A Two-Sided Multiplication Operator Norm

N. B. Okelo
School of Biological and Physical Sciences
Bondo University College, Box 210, Bondo, Kenya
bnyaare@yahoo.com

J. O. Agure
Department of Mathematics and Applied Statistics
Maseno University, Box 333, Maseno, Kenya
johnagure@yahoo.com

(Received 17.11.2010, Accepted 29.11.2010)

Abstract

Let \(A \) be a \(C^\ast \)-algebra and define an elementary operator \(T_{a,b} : A \to A \) by \(T_{a,b}(x) = \sum_{i=1}^{n} a_i x b_i, \; \forall \; x \in A \) where \(a_i \) and \(b_i \) are fixed in \(A \) or multiplier algebra \(M(A) \) of \(A \). Here, we determine the norm of a two-sided multiplication operator.

Keywords: Two-sided Multiplication Operator, Elementary Operator, Norm.
Mathematics Subject Classification: Primary 47B47; Secondary 47A30.

1 Introduction

Let \(H \) be a complex Hilbert space and \(B(H) \) the algebra of all bounded linear operators on \(H \). Then \(T : B(H) \to B(H) \) is an elementary operator if \(T \) has a representation \(T_{a,b}(x) = \sum_{i=1}^{n} a_i x b_i, \; \forall \; x \in B(H) \), where \(a_i \) and \(b_i \) are fixed in \(B(H) \). Some examples of elementary operators are the left multiplication \(L_a(x) = ax; \) the right multiplication \(R_b(x) = xb; \) the generalized derivation \(\delta_{a,b} = L_a - R_b; \) the inner derivation, the two-sided multiplication operator
$M_{a,b} = L_a R_b$ and the Jordan elementary operator $U_{a,b} = M_{a,b} + M_{b,a}$. Determining the lower estimate of the norm of elementary operators has attracted a lot of interest from many mathematicians (see [1-5, 7-18]). Clearly, every elementary operator is bounded. For the lower estimates of the norms, there have been several results obtained by different mathematicians. For example, Mathieu [6] proved that for a prime C^*- algebra A, $\|U_{a,b}|A\| \geq \frac{2}{3}\|a\|\|b\|$, Cabrera and Rodriguez [4] proved that for JB* algebras, $\|U_{a,b}|A\| \geq \frac{1}{20412}\|a\|\|b\|$, while Stacho and Zalar [12] obtained results for standard operator algebras on Hilbert spaces i.e. they showed that $\|U_{a,b}|A\| \geq 2(\sqrt{2} - 1)\|a\|\|b\|$. Recently, Timoney [15, 16] demonstrated that $\|U_{a,b}|A\| \geq \|a\|\|b\|$. He [18] also gave a formula for the norm of an elementary operator on a C^*-algebra using the notion of matrix valued numerical ranges and a kind of tracial geometric mean.

Theorem 1.1. For $a = [a_1, \ldots, a_n] \in B(H)^n$ (a row matrix of operators $a_i \in B(H)$), $b = [b_1, \ldots, b_n] \in B(H)^n$ (a column matrix of operators $b_i \in B(H)$) and $T_{a,b}(x) = \sum_{i=1}^n a_i x b_i$, $\forall x \in B(H)$, an elementary operator, we have

$$\|T\| = \sup\{tgm(Q(a^*,\xi), Q(b,\eta)) : \xi, \eta \in H, \|\xi\| = 1, \|\eta\| = 1\}.$$

For proof, see [18, Theorem 1.4].

Interestingly, for Calkin algebras, it has been easy to calculate the norms of elementary operators as shown by Mathieu [7]. Considering a two-sided multiplication operator $M_{a,b}$, it has been shown in [2], the necessary and sufficient conditions for any pair of operators $a, b \in B(H)$ to satisfy the equation $\|I + M_{a,b}\| = 1 + \|a\|\|b\|$.

Definition 1.2. Let $T \in B(H)$. The maximal numerical range of T is defined by $W_0(T) = \{\lambda : \langle Tx_n, x_n \rangle \to \lambda$, where $\|x_n\| = 1$ and $\|Tx_n\| \to \|T\|\}$ and the normalized maximal numerical range is given by

$$W_N(T) = \begin{cases} W_0(\frac{T}{\|T\|}), & \text{if } T \neq 0, \\ 0, & \text{if } T = 0. \end{cases}$$

The set $W_0(T)$ is nonempty, closed, convex and contained in the closure of the numerical range, see [14].

Theorem 1.3. For $a, b \in B(H)$ the following are equivalent:

1. $\|I + M_{a,b}\| = 1 + \|a\|\|b\|$,
2. $W_N(a^*) \cap W_N(b) \neq \emptyset$.

Conjecture 1.4. Let A be a standard operator subalgebra of $B(H)$. The estimate of M, such that $\|M_{a,b}x\| = \|a\|\|b\|$ holds for every $a, b \in A$.
N. B. Okelo and J. O. Agure

This conjecture was verified in the following cases:
(i) for \(a, b \in B(H)\) such that \(\inf_{\lambda \in C} \|a + \lambda b\| = \|a\|\) or \(\inf_{\lambda \in C} \|b + \lambda a\| = \|b\|\),
(ii) in the Jordan algebra of symmetric operators. See [1, 13].

Nyamwala and Agure [8] used the spectral resolution theorem to calculate the norm of an elementary operator induced by normal operators in a finite dimensional Hilbert space. They gave the following result.

Theorem 1.5. Let \(T_{a,b} : B(H) \to B(H)\) be an elementary operator defined by \(T_{a,b}(x) = \sum_{i=1}^{k} a_i x b_i\) where \(a_i\) and \(b_i\) are normal operators and \(H\) a finite \(m\)-dimensional Hilbert space then
\[
\|T\| = \left(\sum_{j=1}^{k} \left(\sum_{j=1}^{m} |\alpha_{i,j}|^2 |\beta_{i,j}|^2\right)\right)^{\frac{1}{2}}
\]
where \(\alpha_{i,j}\) and \(\beta_{i,j}\) are distinct eigenvalues of \(a_i\) and \(b_i\) respectively.

A specific example in [8, Example 2.3] shows that \(\|T\| = 2\). In the next section, we determine the norm of a two-sided multiplication operator.

2 Two-sided Multiplication Operator Norm

In this section we concentrate on a complex Hilbert space over the field \(K\). We show that for a two-sided multiplication operator \(M\), \(\|M_{a,b}x\| = \|a\|\|b\|\).

Definition 2.1. Let \(\phi \in H^*\) and \(\xi \in H\). We define \(\phi \otimes \xi \in B(H)\) by
\[
(\phi \otimes \xi)\eta = \phi(\eta)\xi, \ \forall \ \eta \in H.
\]

Theorem 2.2. Let \(H\) be a complex Hilbert space, \(B(H)\) the algebra of all bounded linear operators on \(H\). Let \(M_{a,b} : B(H) \to B(H)\) be defined by \(M_{a,b}(x) = axb\), \(\forall x \in B(H)\) where \(a, b\) are fixed in \(B(H)\). Then \(\|M_{a,b}x\| = \|a\|\|b\|\).

Proof. By definition, \(\|M_{a,b}|B(H)|\| = \sup \{\|M_{a,b}(x)\| : x \in B(H), \|x\| = 1\}\).

This implies that \(\|M_{a,b}|B(H)|\| \geq \|M_{a,b}(x)\|, \forall x \in B(H), \|x\| = 1\).

So \(\forall \epsilon > 0, \|M_{a,b}|B(H)|\| - \epsilon < \|M_{a,b}(x)\|, \forall x \in B(H), \|x\| = 1\).

But, \(\|M_{a,b}|B(H)|\| - \epsilon < \|axb\| \leq \|a\|\|x\|\|b\| = \|a\|\|b\|\).

Since \(\epsilon\) is arbitrary, this implies that
\[
\|M_{a,b}|B(H)|\| \leq \|a\|\|b\|.
\] (1)

On the other hand, let \(\xi, \eta \in H, \|\xi\| = \|\eta\| = 1, \phi \in H^*\).

Now,
\[
\|M_{a,b}|B(H)|\| \geq \|M_{a,b}(x)\|, \forall x \in B(H), \|x\| = 1.
\]
But,

\[\| M_{a,b}(x) \| = \sup \{ \| (M_{a,b}(x))\eta \| : \forall \eta \in H, \| \eta \| = 1 \} \]

\[= \sup \{ \| (axb)\eta \| : \eta \in H, \| \eta \| = 1 \}. \]

Setting \(a = (\phi \otimes \xi_1), \forall \xi_1 \in H, \| \xi_1 \| = 1 \) and \(b = (\varphi \otimes \xi_2), \forall \xi_2 \in H, \| \xi_2 \| = 1 \), we have,

\[\| M_{a,b}|_B(H) \| \geq \| a \| \| b \|. \]

Hence by inequalities (1) and (2),

\[\| M_{a,b}|_B(H) \| = \| a \| \| b \|. \]

This completes the proof. \(\square \)

3 The Jordan Elementary Operator

Theorem 3.1. Let \(H \) be a 2-dimensional complex Hilbert space, \(B(H) \) the algebra of bounded linear operators on \(H \). Let \(T_{a,b} : B(H) \to B(H) \) be defined by \(T_{a,b}(x) = axb + bxa, \forall x \in B(H) \) where \(a, b \) are fixed in \(B(H) \) and \(\{ e_1, e_2 \} \) an orthonormal basis for \(H \). Then for a constant \(C > 0 \) such that \(\| T_{a,b} \| \geq C\|a\|\|b\|, C = 1 \).

Proof. The proof of this theorem follows immediately from the results obtained in [3]. \(\square \)

Remark 3.2. From [13], we see that \(C = 1 \) is also true for symmetric operators (in this case, \(a \) and \(b \) are self adjoint).

Theorem 3.3. Let \(a, b \in \text{Symm}(H) \). Then \(\| U_{a,b}|_A \| \geq \| a \| \| b \|. \)

Acknowledgements:

We thank the referees and reviewers for their useful comments and suggestions.

References

