(w- \lim x_k = x \).

Definition 1.9: Let \(B \) be a Banach space, \(x = (x_k) \) be a \(B \)-valued sequence and \(x \in B \). The sequence \(x = (x_k) \) is weakly \(C_1 \)-convergent to \(x \) provided that for any \(f \) in the continuous dual \(B^* \) of \(B \),

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k - x) = 0
\]

In 2000, Connor et al. [2], have introduced a new concept of weak statistical convergence and have characterized Banach spaces with separable duals via statistical convergence. Pehlivan and Karaev [12] have also used the idea of weak statistical convergence in strengthening a result of Gokhberg and Klein on compact operators. Bhardwaj and Bala have investigated some relations between weak convergent sequences and weakly statistically convergent sequences [1].

Following Connor et al. we define weak statistical convergence as follows:

Definition 1.10: [2] Let \(B \) be a Banach space, \(x = (x_k) \) be a \(B \)-valued sequence and \(x \in B \). The sequence \(x = (x_k) \) is weakly statistically convergent to \(x \) provided that for any \(f \) in the continuous dual \(B^* \) of \(B \) the sequence \((f(x_k - x)) \) is statistically convergent to \(x \) i.e.

\[
\lim_{n \to \infty} \frac{1}{n} \left\{ k \leq n : \left| f(x_k - x) \right| \geq \varepsilon \right\} = 0
\]

and in this case we write \(W-st- \lim x_k = x \).

It is easy to see that the weak statistical limit of a weakly statistically convergent sequence is unique.

Definition 1.11: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence, θ be a lacunary sequence and $x \in B$. $x = (x_k)$ is weakly lacunary statistically convergent to x or WS_θ convergent to x provided that for any f in the continuous dual B' of B,

$$\lim_{r \to \infty} \frac{1}{h_r} \left\{ k \in J_r : |f(x_k - x)| \geq \varepsilon \right\} = 0.$$

2 Lacunary Weak I- Statistical Convergence

Definition 2.1: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly I- convergent to x provided that for any f in the continuous dual B' of B,

$$\{ k \in \mathbb{N} : |f(x_k - x)| \geq \varepsilon \} \in I.$$

The set of all weakly I- convergent sequences is denoted by WI and if we take $I = I_f$ the ideal of all finite subsets of \mathbb{N}, we have the usual weak convergence.

Example 2.1: I_d is an admissible ideal and WI_d – convergence coincides with the weak statistical convergence.

Example 2.2: Denote by I_ϕ the class of all $K \subset \mathbb{N}$ with

$$\lim_{r \to \infty} \frac{1}{h_r} \left\{ k \in J_r : k \in K \right\} = 0.$$

Then I_ϕ is an admissible ideal and WI_ϕ – convergence coincides with the lacunary weak statistical convergence.

We now introduce our main definitions.

Definition 2.2: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly I – statistically convergent to x provided that for any f in the continuous dual B' of B and every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \left\{ k \leq n : |f(x_k - x)| \geq \varepsilon \right\} \geq \delta \right\} \in I.$$
The set of all weakly I–statistically convergent sequences is denoted by $WS(I)$.

Definition 2.3: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence, $x \in B$ and $\theta = (k_r)$ be a lacunary sequence. The sequence $x = (x_k)$ is lacunary weak I–statistically convergent to x provided that for any f in the continuous dual B^* of B and every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \varepsilon \right\} \subseteq I,$$

The set of all lacunary weak I–statistically convergent sequences is denoted by $WS_\theta(I)$.

Definition 2.4: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence, $x \in B$ and $\theta = (k_r)$ be a lacunary sequence. The sequence $x = (x_k)$ is $WN_\theta(I)$–convergent to x provided that for any f in the continuous dual B^* of B and every $\varepsilon > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \varepsilon \right\} \subseteq I.$$

Theorem 2.1: Let $\theta = (k_r)$ be a lacunary sequence. Then (x_k) is $WN_\theta(I)$–convergent to x if and only if (x_k) is $WS_\theta(I)$–convergent to x.

Proof: Assume that (x_k) is $WN_\theta(I)$–convergent to x and $\varepsilon > 0$. We can write,

$$\frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \frac{1}{h_r} \sum_{k \in J_r, \text{and} |f(x_k - x)| \geq \varepsilon} |f(x_k - x)|,$$

$$\geq \frac{\varepsilon}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \varepsilon \left\{ k \in J_r : |f(x_k - x)| \geq \varepsilon \right\}$$

Then,

$$\frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \frac{1}{h_r} \left\{ k \in J_r : |f(x_k - x)| \geq \varepsilon \right\}$$

and for any $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \varepsilon \right\} \subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \geq \varepsilon \delta \right\}.$$

We know that the right side is in ideal. So, the left side is also in ideal.
Now suppose that \((x_k)\) is \(WS_{\theta}(I)\)–convergent to \(x\). Since \(f \in B^*\), \(f\) is bounded. Then there exists a \(K \geq 0\) for all \(k \in \mathbb{N}\) such that \(|f(x_k - x)| \leq K\). Given \(\varepsilon > 0\), we get,

\[
\frac{1}{h_r} \sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| = \frac{1}{h_r} \sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| + \frac{1}{h_r} \sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| \\
\leq K \frac{1}{h_r} \left(\sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| \right) + \frac{\varepsilon}{2}.
\]

Consequently we have,

\[
\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| \geq \varepsilon \right\} \subseteq \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left(\sum_{k \in J, r \leq k \leq r + 1} |f(x_k - x)| \right) \geq \frac{\varepsilon}{2K} \right\} \in I.
\]

Theorem 2.2: Let \(\theta = (k_r)\) be a lacunary sequence with \(\liminf q_r > 1\). Then \(WS(I)\)–convergence implies \(WS_{\theta}(I)\)–convergence.

Proof: Assume that \(\liminf q_r > 1\). Then there exists an \(\alpha > 0\) such that \(q_r \geq 1 + \alpha\) for all sufficiently large \(r\). This implies \(\frac{h_r}{k_r} \geq \frac{\alpha}{1 + \alpha}\). Since \((x_k)\) is \(WS(I)\)–convergent to \(x\), for every \(\varepsilon > 0\) and sufficiently large \(r\) we have,

\[
\frac{1}{k_r} \left[\{ k \leq k_r : |f(x_k - x)| \geq \varepsilon \} \right] \geq \frac{1}{k_r} \left[\{ k \in J, r \leq k \leq r + 1 : |f(x_k - x)| \geq \varepsilon \} \right] \geq \frac{\alpha}{1 + \alpha} \frac{1}{h_r} \left[\{ k \in J, r \leq k \leq r + 1 : |f(x_k - x)| \geq \varepsilon \} \right].
\]

Then for any \(\delta > 0\) we get

\[
\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left[\{ k \in J, r \leq k : |f(x_k - x)| \geq \varepsilon \} \right] \geq \delta \right\} \subseteq \left\{ r \in \mathbb{N} : \frac{1}{k_r} \left[\{ k \leq k_r : |f(x_k - x)| \geq \varepsilon \} \right] \geq \frac{\delta \alpha}{1 + \alpha} \right\} \in I.
\]

This proves the theorem.

Theorem 2.3: Let \(\theta = (k_r)\) be a lacunary sequence with \(\limsup q_r < \infty\). Then \(WS_{\theta}(I)\)–convergence implies \(WS(I)\)–convergence.

Proof: If \(\limsup q_r < \infty\) then there is a \(K > 0\) such that \(q_r < K\) for all \(r\). Suppose that \((x_k)\) is \(WS_{\theta}(I)\)–convergent to \(x\) and \(\varepsilon, \delta, \eta > 0\). Define the sets,
Lacunary Weak I-Statistical Convergence

\[M = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left[k \in J_r : |f(x_k - x)| \geq \varepsilon \right] < \delta \right\} \]

\[R = \left\{ n \in \mathbb{N} : \frac{1}{n} \left[k \leq n : |f(x_k - x)| \geq \varepsilon \right] < \eta \right\}. \]

Let \(F(I) \) be the filter associated with the ideal \(I \). It is obvious that \(M \in F(I) \). If we can show that \(R \in F(I) \) then we will have the proof. For all \(j \in M \) let,

\[A_j = \frac{1}{j} \left[k \in J_j : |f(x_k - x)| \geq \varepsilon \right] < \delta. \]

Choose \(n \in \mathbb{N} \) such that \(k_{r-1} < n < k_r \) for some \(r \in M \). Now,

\[
\frac{1}{n} \left[k \leq n : |f(x_k - x)| \geq \varepsilon \right] \leq \frac{1}{k_{r-1}} \left[k \leq k_r : |f(x_k - x)| \geq \varepsilon \right] \\
= \frac{k_{r-1}}{k_r} \left[k \in J_1 : |f(x_k - x)| \geq \varepsilon \right] + \frac{k_r - k_{r-1}}{k_r} \left[k \in J_2 : |f(x_k - x)| \geq \varepsilon \right] + \ldots + \frac{k_r - k_{r-1}}{k_r} A_r \\
\leq \sup_{j=M} \frac{k_j}{k_{r-1}} A_j < K \delta
\]

Choosing \(\eta = \frac{\delta}{K} \) and in view of the fact that \(\bigcup \left\{ n : k_{r-1} < n < k_r, r \in M \right\} \subset R \) then we have \(R \in F(I) \).

References

