δ̂g-Closed Sets in Topological Spaces

1M.Lellis Thivagar, 2B.Meera Devi and 3E.Hatir

1Department of Mathematics, Arul Anandar College, Madurai-625514, Tamil Nadu, INDIA.
E-mail: mlthivagar@yahoo.co.in

2Department of Mathematics, Sri.S.R.N.M College, Sattur-626203, Tamil Nadu, INDIA
E-mail: abmeeradevi@gmail.com

3Department of Mathematics, Selcuk University, TURKEY.

(Received 24.10.2010, Accepted 9.11.2010)

Abstract

In this paper a new class of sets, namely δ̂g-closed sets is introduced in topological spaces. We prove that this class lies between the class of δ-closed sets and the class of δg-closed sets. Also we find some basic properties and applications of δ̂g-closed sets. We also introduce and study a new class of space namely T̂_{3\frac{1}{4}}-space.

Keywords: generalized closed sets, δ̂g-closed sets, δ-closure, ̂g-open sets and T̂_{3\frac{1}{4}}-space.

AMS subject classification : 54C55.

1 **Introduction**

Levine [4], Mashhour et al.[8], Njastad[10] and Velicko[13] introduced semi-open sets, pre-open sets, α-open sets and δ-closed sets respectively. Levine[5] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Bhattacharya and Lahiri[2], Arya and Nour[1], Maki et a [6,7], Dontchev and Ganster[3] introduced semi-generalized closed (briefly sg-closed) sets, generalized semi-closed (briefly gs-closed) sets, generalized α-closed (briefly ga-closed) sets, α-generalized closed (briefly ag-closed) sets and δ-generalized closed (briefly δg-closed) sets respectively. Veera Kumar [12] introduced ̂g-closed sets in topological spaces. The purpose of this present paper is to define a new class of closed sets called δ̂g-closed sets and also we obtain some basic properties of δ̂g-closed sets in topological spaces. Applying these sets, we obtain a new space which is called T̂_{3\frac{1}{4}}-space.
2 Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1 A subset A of a space (X, τ) is called a
1. semi-open set [4] if A ⊆ cl(int(A)).
2. pre-open set [8] if A ⊆ int(cl(A)).
3. α-open set [10] if A ⊆ int(cl(int(A))).
4. regular open set [11] if A = int(cl(A)).

The complement of a semi-open(resp. pre-open, α-open, regular open) set is called semi-closed (resp. semi-closed, α-closed, regular closed).

Definition 2.2 The δ-interior[13] of a subset A of X is the union of all regular open set of X contained in A and is denoted by Int_δ(A). The subset A is called δ-open[13] if A = Int_δ(A), i.e. a set is δ-open if it is the union of regular open sets. The complement of a δ-open is called δ-closed. Alternatively, a set A ⊆ (X, τ) is called δ-closed [13] if A = cl_δ(A), where cl_δ(A) = { x ∈ X: int(cl(U)) ∩ A ≠ φ, U ∈ τ and x ∈ U }.

Definition 2.3 A subset A of (X, τ) is called
1. generalized closed (briefly g-closed) set[5] if cl(A) ⊆ U whenever A ⊆ U and U is open set in (X, τ).
2. semi-generalized closed (briefly sg-closed) set [2] if scl(A) ⊆ U whenever A ⊆ U and U is a semi-open set in (X, τ).
3. generalized semi-closed (briefly gs-closed) set [1] if scl(A) ⊆ U whenever A ⊆ U and U is open set in (X, τ).
4. α- generalized closed (briefly αg-closed) set [7] if αcl(A) ⊆ U whenever A ⊆ U and U is open set in (X, τ).
5. generalizedα-closed (briefly αα-closed) set [6] if αcl(A) ⊆ U whenever A ⊆ U and U is α-open set in (X, τ).
6. δ-generalized closed (briefly δg-closed) set [3] if cl_δ(A) ⊆ U whenever A ⊆ U and U is open set in (X, τ).
7. ĝ-closed set [12] if cl(A) ⊆ U whenever A ⊆ U and U is a semi-open set in (X, τ).
(viii) α-\hat{g}-closed (briefly $\alpha\hat{g}$-closed) set [9] if $\alpha\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g}-open set in (X,τ).

The complement of a g-closed (resp. sg-closed, gs-closed, $g\alpha$-closed, δg-closed and \hat{g}-closed and $\alpha\hat{g}$-closed) set is called g-open (resp. sg-open, gs-open, $g\alpha$-open, δg-open, \hat{g}-open and $\alpha\hat{g}$-open).

Theorem 2.4 Every open set is \hat{g}-open.

Proof: Let A be an open set in X. Then A^c is closed. Therefore, $\text{Cl}(A^c) = A^c \subseteq X$ whenever $A^c \subseteq X$ and X is semi-open. This implies A^c is \hat{g}-closed. Hence A is \hat{g}-open.

Definition 2.5 A space (X,τ) is called

(i) $T_{1/2}$-space [5] if every g-closed set in it is closed.

(ii) $T_{3/4}$-space [3] if every δg-closed set in it is δ-closed.

(iii) $T_{\alpha\hat{g}}$-space [9] if every $\alpha\hat{g}$-closed set in it is α-closed.

3 $\delta\hat{g}$-Closed Sets

We introduce the following definition.

Definition 3.1 A subset A of a space (X,τ) is called $\delta\hat{g}$-closed if $\text{cl}_{\delta\hat{g}}(A) \subseteq U$ whenever $A \subseteq U$ and U is a \hat{g}-open set in (X,τ).

Proposition 3.2 Every δ-closed set is $\delta\hat{g}$-closed set.

Proof: Let A be an δ-closed set and U be any \hat{g}-open set containing A. Since A is δ-closed, $\text{cl}_{\delta}(A) = A$ for every subset A of X. Therefore $\text{cl}_{\delta}(A) \subseteq U$ and hence A is $\delta\hat{g}$-closed set.

Remark 3.3 The converse of the above theorem is not true as shown in the following example.

Example 3.4 Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$

δ-closed $= \{\phi, X, \{b\}, \{a, c\}\}$; $\delta\hat{g}$-closed $= \{\phi, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$

Here $\{b, c\}$ is $\delta\hat{g}$-closed but not δ-closed in (X,τ).

Proposition 3.5 Every $\delta\hat{g}$-closed set is g-closed.

Proof: Let A be an $\delta\hat{g}$-closed set and U be an any open set containing A in (X,τ). Since every open set is \hat{g}-open and A is $\delta\hat{g}$-closed, $\text{cl}_{\delta}(A) \subseteq U$ for every subset A of X. Since $\text{cl}(A) \subseteq \text{cl}_{\delta}(A) \subseteq U, \text{cl}(A) \subseteq U$ and hence A is g-closed.
Remark 3.6 An g-closed set need not be $\hat{\delta}g$-closed set as shown in the following example.

Example 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{b\}, \{a, c\}\}$. Then the set $\{a\}$ is g-closed but not $\hat{\delta}g$-closed in (X, τ).

Proposition 3.8 Every $\hat{\delta}g$-closed set is gs-closed.

proof: Let A be an $\hat{\delta}g$-closed and U be any open set containing A in (X, τ). Since every open set is \hat{g}-open, $cl_\delta(A) \subseteq U$ for every subset A of X. Since $scl(A) \subseteq cl_\delta(A) \subseteq U$, $scl(A) \subseteq U$ and hence A is gs-closed.

Remark 3.9 A gs-closed set need not be $\hat{\delta}g$-closed as shown in the following example.

Example 3.10 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}, \{a, c\}\}$. Then the set $\{c\}$ is gs-closed but not $\hat{\delta}g$-closed in (X, τ).

Proposition 3.11 Every $\hat{\delta}g$-closed set is αg-closed.

proof: It is true that $\alpha cl(A) \subseteq cl_\delta(A)$ for every subset A of (X, τ).

Remark 3.12 A αg-closed set need not be $\hat{\delta}g$-closed as shown in the following example.

Example 3.13 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Then the set $\{b\}$ is αg-closed but not $\hat{\delta}g$-closed in (X, τ).

Proposition 3.14 Every $\hat{\delta}g$-closed set is δg-closed.

proof: Let A be an $\hat{\delta}g$-closed set and U be any open set containing A. Since every open set is \hat{g}-open, $cl_\delta(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g}-open. Therefore $cl_\delta(A) \subseteq U$ and U is open. Hence A is δg-closed.

Remark 3.15 A δg-closed set need not be $\hat{\delta}g$-closed as shown in the following example.

Example 3.16 Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, X, \{c\}, \{a, b\}\}$. Then the set $\{a\}$ is δg-closed but not $\hat{\delta}g$-closed in (X, τ).

Remark 3.17 The class of δg-closed sets is properly placed between the classes of δ-closed and δg-closed sets.

Proposition 3.18 Every $\hat{\delta}g$-closed set is αg-closed.

proof: It is true that $acl(A) \subseteq cl_\delta(A)$ for every subset A of (X, τ).
Remark 3.19 A αg-closed set need not be δg-closed as shown in the following example.

Example 3.20 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$. Then the set $\{a\}$ is αg-closed but not δg-closed in (X, τ).

Remark 3.21 The following examples show that δg-closeness is independent from \hat{g}-closeness, sg-closeness, $g\alpha$-closeness and α-closeness.

Example 3.22 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{a\}\}$. Then the set $\{a, b\}$ is δg-closed but neither \hat{g}-closed nor sg-closed and the set $\{a, c\}$ is δg-closed but neither $g\alpha$-closed nor α-closed.

Also the another example Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{a, c\}, \{b, c\}\}$. Then the set $\{c\}$ is \hat{g}-closed, sg-closed and $g\alpha$-closed but not δg-closed.

Example 3.23 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$. Then the set $\{a\}$ is α-closed but not δg-closed in (X, τ).

Remark 3.24 The following diagram shows the relationships of δg-closed sets with other known existing sets. $A \rightarrow B$ represents A implies B but not conversely.

Fig. 1

1. δg-Closed 2.δ-Closed 3.δg-Closed 4. \hat{g}-closed 5.g-closed 6.αg-closed 7.gs-closed 8.sg-closed 9.$g\alpha$-closed 10.α-closed 11.$\alpha\hat{g}$-closed 12.closed.
4 Characterisation

Theorem 4.1 The finite union of δg-Closed sets is δg-Closed.

proof: Let $\{A_i/i = 1, 2, \ldots, n\}$ be a finite class of δg-Closed subsets of a space (X, τ). Then for each \hat{g}-open set U_i in X containing A_i, $cl_\delta(A_i) \subseteq U_i$ i.e. $\{1, 2, \ldots, n\}$. Hence $\bigcup_i A_i \subseteq \bigcup_i U_i = V$. Since arbitrary union of \hat{g}-open sets in (X, τ) is also \hat{g}-open set in (X, τ), V is \hat{g}-open in (X, τ). Also $\bigcup_i cl_\delta(A_i) = cl_\delta(\bigcup_i A_i) \subseteq V$. Therefore $\bigcup_i A_i$ is δg-Closed in (X, τ).

Remark 4.2 Intersection of any two δg-Closed sets in (X, τ) need not be δg-Closed since, in Example 3.22, $\{a, b\}$ and $\{a, c\}$ are δg-Closed sets but their intersection $\{a\}$ is not δg-Closed.

Proposition 4.3 Let A be a δg-Closed set of (X, τ). Then $cl_\delta(A) - A$ does not contain a non-empty \hat{g}-closed set.

proof: Suppose that A is δg-Closed, let F be a \hat{g}-closed set contained in $cl_\delta(A) - A$. Now F^c is \hat{g}-open set of (X, τ) such that $A \subseteq F^c$. Since A is δg-Closed set of (X, τ), then $cl_\delta(A) \subseteq F^c$. Thus $F \subseteq (cl_\delta(A))^c$. Also $F \subseteq cl_\delta(A) - A$. Therefore $F \subseteq (cl_\delta(A))^c \cap (cl_\delta(A)) = \phi$. Hence $F = \phi$.

Proposition 4.4 If A is \hat{g}-open and δg-Closed subset of (X, τ) then A is an δ-closed subset of (X, τ).

proof: Since A is \hat{g}-open and δg-Closed, $cl_\delta(A) \subseteq A$. Hence A is δ-closed.

Theorem 4.5 The intersection of a δg-Closed set and a δ-closed set is always δg-Closed.

proof: Let A be δg-Closed and let F be δ-closed. If U is an \hat{g}-open set with $A \cap F \subseteq U$, then $A \subseteq U \cup F^c$ and so $cl_\delta(A) \subseteq U \cup F^c$.

Now $cl_\delta(A \cap F) \subseteq cl_\delta(A) \cap F \subseteq U$. Hence $A \cap F$ is δg-Closed.

Theorem 4.6 In a $T_{3\frac{1}{4}}$-space every δg-Closed set is δ-closed.

proof: Let X be $T_{3\frac{1}{4}}$-space. Let A be δg-Closed set of X. We know that every δg-Closed set is δg-closed. Since X is $T_{3\frac{1}{4}}$-space, A is δ-closed.

Proposition 4.7 If A is a δg-Closed set in a space (X, τ) and $A \subseteq B \subseteq cl_\delta(A)$, then B is also a δg-Closed set.

proof: Let U be a \hat{g}-open set of (X, τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is δg-Closed set, $cl_\delta(A) \subseteq U$. Also since $B \subseteq cl_\delta(A)$, $cl_\delta(B) \subseteq cl_\delta(cl_\delta(A)) = cl_\delta(A)$. Hence $cl_\delta(B) \subseteq U$. Therefore B is also a δg-Closed set.
Theorem 4.8 Let A be $\delta\hat{g}$-Closed of (X,τ). Then A is δ-closed iff $cl_\delta(A)-A$ is \hat{g}-closed.

proof: Necessity. Let A be a δ-closed subset of X. Then $cl_\delta(A)=A$ and so $cl_\delta(A)-A=\phi$ which is \hat{g}-closed.

Sufficiency. Since A is $\delta\hat{g}$-Closed, by proposition 4.4, $cl_\delta(A)-A$ does not contain a non-empty \hat{g}-closed set. But $cl_\delta(A)-A=\phi$. That is $cl_\delta(A)=A$. Hence A is δ-closed.

5 Applications

We introduce the following definition.

Definition 5.1 A space (X,τ) is called $\hat{T}_{3/4}$-space if every $\delta\hat{g}$-Closed set in it is δ-closed.

Theorem 5.2 For a topological space (X,τ), the following conditions are equivalent.

(i) (X,τ) is a $\hat{T}_{3/4}$-space.

(ii) Every singleton $\{x\}$ is either \hat{g}-closed or δ-open.

proof: (i) \Rightarrow (ii) Let $x\in X$. Suppose $\{x\}$ is not a \hat{g}-closed set of (X,τ). Then $X-\{x\}$ is not a \hat{g}-open set. Thus $X-\{x\}$ is an $\delta\hat{g}$-Closed set of (X,τ). Since (X,τ) is $\hat{T}_{3/4}$-space, $X-\{x\}$ is a δ-closed set of (X,τ), i.e. $\{x\}$ is δ-open set of (X,τ).

(ii) \Rightarrow (i) Let A be an $\delta\hat{g}$-Closed set of (X,τ). Let $x\in cl_\delta(A)$. By (ii), $\{x\}$ is either \hat{g}-closed or δ-open.

Case(i). Let $\{x\}$ be \hat{g}-closed. If we assume that $x\notin A$, then we would have $x\in cl_\delta(A)-A$, which cannot happen according to proposition 4.4. Hence $x\in A$.

Case(ii) Let $\{x\}$ be δ-open. Since $x\in cl_\delta(A)$, then $\{x\}\cap A\neq\phi$. This shows that $x\in A$.

So in both cases we have $cl_\delta(A)\subseteq A$. Trivially $A\subseteq cl_\delta(A)$. Therefore $A=cl_\delta(A)$ or equivalently A is δ-closed. Hence (X,τ) is a $\hat{T}_{3/4}$-space.

Theorem 5.3 Every $T_{3/4}$-space is a $\hat{T}_{3/4}$-space.

proof: The proof is straight forward since every $\delta\hat{g}$-Closed set is δg-closed set.

Remark 5.4 The converse of the above theorem is not true as it can be seen from the following example.

Example 5.5 Let $X =\{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. (X,τ) is a $\hat{T}_{3/4}$-space but not a $T_{3/4}$-space.
Theorem 5.6 Every $\hat{T}_{3/4}$-space is a $T_{\alpha\hat{g}}$-space.

proof: Let (X,τ) be a $\hat{T}_{3/4}$-space, then every singleton is either \hat{g}-closed or δ-open. Since every δ-open is α-open, then every singleton is either \hat{g}-closed or α-open. Hence (X,τ) is a $T_{\alpha\hat{g}}$-space.

Remark 5.7 The following example supports that the converse of the above theorem is not true.

Example 5.8 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. (X,τ) is a $T_{\alpha\hat{g}}$-space but not a $\hat{T}_{3/4}$-space.

Remark 5.9 $\hat{T}_{3/4}$-space and $T_{1/2}$-space are independent of one another as the following examples show.

Example 5.10 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. (X,τ) is a $\hat{T}_{3/4}$-space but is not a $T_{1/2}$-space.

Example 5.11 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}\}$. (X,τ) is a $T_{1/2}$-space but not a $\hat{T}_{3/4}$-space.

Remark 5.12 The following diagram shows the relationships $\hat{T}_{3/4}$-space with other known existing spaces. $A \rightarrow B$ represents A implies B but not conversely.

![Fig. 2](image-url)

1. $\hat{T}_{3/4}$-space 2. $T_{3/4}$-space 3. $T_{\alpha\hat{g}}$-space 4. $T_{1/2}$-space

References

