Frames, Riesz Bases and Double Infinite Matrices

Devendra Kumar
Department of Mathematics
M.M.H.College,Model Town,Ghaziabad-201001, U.P., India
d_kumar001@rediffmail.com

(Received 01.11.2010, Accepted 15.11.2010)

Abstract. In this paper we have used double infinite matrix $A = (a_{iljk})$ of real numbers to define the A-frame. Some results on Riesz basis and A-frame also have been studied. This Work is motivated from the work of Moricz and Rhoades [7].

2001 AMS Classification. Primary 41A17, Secondary 42C15.

Keywords and phrases. Bessel sequence, moment sequence, double infinite matrix and A-frame.

1 Introduction

Let $U(F)$ and $V(F)$ be finite dimensional vector spaces over the field F of dimension n. The elements $(y_1, \ldots, y_n) \in V$ and (e_1, e_2, \cdots, e_n) is an ordered basis in U. Then there exists a unique linear transformation such that

$$Te_i = y_i, \quad i = 1, \cdots, n. \quad (1.1)$$

Let us extend the transformation T to linear transformation of vectors from the basis such that

$$T \left(\sum_{i=1}^{n} \alpha_i e_i \right) = \sum_{i=1}^{n} \alpha_i y_i.$$

It is clear from (1.1) that T is completely defined because any element in U can be expressed as a linear combination of basis vectors uniquely. Also, if U is n–dimensional and V is m–dimensional then the class of all linear
transformation from $U \rightarrow V$ be nm–dimensional.

Let an ordered bases in U and V be $\{e_j\}_{j=1}^n$ and $\{e_i\}_{i=1}^m$ respectively. Then the set of all linearly independent $[a_{ij}].(i = 1, \ldots, m, j = 1, \ldots, n)$ i.e.,

$$
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & \ddots & \cdots & \\
 \vdots & \ddots & & \\
 a_{m1} & & \cdots & a_{mn}
\end{pmatrix}_{m \times n}
$$

be characterized by the mappings

$$
a_{ij}e_k = \delta_{jk}e_i \quad i = 1, \ldots, m, k, j = 1, \ldots, n.
$$

Now we have the following definitions

Definition 1.1 Let $A = (a_{iljk}), (i, l, j, k = 1, 2, \cdots)$, be a double non-negative infinite matrix of real or complex numbers. Let (X, Y) denote the class of all such matrices A such that the series $A(x_{il}) = \sum_{j=k=0}^{\infty} a_{iljk}x_{jk}$ converges for all double sequences $x_{jk} \in X$ and the sequence $\{A(x_{il})\}$ will be called A–means or A–transform of x_{il}. Also $Ax = \lim_{i,l \rightarrow \infty} A(x_{il})$, whenever it exists.

Definition 1.2. A double matrix $A = (a_{iljk})$ is said to be regular if the matrix transformation $A : X \rightarrow Y$ is defined on a convergent sequence to a convergent sequence and limit is preserved i.e., $\lim_{i,l \rightarrow \infty} A(x_{il}) = \lim_{i,l \rightarrow \infty} x_{il}.$

Definition 1.3. [7] A double matrix $A = (a_{iljk})$ is said to be regular if the following conditions holds.

(I) $\lim_{i,l \rightarrow \infty} \sum_{j,k=0}^{\infty} a_{iljk} = 1,$

(II) $\lim_{i,l \rightarrow \infty} \sum_{j=0}^{\infty} |a_{iljk}| = 0, \quad (k = 0, 1, \cdots),$

(III) $\lim_{i,l \rightarrow \infty} \sum_{j=0}^{\infty} |a_{iljk}| = 0, \quad (j = 0, 1, \cdots),$

(IV) $\|A\| = \sup_{i,l>0} \sum_{j,k=0}^{\infty} |a_{il}| < \infty.$

2 **Frames**

The theory for frames and bases has developed very fast over the last 15 years. The concept of frames were introduced by Duffin and Schaeffer [5] in
the context of non-harmonic Fourier series. A sequence in a Hilbert space H is a frame if there exist constants $C_1, C_2 > 0$ such that

$$C_1\|x\|^2 \leq \sum_n |<x, x_n>|^2 \leq C_2\|x\|^2, \ \forall x \in H. \quad (2.1)$$

Any numbers C_1, C_2 for which (2.1) is valid are called frames bounds. They are not unique if we can choose $C_1 = C_2$, the frame is called tight and is said to be exact if it ceases to be a frame by removing any of its elements. The theory of frames are discussed in variety of sources, including [1,3,4,6,8]. The purpose of the present paper is to define A-frame for an infinite double non-negative regular matrix and to study some results on A-frame and Riesz basis.

Let H be a separable Hilbert space with inner product $<..>$ and norm $\|..\|=<(..)^{1/2}$. In the sequel z, and z^+ denote the set of integers and strictly positive integers respectively.

Definition 2.1. A family of elements $\{x_n, n \in z^+\} \subseteq H$ is called a Bessel sequence if there exists a constant $B > 0$ such that

$$\sum |<f, x_n>|^2 \leq B\|f\|^2, \forall f \in H. \quad (2.2)$$

It is given [1] that $\{x_n, n \in z^+\}$ is a Bessel sequence with bound M if and only if, for every finite sequence of scalors $\{c_k\}$;

$$\| \sum_k c_k x_k \|^2 \leq M \sum_k |c_k|^2. \quad (2.3)$$

Chui and Shi’s [2] remarked that $\{x_n, n \in z^+\}$ is a Bessel sequence with bound M if and only if (2.3) is satisfied for every sequence $\{c_k\} \in l^2$.

In the consequence of above discussion we have the following lemma.

Lemma 2.1. $\{x_n, n \in z^+\}$ is a Bessel sequence if and only if

$$T: \{c_n\} \rightarrow \sum_n c_n x_n$$

is well defined operator from l^2 into H. In that case T is automatically bounded, and the adjoint of T is given by

$$T^*: H \rightarrow l^2, \ T^* f = \{<f, x_n>\}.$$

An important consequence of above lemma 2.1 that if $\{x_n\}$ is a Bessel sequence, then $\sum_n c_n x_n$ converges unconditionally for all $\{c_n\} \in l^2$. When
Frames, Riesz Bases and double infinite matrices

\{x_n, n \in z^+\} \subset H is a frame, the operator T and T* are well defined, so we define the frame operator

\[S : H \to H, \quad Sf = TT^*f = \sum_n <f, x_n>x_n. \]

Two sequences \(\{x_n, n \in z^+\} \) and \(\{y_n, n \in z^+\} \) in \(H \) are called biorthogonal if \(<x_n, y_n> = \delta_{m,n} \), where \(\delta_{m,n} \) is the Kronecker delta.

To prove that \(S \) is bounded, positive and surjective we have the following theorem from [1].

Theorem A. Let \(\{x_n, n \in z^+\} \subset H \)

(a) The following are equivalent

(i) \(\{x_n, n \in z^+\} \) is a frame for \(H \) with frame bounds \(C_1 \) and \(C_2 \).

(ii) \(S : H \to H \) is a topological isomorphism with norm bounds \(\|S\| \leq C_2 \) and \(\|S\| \leq C_1^{-1} \).

(b) In case of either condition in part (a), we obtain that

\[C_1 I \leq S \leq C_2 I \quad C_2^{-1} I \leq S^{-1} \leq C_1^{-1} I, \]

\(\{S^{-1}x_n\} \) is a frame for \(H \) with frame bounds \(C_2^{-1} \) and \(C_1^{-1} \) and for all \(x \in H \),

\[f = SS^{-1}f = \sum_n <x, S^{-1}x_n>x_n, \quad (2.4) \]

and

\[f = \sum_n <x, x_n>S^{-1}x_n. \quad (2.5) \]

If \(\{x_n, n \in z^+\} \) is a frame, \(S \) is called frame operator, \(\{S^{-1}x_n\} \) is called dual frame of \(\{x_n\} \), (2.4) is the frame decomposition of \(x \) and (2.5) is the dual frame decomposition of \(x \). \(I \) is the identity map, \(S \leq C_2 I \) means that \(<(C_2I - S)x, x> \geq 0 \) for each \(x \in H \).

We also have

Theorem B.[1]. Let \(\{x_n, n \in z^+\} \subset H \) be a frame for \(H \) with frame bounds \(C_1 \) and \(C_2 \). Then for each sequence \(\{C_n\} \in l^2 \) such that \(x = \sum_n C_nx_n \) converges in \(H \) and \(\|x\|^2 \leq C_2\|C\|_2^2 \) and for any arbitrary vector \(v \) there exists a moment sequence \(\{y_n, n \in z^+\} \) such that \(v = \sum_{n=1}^\infty x_ny_n \) and \(C_2^{-1}\|v\|^2 \leq \sum_{n=1}^\infty |y_n|^2 \leq C_2\|v\|^2 \).

Theorem C.[1]. A sequence \(\{x_n, n \in z^+\} \) in a Hilbert space \(H \) is an exact frame for \(H \) if and only if it is bounded unconditional basis for \(H \).
3 Main Results

Theorem 3.1. Let $A = (a_{iljk})$ be a double non-negative regular infinite matrix. Then for any $f \in L^2(R)$ the frame condition for A--transform of (a_{iljk}) is

$$C_1\|f\|^2 \leq \sum_{i,l \in \mathbb{Z}} |<f, A(\phi_{i,l})>|^2 \leq C_2\|f\|^2,$$

where $A(\phi_{i,l}) = \sum_{j,k=0}^{\infty} a_{iljk}\phi_{j,k}, \{\phi_{i,l}\}$ is a sequence of vectors and $0 < C_1 \leq C_2 < \infty$ are frame bounds.

Since A is regular matrix and by the definition of $A(\phi_{i,l})$, we get

$$\sum_{i,l \in \mathbb{Z}} |<f, A(\phi_{i,l})>|^2 = \sum_{i,l \in \mathbb{Z}} \int_{-\infty}^{\infty} |f(x)|^2 |A(\phi_{i,l})|^2 dx \leq \|f\|^2 \sum_{i,l \in \mathbb{Z}} |A(\phi_{i,l})|^2 = \|f\|^2 \|A\|^2 \sum_{i,l \in \mathbb{Z}} |\phi_{i,l}|^2.$$

Now for any $f \in L^2(R)$, let

$$\tilde{f} = \left[\sum_{i,l \in \mathbb{Z}} |<f, A(\phi_{i,l})>|^2\right]^{-1/2} f,$$

or

$$<\tilde{f}, A(\phi_{i,l})> = \left[\sum_{i,l \in \mathbb{Z}} |<f, A(\phi_{i,l})>|^2\right]^{-1/2} <f, A(\phi_{i,l})> \leq 1.$$

Hence, for positive constant α, we get

$$\|\tilde{f}\|^2 \|\phi_{i,l}\|^2 \leq \alpha,$$

or

$$\left[\sum_{i,l \in \mathbb{Z}} |<f, A(\phi_{i,l})>|^2\right]^{-1} |<f, A(\phi_{i,l})>|^2 \leq \alpha.$$
Since A is regular, it gives
\[\sum_{i,l \in \mathbb{Z}} |< f, A(\phi_{i,l})>|^2 \|f\|^2 \leq \alpha 1. \]
Thus,
\[C_1 \|f\|^2 \leq \sum_{i,l \in \mathbb{Z}} |< f, A(\phi_{i,l})>|^2. \] (3.3)

Combining (3.2) and (3.3) the proof of theorem is immediate.

Theorem 3.2. \{A(\phi_{i,l})\} is a frame for any $f \in L^2(\mathbb{R})$ if and only if the mapping
\[T : \{\beta_{i,l}\} \to \sum_{i,l \in \mathbb{Z}} \beta_{i,l} A(\phi_{i,l}) \]
is a well defined mapping from l^2 into $L^2(\mathbb{R})$. Here $\beta_{i,l} = <f, A(\phi_{i,l})>$ is A–moment sequence of $f \in L(\mathbb{R})$ relative to the frame.

Proof. First we shall prove that if \{A(\phi_{i,l})\} is a frame and \{\beta_{i,l}\} $\in l^2$, then $\sum_{i,l \in \mathbb{Z}} \beta_{i,l} A(\phi_{i,l})$ converges, and
\[\| \sum_{i,l \in \mathbb{Z}} \beta_{i,l} A(\phi_{i,l})\|^2 \leq C_2 \| \sum_{i,l \in \mathbb{Z}} |\beta_{i,l}|^2. \] (3.4)

To prove this let us assume
\[f_{j,k} = \sum_{i,l=1}^{j,k} \beta_{i,l} A(\phi_{i,l}) \]
then for any $j, k \geq j_0, k_0$, using Schwartz inequality with the frame condition (3.1) we obtain
\[\|f_{j,k} - f_{j_0,k_0}\|^2 = \{ \sum_{i,l=j_0+1,k_0+1}^{j,k} |\beta_{i,l}|^2 \}^{1/2} \{ C_2 \|f_{j,k} - f_{j_0,k_0}\|^2 \}^{1/2}. \]
Which gives
\[\|f_{j,k} - f_{j_0,k_0}\|^2 \leq C_2 \sum_{i,l=j_0+1,k_0+1}^{j,k} |\beta_{i,l}|^2. \]

Now we assume that \{A(\phi_{i,l})\} is a frame. Since \{A(\phi_{i,l})\} is a Bessel sequence, T is a bounded operator from l^2 into $L^2(\mathbb{R})$ by (3.4). Now for any $f \in L^2(\mathbb{R})$ we define a linear transformation S by the relation
\[Sf = \sum_{i,l \in \mathbb{Z}} <f, A(\phi_{i,l})> A(\phi_{i,l}). \]
The transformation is self adjoint and it gives with (3.1) that
\[C_1 \|f\|^2 \leq \langle Sf, f \rangle \leq C_2 \|f\|^2. \]

This conclude that \(S \) is positive, bounded and surjective. Thus \(S = TT^* \) is surjective. Hence \(T \) is surjective.

Now suppose that \(T \) is a well defined operator from \(l^2 \) onto \(L^2(R) \). By (3.4) \(\{A(\phi_{i,l})\} \) satisfies the upper frame condition. Now consider that \(T \) be any bounded operator from a Hilbert space \(H_1 \) into a Hilbert space \(H \). Then the set \(C_T = H_1 \ominus N(T) \) i.e., the orthogonal complement of null space of \(T \) in \(H_1 \) is well defined, \(T \) is injective on \(C_T \) and ran \(T^* \) is dense in \(C_T \). We denote \(T^+ \) the inverse map from ran \(T \) to \(C_T \) i.e., \(T^+: H \rightarrow C_T \). By writing \(T^+ f = \{(T^+ f)_{i,l}\} \) for \(f \in H \), we get
\[f = TT^+ f = \sum_{i,l \in \mathbb{Z}} (T^+ f)_{i,l} A(\phi_{i,l}). \]

We have
\[
\|f\|^4 = |\langle f, f \rangle|^2 = \left| \sum_{i,l \in \mathbb{Z}} \langle (T^+ f)_{i,l} A(\phi_{i,l}), f \rangle \right|^2 \\
\leq \sum_{i,l \in \mathbb{Z}} \| (T^+ f)_{i,l} \|^2 \sum_{i,l \in \mathbb{Z}} |\langle f, A(\phi_{i,l}) \rangle|^2 \\
\leq \|T^+\|^2 \|f\|^2 \sum_{i,l \in \mathbb{Z}} |\langle f, A(\phi_{i,l}) \rangle|^2.
\]

Thus, we obtain
\[
\sum_{i,l \in \mathbb{Z}} |\langle f, A(\phi_{i,l}) \rangle|^2 \geq \frac{1}{\|T^+\|^2} \|f\|^2, \forall f \in H.
\]

Taking \(H = L^2(R) \). The proof is completed in view of Theorem 3.1.

Theorem 3.3 Let any sequence of numbers \(\{\beta_{i,l}\} \in l^2 \) is a moment sequence of any function \(f \in L^2(R) \) with respect to \(\{A(\phi_{i,l})\} \). If \(\{A(\phi_{i,l})\} \) is an exact \(A \)-frame then there exist constants \(C_1, C_2 > 0 \) such that
\[
C_1 \sum_{i,l \in \mathbb{Z}} |\beta_{i,l}|^2 \leq \| \sum_{i,l \in \mathbb{Z}} \beta_{i,l} A(\phi_{i,l}) \|^2 \leq C_2 \sum_{i,l \in \mathbb{Z}} |\beta_{i,l}|^2
\]

Proof. Since \(\{A(\phi_{i,l})\} \) is an exact \(A \)-frame therefore \(S^{-1} A(\phi_{i,l}) \) is a biorthogonal sequence. By Theorem 3.2 we conclude that for a given sequence \(\{\beta_{i,l}\} \in l^2 \) and for any \(f \in L^2(R) \), the series \(f = \sum_{i,l \in \mathbb{Z}} \beta_{i,l} A(\phi_{i,l}) \) has a finite norm. The proof is completed with (3.1) by using the fact that \(\{A(\phi_{i,l})\} \) is bounded.
References

