Lower k-Hessenberg Matrices and k-Fibonacci, Fibonacci-p and Pell (p, i) Numbers

Carlos M. da Fonseca1, Tomohiro Sogabe2 and Fatih Yilmaz3

1Department of Mathematics
Kuwait University, Safat 13060, Kuwait
E-mail: carlos@sci.kuniv.edu.kw

2Department of Computational Science and Engineering
Nagoya University, Nagoya 464-8603, Japan
E-mail: sogabe@na.cse.nagoya-u.ac.jp

3Department of Mathematics
Gazi University, Polatli, Ankara 06900, Turkey
E-mail: fatihyilmaz@gazi.edu.tr

(Received: 30-7-15 / Accepted: 12-10-15)

Abstract

In this work, we define a family of sparse Hessenberg matrices whose permanents lead us to k-Fibonacci, Fibonacci-p and Pell (p, i) numbers. Furthermore, we show that it contains some well-known general number sequences in it. We provide a Maple 13 source code describing the contraction steps.

Keywords: Determinant, Fibonacci-p and Pell (p, i) numbers, Hessenberg matrix, k-Fibonacci numbers, Permanent.

1 Introduction

Matrix theory combines linear algebra, graph theory, algebra, combinatorics and statistics. Some special type of matrices are very important in these areas. In this paper, we consider lower k-Hessenberg matrices which have the
Lower k-Hessenberg Matrices and k-Fibonacci...

pattern

$$H_n(k) = \begin{pmatrix}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}$$

which will be defined more precisely later.

Most of the well-known number sequences are defined as a result of a natural event or a mathematical modelling of an occurrence in nature. Fibonacci numbers are one of the most famous number sequences defined on modelling for proliferating of rabbits. In literature, there is a huge number of papers on Fibonacci numbers and their generalizations. For example, Lee et al. [7] investigated the k-generalized Fibonacci sequence $(g^{(k)}_n)$ with initial conditions

$$g^{(k)}_1 = \cdots = g^{(k)}_{k-2} = 0, \quad g^{(k)}_{k-1} = g^{(k)}_k = 1,$$

and, for $n > k \geq 2$,

$$g^{(k)}_n = g^{(k)}_{n-1} + g^{(k)}_{n-2} + \cdots + g^{(k)}_{n-k}.$$ \hfill (1)

Then, Lee [6] introduced k-Lucas numbers, which has similar recurrence but for different initial conditions.

Kılıç and Stakhov [3] considered certain generalizations of well-known Fibonacci and Lucas numbers and the generalized Fibonacci and Lucas p-numbers defined by the following recurrence relation for $p = 1, 2, 3, \ldots$, and $n > p + 1$

$$F_p(n) = F_p(n-1) + F_p(n-p-1),$$
$$L_p(n) = L_p(n-1) + L_p(n-p-1),$$

where $F_p(0) = 0, F_p(1) = \cdots = F_p(p) = F_p(p+1) = 1$ and $L_p(0) = p + 1, L_p(1) = \cdots = L_p(p) = L_p(p+1) = 1$, respectively. Furthermore they defined n-square $(0, 1)$-matrix as below

$$M(n, p) = \begin{cases} 1, & \text{for } m_{i+1, i} = m_{i, i} = m_{i, i+p} \\ 0, & \text{for } j = i + 1 \end{cases} \quad (2)$$

for a fixed integer p, which corresponds to the adjacency matrix of the bipartite graph $G(M(n, p))$. Then they showed that permanents of $M(n, p)$ are the number of 1-factors of $G(M(n, p))$ that is the $(n + 1)$th generalized Fibonacci p-number. Moreover Yilmaz et al. [4, 9] considered Hessenberg matrices and the Fibonacci, Lucas, Pell and Perrin numbers. Öcal et al. [8] gave some determinantal and permanental representations for k-generalized Fibonacci and
Lucas numbers. On the other hand, Kılıç [2] studied the generalized Pell (p, i)-numbers for $p = 1, 2, 3, \ldots, n > p + 1$, and $0 \leq i \leq p$

$$P_p^{(i)}(n) = 2P_p^{(i)}(n - 1) + P_p^{(i)}(n - p - 1)$$

with initial conditions $P_p^{(i)}(1) = P_p^{(i)}(2) = \cdots = P_p^{(i)}(i) = 0$ and $P_p^{(i)}(i + 1) = P_p^{(i)}(i + 2) = \cdots = P_p^{(i)}(p + 1) = 1$. Moreover, the author defined n-square integer matrix $M(n, p) = (m_{ij})$ as below:

$$M(n, p) = \begin{cases} 1, & \text{for } m_{i+1,i} = m_{i,i+p} \\ 2, & \text{for } m_{i,i} \\ 0, & \text{for } j = i + 1 \end{cases}$$

(3)

for a fixed integer p, then showed

$$\text{per } M(n, p) = P_p^{(p)}(n + p + 1).$$

The **permanent** of an $n \times n$ matrix $A = (a_{ij})$ is given by

$$\text{per } (A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i \sigma(i)},$$

where S_n represents the symmetric group of degree n.

Brualdi and Gibson [1] proposed a method to compute permanent of a matrix. Let $A = (a_{ij})$ be an $m \times n$ matrix with row vectors r_1, r_2, \ldots, r_m. We call A is **contractible** on column k, if column k contains exactly two non zero elements. Suppose that A is contractible on column k with $a_{ik} \neq 0, a_{jk} \neq 0$ and $i \neq j$. Then the $(m - 1) \times (n - 1)$ matrix $A_{i\neq k}$ obtained from A replacing row i with $a_{jk}r_i + a_{ik}r_j$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{ki} \neq 0, a_{kj} \neq 0$ and $i \neq j$, then the matrix $A_{\neq i}$ is called the contraction of A on row k relative to columns i and j. We know that if A is an integer matrix and B is a contraction of A [1], then

$$\text{per } A = \text{per } B.$$

(4)

A matrix A is called **convertible** if there exists an n-square $(1, -1)$-matrix H such that $\text{per } A = \det(A \circ H)$, here \circ denotes Hadamard product of A and H. The matrix H is called as **converter** of A. Let H be a $(1, -1)$-matrix such that

$$h_{i,j} = \begin{cases} -1, & i + 1 = j \\ 1, & \text{otherwise} \end{cases}$$

(5)

Klein [5] established a generalization for Fibonacci numbers for a constant integer $m \geq 2$

$$A_n^{(m)} = A_{n-1}^{(m)} + A_{n-m}^{(m)}, \quad \text{for } n > m + 1,$$

$$A_n^{(m)} = n - 1, \quad \text{for } 1 < n \leq m + 1.$$

(6)
In particular, \(F_n = A_n^{(2)} \) are the standard Fibonacci numbers. Taking into account Klein’s generalization, let us consider the sequence \(\{u_n\} \) given below:

\[
 u_n^{(k)} = au_{n-1}^{(k)} + b^k cu_{n-k-1}^{(k)}. \tag{7}
\]

Here \(k > 1 \) and \(u_0^{(k)} = 1, u_1^{(k)} = d, u_2^{(k)} = ad \) and \(u_k^{(k)} = a^{k-1}d \). The first few terms of the sequence given in following table:

<table>
<thead>
<tr>
<th>(k \backslash n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_n^{(2)})</td>
<td>d</td>
<td>da</td>
<td>(da^2 + b^2c)</td>
<td>(da^3 + ab^2c + cdb^2)</td>
<td>(da^4 + a^2cb^2 + 2cb^2da)</td>
</tr>
<tr>
<td>(u_n^{(3)})</td>
<td>d</td>
<td>da</td>
<td>(da^2)</td>
<td>(da^3 + b^3c)</td>
<td>(da^4 + ab^2c + b^3dc)</td>
</tr>
<tr>
<td>(u_n^{(4)})</td>
<td>d</td>
<td>da</td>
<td>(da^2)</td>
<td>(da^3)</td>
<td>(da^4 + cb^4)</td>
</tr>
<tr>
<td>(u_n^{(5)})</td>
<td>d</td>
<td>da</td>
<td>(da^2)</td>
<td>(da^3)</td>
<td>(da^4)</td>
</tr>
</tbody>
</table>

2 \ Lower \(k \)-Hessenberg Matrices and the \(\{u_n\} \) Sequence

Let us define the \(n \)-square Hessenberg matrix \(H_n(k) = (h_{ij}) \) as follows:

\[
 h_{ij} = \begin{cases}
 a, & \text{for } i = j = 1, 2, \ldots, n - 1 \\
 b, & \text{for } j = i + 1 \\
 c, & \text{for } i = j + k \\
 d, & \text{for } i = j = n \\
 0, & \text{otherwise}
 \end{cases} \tag{8}
\]

where \(2 \leq k \leq n - 1 \) and \(a, b, c, d \in \mathbb{R} \).

Example 2.1 For \(k = 3 \) and \(n = 7 \);

\[
 H_7(3) = \begin{pmatrix}
 a & b & 0 & 0 & 0 & 0 & 0 \\
 0 & a & b & 0 & 0 & 0 & 0 \\
 0 & 0 & a & b & 0 & 0 & 0 \\
 c & 0 & 0 & a & b & 0 & 0 \\
 0 & c & 0 & 0 & a & b & 0 \\
 0 & 0 & c & 0 & 0 & a & b \\
 0 & 0 & 0 & c & 0 & 0 & d
 \end{pmatrix}.
\]

Theorem 2.2 Let \(H_n(k) \) be as in 8, then

\[
 \text{per} H_n(k) = u_n^{(k)},
\]

for \(2 \leq k < n \), where \(u_n^{(k)} \) is the \(n \)th term of the sequence given by 7.
Proof. By the definition of $H_n(k)$, it can be contracted on column n. Let $H_n^{(r)}(k)$ be the rth contraction of the matrix $H_n(k)$. For $r = 1$,

$$H_n^{(1)}(k) = \begin{pmatrix}
a & b \\
0 & a & b \\
\vdots & 0 & a & b \\
0 & \ddots & 0 & a & b \\
0 & 0 & \cdots & 0 & a & b \\
c & \ddots & \ddots & \ddots & \cdots \\
0 & \ddots & 0 & 0 & \cdots & 0 & a & b \\
\vdots & c & 0 & 0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & dc & bc & 0 & \cdots & 0 & da \\
\end{pmatrix}. $$

Using the consecutive contraction method on the last column, we get,

$$H_n^{(r)}(k) = \begin{pmatrix}
a & b \\
0 & a & b \\
\vdots & 0 & a & b \\
0 & \cdots & 0 & a & b \\
0 & 0 & \cdots & 0 & a & b \\
c & \ddots & \ddots & \ddots & \cdots \\
0 & \ddots & 0 & 0 & \cdots & 0 & a & b \\
\vdots & c & 0 & 0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & cu_r^{(k)} & bcu_{r-1}^{(k)} & b^2cu_{r-2}^{(k)} & \cdots & b^{k-1}cu_{r-k+1}^{(k)} & u_{r+1}^{(k)} \\
\end{pmatrix}. $$

Here $2 \leq r \leq n - k - 1$ and

$$H_n^{(r)}(k) = \begin{pmatrix}
a & b \\
0 & a & b \\
\vdots & \ddots & \ddots & \ddots \\
0 & \ddots & \cdots & 0 & a & b \\
0 & 0 & \cdots & 0 & a & b \\
\end{pmatrix}, $$

where $n - k - 1 < r \leq n - 3$. Then, continuing with this process, we get

$$H_n^{(n-2)}(k) = \begin{pmatrix}
a & b \\
b^{k-1}cu_{n-k-1}^{(k)} & u_{n-1}^{(k)} \\
\end{pmatrix}. $$
By applying (4), we have \(\text{per} H_n(k) = \text{per} H_n^{(n-2)}(k) = u_n^{(k)} \), as desired. ■

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>(k)-Fibonacci numbers</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Fibonacci-(p) numbers</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(\text{Pell}(p, i)) numbers</td>
</tr>
</tbody>
</table>

As it can be seen from the previous table, the matrix \(H_n(k) \) is a general form of the matrices given by 2 and 3. Moreover, for \(a = 2, b = 1, c = -1 \) and \(d = 1 \), the permanent of the sequence gives \(k \)-Fibonacci numbers.

Theorem 2.3 Let us consider the matrix \(H_n(k) = (h_{ij}) \) with \(h_{i,i+1} = 1, h_{i,i} = 2, \) and \(h_{i+k,i} = -1 \), where \(2 \leq k \leq n \). Then

\[
\text{per} H_n(k) = \sum_{i=1}^n g_i^{(k)}.
\]

Proof. By the contraction method on column \(n \), one can see that

\[
H_n^{(1)}(k) = \begin{pmatrix}
2 & 1 \\
0 & 2 & 1 \\
\vdots & 0 & 2 & 1 \\
0 & \ddots & \ddots & \ddots \\
0 & 0 & \ddots & \ddots & \ddots \\
-1 & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & 0 & 0 & \cdots & 0 & 2 & 1 \\
\vdots & -1 & 0 & 0 & \cdots & 0 & 2 & 1 \\
0 & \cdots & -2 & -1 & 0 & \cdots & 0 & 4
\end{pmatrix}.
\]

By the recursive contraction method on the last column, we get

\[
H_n^{(r)}(k) = \begin{pmatrix}
2 & 1 \\
0 & 2 & 1 \\
\vdots & 0 & 2 & 1 \\
0 & \cdots & 0 & 2 & 1 \\
0 & 0 & \cdots & 0 & 2 & 1 \\
-1 & \cdots & 0 & 0 & \cdots & 2 & 1 \\
0 & \cdots & 0 & -\sum_{i=1}^{r-2} g_i^k & -\sum_{i=1}^{r-1} g_i^k & \cdots & -\sum_{i=1}^{r-k+2} g_i^k & -\sum_{i=1}^{r-k+1} g_i^k \\
\vdots & -1 & 0 & 0 & \cdots & 0 & 2 & 1 \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 2 \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 4
\end{pmatrix}
\]
for $2 \leq r \leq n - k - 1$ and

$$H^{(r)}_{n}(k) = \begin{pmatrix}
2 & 1 & \cdots \\
0 & 2 & \cdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & 2 & 1 \\
0 & 0 & \cdots & 0 & 2 & \cdots & 1 \\
-\sum_{i=1}^{n-k} g_i^k & -\sum_{i=1}^{n-k-1} g_i^k & \cdots & \cdots & -\sum_{i=1}^{n-r+2} g_i^k & \sum_{i=1}^{n-r+2} g_i^k
\end{pmatrix}$$

for $n - k - 1 < r \leq n - 3$. Going with this process, one gets

$$H^{(n-2)}_{n}(k) = \begin{pmatrix}
2 & \cdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & 2 & 1 \\
0 & 0 & \cdots & 0 & 2 & \cdots & 1 \\
-\sum_{i=1}^{n-k} g_i^k & -\sum_{i=1}^{n-k-1} g_i^k & \cdots & \cdots & -\sum_{i=1}^{n-r+2} g_i^k & \sum_{i=1}^{n-r+2} g_i^k
\end{pmatrix}.$$

By applying 4, we have

$$\text{per} \, H_n(k) = \text{per} \, H^{(n-2)}_{n}(k) = \sum_{i=1}^{n} g_i^{(k)},$$

which is the sum of k-Fibonacci numbers given by 1. ■

Theorem 2.4 Let us consider the n-square Hessenberg matrix $M_n(k) = (m_{ij})$ as

$$m_{ij} = \begin{cases}
a, & \text{for } i = j = 1, 2, \ldots, n-1 \\
b, & \text{for } j = i + 1 \\
c, & \text{for } i = j + k \\
d, & \text{for } i = j = n \\
o, & \text{otherwise}
\end{cases}$$

where $2 \leq k \leq n - 1$. Then

$$\det M_n(k) = u^{(k)}_n.$$

Proof. It can be seen by using the converter matrix given with 5. ■

3 Appendix A

Using the following Maple 13 source code, it is possible to get the matrix and the steps of the contraction method. Here n is the order of the matrix and s is the shifting diagonal (i.e, $s = k$).

```maple
restart:
> a:=..:b:=..:c:=..:d:=..:s:=..:n:=..:with(LinearAlgebra):
> permanent:=proc(n)
> local i,j,k,p,C;
> p:=(i,j)->piecewise(i=j+s+1,c,j=i+1,b,j=n and i=n,d,i=j,a);
> C:=Matrix(n,n,p):
```

Carlos M. da Fonseca et al.
for k from 1 to n-1 do
print(k,C):
for j from 1 to n+1-k do
C[n-k,j]:=C[n+1-k,n+1-k]*C[n-k,j]+C[n-k,n+1-k]*C[n+1-k,j]:
od:
C:=DeleteRow(DeleteColumn(Matrix(n+1-k,n+1-k,C),n+1-k),n+1-k):
od:
print(k,eval(C)):
end proc:

with(LinearAlgebra):
permanent(n);

References

