The Relationship between M-Weakly Compact Operator and Order Weakly Compact Operator

Kazem Haghnejad Azar1 and Mina Matin Tazekand2

1,2Department of Mathematics, University of Mohaghegh Ardabili
Ardabil, Iran
1E-mail: haghnejad@uma.ac.ir
2E-mail: minamatin1368@yahoo.com

(Received: 12-6-13 / Accepted: 21-7-13)

Abstract

In this note, we will show that the class of order weakly compact operators bigger than the class of M-weakly compact operators. Under a new condition, we will show that each M-weakly compact operator is an order weakly compact operator. We will show that, if Banach lattice \(E \) be an AM-space with unit and has the property (b), then the class of M-weakly compact operators from \(E \) into Banach space \(Y \) coincides with that of order weakly compact operators from \(E \) into \(Y \). Also we establish some relationship between M-weakly compact operators and weakly compact operators and \(b \)-weakly compact operators and order weakly compact operators.

Keywords: Banach lattice, order weakly compact operator, M-weakly compact operator, \(b \)-weakly compact operator, AM-space.

1 Introduction

The class of order weakly compact operators bigger than the class of M-weakly compact operators. In this note by combining Theorems 3.1 and 3.2, we will show that, if Banach lattice \(E \) is an AM-space with unit and has the property (b), then the class of M-weakly compact operators on \(E \) coincides with that of order weakly compact operators on \(E \).

A vector lattice \(E \) is an ordered vector space in which \(\text{sup}(x, y) \) exists for every \(x, y \in E \). A sequence \(\{x_n\} \) in a vector lattice \(E \) is said to be disjoint whenever
\(n \neq m \) implies \(|x_n| \land |x_m| = 0 \). A vector lattice \(E \) is called \(\sigma \)-Dedekind complete whenever every countable subset that is bounded from above has a supremum. A subset \(B \) of a vector lattice \(E \) is said to be solid if it follows from \(|y| \leq |x| \) with \(x \in B \) and \(y \in E \) that \(y \in B \). A solid vector subspace of a vector lattice \(E \) is referred to as an ideal. Let \(E \) be a vector lattice, for each \(x, y \in E \) with \(x \leq y \), the set \([x, y] = \{ z \in E : x \leq z \leq y \}\) is called an order interval. A subset of \(E \) is said to be order bounded if it is included in some order interval. If \(E \) is a vector lattice, we denote by \(E^\sim \) its order dual. Recall from \([2]\) that a subset \(A \) of a vector lattice \(E \) is called b-order bounded in \(E \) if it is order bounded in the order bidual \((E^\sim)^\sim\). A vector lattice \(E \) is said to have property (b) if \(A \subset E \) is order bounded whenever \(A \) is b-order bounded in \(E \). A Banach lattice is a Banach space \((E, \| . \|)\) such that \(E \) is a vector lattice and its norm satisfies the following property: for each \(x, y \in E \) such that \(|x| \leq |y| \), we have \(\|x\| \leq \|y\| \). If \(E \) is a Banach lattice, its topological dual \(E' \), endowed with the dual norm, is also a Banach lattice. A norm \(\| . \| \) of a Banach lattice \(E \) is order continuous if for each net \((x_\alpha)\) such that \(x_\alpha \downarrow 0 \) in \(E \), the net \((x_\alpha)\) converges to 0 for the norm \(\| . \| \). A Banach lattice \(E \) is said to be an AM-space if for each \(x, y \in E \) such that \(\inf(x, y) = 0 \) we have \(\|x + y\| = \max\{\|x\|,\|y\|\} \). The Banach lattice \(E \) is an AL-space if its topological dual \(E' \) is an AM-space. A Banach lattice \(E \) is said to be a KB-space whenever every increasing norm bounded sequence of \(E^+ \) is norm convergent.

We will use the term operator \(T : E \to F \) between two Banach lattices to mean a linear mapping.

2 Main Result of Relationship

Definition 2.1 Let \(T : X \to Y \) be an operator between two Banach spaces. Then, \(T \) is said to be weakly compact whenever \(T \) carries the closed unit ball of \(X \) onto a relatively weakly compact subset of \(Y \), the collection of weakly compact operators will be denoted by \(W(X,Y) \).

Definition 2.2 A continuous operator \(T : E \to Y \) from a Banach lattice into a Banach space is said to be \(M \)-weakly compact whenever \(\lim_n \|Tx_n\| = 0 \) holds for every norm bounded disjoint sequence \(\{x_n\} \) of \(E \), denoted by \(W_M(E,Y) \).

Definition 2.3 A continuous operator \(T : E \to Y \) from a Banach lattice into a Banach space is said to be \(b \)-weakly compact whenever \(T \) carries each \(b \)-order bounded subset of \(E \) into relatively weakly compact subset of \(Y \), denoted by \(W_b(E,Y) \).
\begin{definition}
Finally, a continuous operator \(T : E \to Y\) from a Banach lattice into a Banach space is order weakly compact whenever \(T[0,x]\) is a relatively weakly compact subset of \(Y\) for each \(x \in E^+\), denoted by \(W_o(E,Y)\).
\end{definition}

\begin{theorem}
For a Banach lattice \(E\), the following statements are equivalent:
\begin{enumerate}
\item \(E\) has order continuous norm.
\item If \(0 \leq x_n \leq x\) holds in \(E\), then \(\\{x_n\}\) is norm couchy sequence.
\item \(E\) is \(\sigma\)-Dedekind complete, and \(x_n \downarrow 0\) in \(E\) implies \(\|x_n\| \downarrow 0\).
\item \(E\) is an ideal of \(E''\).
\item Each order interval of \(E\) is weakly compact.
\end{enumerate}
\end{theorem}

\begin{proof}
(1) \(\Rightarrow\) (2) Let \(0 \leq x_\alpha \leq x\) hold in \(E\), and let \(\varepsilon > 0\). By Lemma 12.8 of [1] there exists a net \((y_\lambda) \subseteq E\) with \(y_\lambda - x_\alpha \downarrow 0\). Thus, there exists \(\lambda_0\) and \(\alpha_0\) such that \(\|y_\lambda - x_\alpha\| < \varepsilon\) holds for all \(\lambda \geq \lambda_0\) and \(\alpha \geq \alpha_0\). From the inequality
\[
\|x_\alpha - x_\beta\| \leq \|x_\alpha - y_\lambda\| + \|x_\beta - y_\lambda\|,
\]
we see that \(\|x_\alpha - x_\beta\| < 2\varepsilon\) holds for all \(\alpha, \beta \geq \alpha_0\). Hence, \((x_\alpha)\) is a norm couchy net.

(2) \(\Rightarrow\) (3) It follows immediately from Theorem 11.2(2) of [1].

(3) \(\Rightarrow\) (1) Let \(x_\alpha \downarrow 0\). If \((x_\alpha)\) is not a norm Cauchy net, then there exist some \(\varepsilon > 0\) and a sequence \(\{\alpha_n\}\) of indices with \(\alpha_n \uparrow\), and \(\|x_{\alpha_n} - x_{\alpha_{n+1}}\| \geq \varepsilon\) for all \(n\). Since \(E\) is \(\sigma\)-Dedekind complete, there exists some \(x \in E\) with \(x_{\alpha_n} \downarrow x\).

Now from our hypothesis, we see that \((x_{\alpha_n})\) is a norm Cauchy sequence, which contradicts \(\|x_{\alpha_n} - x_{\alpha_{n+1}}\| \geq \varepsilon\). Thus, \((x_\alpha)\) is a norm Cauchy net, and so \((x_\alpha)\) is norm convergent to some \(y \in E\). By Theorem 11.2(2) of [1] we see that \(y = 0\), and so \(\|x_\alpha\| \downarrow 0\) holds.

The other equivalences follow easily from Theorems 11.13 and 11.10 of [1].
\end{proof}

\begin{theorem}
Let \(E\) be a Banach lattice. \(E\) is a KB-space if and only if \(I : E \to E\) is a b-weakly compact operator.
\end{theorem}

\begin{proof}
Let \(E\) be KB-space and \(A\) be an b-order bounded subset of \(E\). Since \(E\) by Proposition 2.1 of [2] has property (b), \(A\) is an order bounded subset of \(E\) and thus there exists some \(x \in E^+\) for which \(A \subseteq [-x,x]\). Then, by Theorem 2.5, \([-x,x]\) and hence \(A\) is a relatively weakly compact subset of \(E\).

Conversely, let \(I : E \to E\) be b-weakly compact and \(\{x_n\}\) be an increasing, norm bounded sequence in \(E^+\). We wish to show \(\{x_n\}\) is norm convergent. Let us define \(x'' : (E^+)'' \to \mathbb{R}\) by \(x''(f) = \lim_n f(x_n)\) for each \(f \in (E^+)''\). \(x''\) is additive on \((E^+)''\) and extends to an element of \((E^+)''\) which we shall also denote by \(x''\). We have \(0 \leq x_n \leq x''\) in \(E''\) for each \(n\). Therefore, \(\{x_n\}\) is an b-order bounded subset of \(E\). By b-weak compactness of \(I\), we obtain a subsequence \(\{x'_{n_k}\}\) of \(\{x_n\}\) such that \(x'_{n_k} \to x\) in \(\sigma(E,E')\) for some \(x \in E\).
Since \(\{x_n\} \) is increasing, \(x = \sup_k x_{n_k} \) and we have \(x = \sup_n x_n \). Thus \(x_n \to x \) in \(\sigma(E, E') \). \(x - x_n \downarrow 0, x - x_n \to 0 \) in \(\sigma(E, E') \) now yield \(x - x_n \to 0 \) in the norm topology.

Theorem 2.7 M-weakly compact operators are weakly compact operators.

Proof. Assume first that \(T : E \to Y \) is an M-weakly compact operator. Denote by \(U \) and \(V \) the Closed unit balls of \(E \) and \(Y \), respectively, and let \(\varepsilon > 0 \). By Theorem 18.9(1) of [1], there exists some \(u \in E^+ \) such that \(\| T(|x| - u)^+ \| < \varepsilon \) holds for all \(x \in U \), and consequently from the identity \(|x| = |x| \wedge u + (|x| - u)^+ \) we see that

\[
T(U^+) \subseteq T[0, u] + \varepsilon V. \quad (*)
\]

On the other hand, if \(\{u_n\} \) is disjoint sequence of \([0, u]\), then it follows from our hypothesis that \(\lim \| Tu_n \| = 0 \), and thus by Theorem 18.1 of [1] the set \(T[0, u] \) is relatively weakly compact. Now (*) combined with Theorem 10.17 of [1] shows that \(T(U^+) \) (and hence \(T(U) \)) is relatively weakly compact, and so \(T \) is a weakly compact operator.

3 Main Result of Equality

Recall from [1] that Banach space \(X \) has the Dunford-pettis property whenever \(x_n \to 0 \) in \(\sigma(X, X') \) and \(x'_n \to 0 \) in \(\sigma(X', X'') \) imply \(\lim x'_n(x_n) = 0 \), and we say that an operator \(T : X \to Y \) between two Banach spaces is a Dunford-pettis operator whenever \(x_n \to 0 \) in \(\sigma(X, X') \) implies \(\lim \| Tx_n \| = 0 \).

Theorem 3.1 Let \(T \) is an operator from AM-space with unit \(E \) into Banach space \(Y \). Then the following assertion are equivalent:

1. \(T \) is M-weakly compact.
2. \(T \) is weakly compact.
3. \(T \) is Dunford-pettis.
4. \(T \) is b-weakly compact.

Proof. (1) \(\Rightarrow \) (2) Follows from Theorem 2.6.

(2) \(\Rightarrow \) (3) From Theorem 19.6 of [1] \(E \) has the Duonford-pettis property. Then from Theorem 19.4 of [1] it follows that every weakly compact operators from \(E \) which has the Duonford-pettis property into an arbitrary Banach space \(Y \) is a Duonford-pettis operator.

(3) \(\Rightarrow \) (1) \(E' \) is an AL-space so it will be KB-space and then \(E' \) has the order continuous norm. Then from Theorem 3.7.10 of [5] every Duonford-pettis operator from \(E \) into \(Y \) is a M-weakly compact operator.

(2) \(\Rightarrow \) (4) Obvious.

(4) \(\Rightarrow \) (2) Since \(E \) is AM-space with unit so from Theorem 12.20 of [1] its closed unit ball is like an order interval. So we have the result.
Theorem 3.2 Let E is a Banach lattice with property (b). Then every order weakly compact operator from E into Banach space Y is a b-weakly compact operator.

Proof. Let E has the property (b) and T from E into Banach space Y is order weakly compact operator and A is a b-order bounded subset of E. Since E has the property (b) we can choose $x \in E^+$ with $A \subseteq [-x,x]$. Therefore

$$
T(A)^w \subseteq T([-x,x])^w.
$$

Therefor by hypothesis, we will result.

4 Conclusion

In the following, we establish some relationships between some class of operators.

i) Each weakly compact operator from Banach lattice E into Banach space Y is b-weakly compact operator.

ii) Each b-weakly compact operator from Banach lattice E into Banach space Y is order weakly compact.

iii) Now by Theorem 2.7, i , ii, we will have

$$
W_M(E,Y) \subset W(E,Y) \subset W_b(E,Y) \subset W_o(E,Y) \quad (**)
$$

iv) Since the norm of c_0 is order continuous, by Theorem 2.5, $[0,x]$ is weakly compact in c_0, then $I : c_0 \to c_0$ is order weakly compact. But c_0 is not KB-space, then by Theorem 2.6, $I : c_0 \to c_0$ is not b-weakly compact operator. Therefore, by (**) every order weakly compact operator is not M-weakly compact and weakly compact operator.

v) Since $L_1([0,1])$ is a KB-space therefor $I : L_1([0,1]) \to L_1([0,1])$ is b-weakly compact operator. But its not weakly compact operator. By (**) every b-weakly compact operator is not M-weakly compact operator.

vi) By theorems 19.6 and 17.5 of [1], operator $T : l^1 \to l^\infty$ defined by

$$
T(\alpha_1, \alpha_2, ...) = \left(\sum_{n=1}^\infty \alpha_n, \sum_{n=1}^\infty \alpha_n, ... \right) = \left[\sum_{n=1}^\infty \alpha_n \right] (1,1,1, ...)
$$

is weakly compact. The sequence $\{e_n\}$ of the standard unit vectors is a norm bounded disjoint sequence of l^1 satisfying $Te_n = (1,1,1, ...)$ for each n. This
follow that T is not M-weakly compact. Then every weakly compact is not M-weakly compact.

If E is an AM-space with unit and has the property (b), by Theorems 3.1 and 3.2 we will have

$$W_o(E, Y) = W_b(E, y) = W_M(E, Y) = W(E, Y).$$

References

