(i, j)-ξ-Open Sets in Bitopological Spaces

Alias B. Khalaf and Haji M. Hasan

University of Duhok, Kurdistan-Region, Iraq
E-mail: aliasbkhalaf@gmail.com
University of Duhok, Kurdistan-Region, Iraq
E-mail: shavanhaji@yahoo.com

(Received 26.10.2010, Accepted 23.11.2010)

Abstract

The aim of this paper is to introduce a new type of sets in bitopological spaces which is conditional ξ-open set in bitopological spaces called (i, j)-ξ-open set and we study its basic properties, and also we introduce some characterizations of this set.

Keywords: ξ-open, (i, j)-ξ-open, semi-open, regular-closed
2000 MSC No: 54A05, 54A10; Secondary: 54E55.

1 Introduction

In 1963 Kelley J. C. [7] was first introduced the concept of bitopological spaces, where X is a nonempty set and τ_1, τ_2 are topologies on X. In 1963 Levine [8] introduced the concept of semi-open sets in topological spaces. By using this concept, several authors defined and studied stronger or weaker types of topological concept.

In this paper, we introduce the concept of a conditional ξ-open set in a bitopological space, and we study their basic properties and relationships with other concepts of sets. Throughout this paper, (X, τ_1, τ_2) is a bitopological space, and if A ⊆ Y ⊆ X, then i-Int(A) and i-Cl(A) denote respectively the
interior and closure of A with respect to the topology τ_i on X and $i-\text{Int}_Y(A)$, $i-\text{Cl}_Y(A)$ denote respectively the interior and the closure of A with respect to the induced topology on Y.

2 Preliminaries

We shall give the following definitions and results.

Definition 2.1 A subset A of a space (X, τ) is called:

1. preopen [9], if $A \subseteq \text{Int}(\text{Cl}(A))$
2. semi-open [8], if $A \subseteq \text{Cl}(\text{Int}(A))$
3. α-open [11], if $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$
4. regular open [5], if $A = \text{Int}(\text{Cl}(A))$
5. regular semi-open [1], if $A = \text{sInt}(\text{sCl}(A))$

The complement of a preopen (resp., semi-open, α-open, regular open, regular semi-open) set is said to be preclosed (resp., semi-closed, α-closed, regular closed, regular semi-closed). The intersection of all preclosed (resp., semi-closed, α-closed) sets of X containing A is called preclosure (resp., semi-closure, α-closure) of A. The union of all preopen (resp., semi-open, α-open) sets of X contained in A called preinterior (resp., semi-interior, α-interior) of A.

A subset A of a space X is called δ-open [15], if for each $x \in A$, there exists an open set G such that $x \in G \subseteq \text{Int}(\text{Cl}(G)) \subseteq A$. A subset A of a space X is called θ-semi-open [6] (resp., semi-θ-open [2]) if for each $x \in A$, there exists a semi-open set G such that $x \in G \subseteq \text{Cl}(G) \subseteq A$ (resp., $x \in G \subseteq \text{sCl}(G) \subseteq A$. A subset A of a topological space (X, τ) is called η-open [13], if A is a union of δ-closed sets. The complement of η-open sets is called η-closed.

Definition 2.2 A topological space X is called,

1.Externally disconnected [2], if $\text{Cl}(U) \in \tau$ for every $U \in \tau$.
2. Locally indiscrete [4], if every open subset of X is closed.

From the above definition we obtain:

Remark 2.3 If X is locally indiscrete space, then every semi-open subset of X is closed and hence every semi-closed subset of X is open.
Theorem 2.4 [9] A space X is semi-T_1 if and only if for any point $x \in X$ the singleton set $\{x\}$ is semi-closed.

Theorem 2.5 [10] For any space (X, τ) and (Y, τ) if $A \subseteq X$, $B \subseteq Y$ then:
1. $p\text{Int}_{X \times Y}(A \times B) = p\text{Int}_X(A) \times p\text{Int}_Y(B)$
2. $s\text{Cl}_{X \times Y}(A \times B) = s\text{Cl}_X(A) \times s\text{Cl}_Y(B)$

Theorem 2.6 [10] For any topological space the following statements are true:
1. Let (Y, τ_Y) be a subspace of a space (X, τ), if $F \in SC(X)$ and $F \subseteq Y$ then $F \in SC(Y)$.
2. Let (Y, τ_Y) be a subspace of a space (X, τ), if $F \in SC(Y)$ and $Y \in SC(X)$ then $F \in SC(X)$
3. Let (X, τ) be a topological space, if Y is an open subset of a space X and $F \in SC(X)$, then $F \cap Y \in SC(X)$

Definition 2.7 [12] A space X is said to be semi-regular if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subseteq U$.

3 Basic Properties

In this section, we introduce and define a new type of sets in bitopological spaces and find some of its properties.

Definition 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(i, j)\xi$-open, if A is a j-open set and for all x in A, there exist an i-semi-closed set F such that $x \in F \subseteq A$. A subset B of X is called $(i, j)\xi$-closed if B^c is $(i, j)\xi$-open.

The family of $(i, j)\xi$-open (resp., $(i, j)\xi$-closed) subset of x is denoted by $(i, j)\xi O(X)$ (resp., $(i, j)\xi C(X)$).

From the above definition we obtain:

Corollary 3.2 A subset A of a bitopological space X is $(i, j)\xi$-open, if A is j-open set and it is a union of i-semi-closed sets. This means that $A = \bigcup F_\alpha$, where A is a j-open and F_α is an i-semi-closed set for each α.

It is clear from the definition that every $(i, j)\xi$-open set is j-open, but the converse is not true in general as shown in the following example.
Example 3.3 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$, $\tau_2 = \{\phi, \{c\}, \{a, b\}, X\}$, then $(i, j)\xi O(X) = \{\phi, \{c\}, X\}$.

It is clear that $\{a, b\}$ is j-open but not (i, j)-ξ-open.

Proposition 3.4 Let (X, τ_1, τ_2) be a bitopological space if (X, τ_1) is a semi-T_1-space, then $(i, j)\xi O(X) = \tau_j(X)$.

Proof. Let A be any subset of a space X and A is j-open set, if $A = \phi$, then $A \in (i, j)-\xi O(X)$, if $A \neq \phi$, now let $x \in A$, since (X, τ_1) is semi-T_1-space, then by Theorem 2.4 every singleton is i-semi-closed set, and hence $x \in \{x\} \subseteq A$, therefore $A \in (i, j)-\xi O(X)$, hence $\tau_j(X) \subseteq (i, j)-\xi O(X)$ but $(i, j)-\xi O(X) \subseteq \tau_j(X)$ generally, thus $(i, j)-\xi O(X) = \tau_j(X)$.

Proposition 3.5 Let (X, τ_1, τ_2) be a bitopological space and A be a subset the space X. If $A \in j-\delta O(X)$ and A is an i-closed set, then $A \in (i, j)-\xi O(X)$

Proof. If $A = \phi$, then $A \in (i, j)-\xi O(X)$, if $A \neq \phi$, let $x \in A$ since $A \in j-\delta O(X)$ and $j-\delta O(X) \subseteq \tau_j(X)$ in general so $A \in \tau_j(X)$, and since A is i-closed so A is i-semi-closed and $x \in A \subseteq A$, and hence $A \subseteq (i, j)-\xi O(X)$.

From Proposition 3.5 we obtain the following:

Corollary 3.6 Let (X, τ_1, τ_2) be a bitopological space, if a subset A of X is i-regular closed and j-open then $A \in (i, j)-\xi O(X)$

Theorem 3.7 In a bitopological space (X, τ_1, τ_2) if a space (X, τ_i) is locally indiscrete then $(i, j)-\xi O(X) \subseteq \tau_i$.

Proof. Let $V \in (i, j)-\xi O(X)$, then $V \in \tau_j(X)$ and for each $x \in V$, there exist i-semi-closed F in X such that $x \in F \subseteq V$, by Remark 2.3, F is i-open, it follows that $V \in \tau_i$, and hence $(i, j)-\xi O(X) \subseteq \tau_i$.

The converse of Theorem 3.7, is not true in general, as shown in the following example:

Example 3.8 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$, then $(i, j)-\xi O(X) = \{\phi, \{b, c\}, X\}$ and it is clear that (X, τ_1) is locally indiscrete but τ_1 is not a subset of $(i, j)-\xi O(X)$

Theorem 3.9 Let X_1, X_2 be two bitopological space and $X_1 \times X_2$ be the bitopological product, let $A_1 \in (i, j)-\xi O(X_1)$ and $A_2 \in (i, j)-\xi O(X_2)$ then $A_1 \times A_2 \in (i, j)-\xi O(X_1 \times X_2)$
Proof. Let \((x_1, x_2) \in A_1 \times A_2\) then \(x_1 \in A_1\) and \(x_2 \in A_2\), and since \(A_1 \in (i, j)\-\xi O(X_1)\) and \(A_2 \in (i, j)\-\xi O(X_2)\), then \(A_1 \in j\-\xi O(X_1)\) and \(A_2 \in j\-\xi O(X_2)\), there exist \(F_1 \in i\-SC(X_1)\) and \(F_2 \in i\-SC(X_2)\) such that \(x_1 \in F_1 \subseteq A_1\) and \(x_2 \in F_2 \subseteq A_2\). Therefore \((x_1, x_2) \in F_1 \times F_2 \subseteq A_1 \times A_2\), and since \(A_1 \in j\-\xi O(X_1)\) and \(A_2 \in j\-\xi O(X_2)\), then by Theorem 2.5 part (1) \(A_1 \times A_2 = j\-\xi Int_x \eta \in (A_1 \times A_2)\) so by Corollary 3.2 we get \(F_1 \times F_2 = i\-sCl_{x_1}(F_1) \times i\-sCl_{x_2}(F_2) = i\-sCl_{x_1 \times x_2}(F_1 \times F_2)\), hence \(F_1 \times F_2 \in i\-SC(X_1 \times X_2)\), therefore \(A_1 \times A_2 \in (i, j)\-\xi O(X)\).

Theorem 3.10 For any bitopological space \((X, \tau_1, \tau_2)\), if \(A \in \tau_1(X)\) and either \(A \in i\-\eta O(X)\) or \(A \in i\-S\theta O(X)\), then \(A \in (i, j)\-\xi O(X)\)

Proof. Let \(A \in i\-\eta O(X)\) and \(A \in \tau_1(X)\), if \(A = \emptyset\), then \(A \in (i, j)\-\xi O(X)\), if \(A \neq \emptyset\), since \(A \in i\-\eta O(X)\), then \(A = \bigcup F_\alpha\), where \(F_\alpha \in i\-\delta C(X)\) for each \(\alpha\), and since \(i\-\delta C(X) \subseteq i\-SC(X)\), so \(F_\alpha \in i\-SC(X)\) for each \(\alpha\), and \(A \in \tau_1(X)\) so by Corollary 3.2 \(A \in (i, j)\-\xi O(X)\).

On the other hand, suppose that \(A \in i\-S\theta O(X)\) and \(A \in \tau_1(X)\), if \(A = \emptyset\), then \(A \in (i, j)\-\xi O(X)\), if \(A \neq \emptyset\), since \(A \in i\-S\theta O(X)\), then for each \(x \in A\), there exist \(i\-\text{semi-open set } U\) such that \(x \in U \subseteq i\-sCl(U) \subseteq A\), this implies that \(x \in i\-sCl(U) \subseteq A\) and \(A \in \tau_1(X)\), therefore by Corollary 3.2 \(A \in (i, j)\-\xi O(X)\).

Theorem 3.11 Let \(Y\) be a subspace of a bitopological space \((X, \tau_1, \tau_2)\), if \(A \in (i, j)\-\xi O(X)\) and \(A \subseteq Y\), then \(A \in (i, j)\-\xi O(Y)\)

Proof. Let \(A \in (i, j)\-\xi O(X)\) and \(A \in \tau_1(X)\) and for each \(x \in A\), there exists \(i\-\text{semi-closed set } F \) in \(X\) such that \(x \in F \subseteq A\), since \(A \in \tau_1(X)\) and \(A \subseteq Y\), then by Theorem 2.6 \(F \in \tau_1(Y)\), and since \(F \in i\-SC(X)\) and \(F \subseteq Y\), then by Theorem 2.6 \(F \in i\-SC(Y)\), hence \(A \in (i, j)\-\xi O(Y)\).

From the above theorem we obtain:

Corollary 3.12 Let \(X\) be a bitopological space, \(A\) and \(Y\) be two subsets of \(X\) such that \(A \subseteq Y \subseteq X\), \(Y \in RO(X, \tau_1)\), \(Y \in RO(X, \tau_1)\), then \(A \in (i, j)\-\xi O(Y)\) if and only if \(A \in (i, j)\-\xi O(X)\)

Proposition 3.13 Let \(Y\) be a subspace of a bitopological space \((X, \tau_1, \tau_2)\), if \(A \in (i, j)\-\xi O(Y)\) and \(Y \in i\-SC(X)\), then for each \(x \in A\), there exists an \(i\-\text{semi-closed set } F \) in \(X\) such that \(x \in F \subseteq A\).

Proof. Let \(A \in (i, j)\-\xi O(Y)\), then \(A \in \tau_1(Y)\) and for each \(x \in A\) there exist an \(i\-\text{semi-closed set } F \) in \(Y\) such that \(x \in F \subseteq A\), and since \(Y \in i\-SC(X)\) so by Theorem 2.6 \(F \in i\-SC(X)\), which completes the proof.

Proposition 3.14 Let \(A\) and \(Y\) be any subsets of a bitopological space \(X\), if \(A \in (i, j)\-\xi O(X)\) and \(Y \in RO(X, \tau_j)\) and \(Y \in RO(X, \tau_i)\) then \(A \cap Y \in (i, j)\-\xi O(X)\).
(i, j)-ξ-Open sets in bitopological spaces

Proof. Let \(A \in (i, j)-\xi O(X) \), then \(A \in \tau_j(X) \) and \(A = \cup F_\alpha \), where \(F_\alpha \in i-SC(X) \) for each \(\alpha \), then \(A \cap Y = \cup F_\alpha \cap Y = \cup (F_\alpha \cap Y) \), since \(Y \in RO(X, \tau_j) \), then \(Y \) is \(j \)-open, by Theorem 2.6 \(A \cap Y \in \tau_j(X) \) and since \(Y \in RO(X, \tau_i) \) then \(Y \in i-SC(X) \) and hence \(F_\alpha \cap Y \in i-SC(X) \), for each \(\alpha \), therefore by Corollary 3.2 , \(A \cap Y \in (i, j)-\xi O(X) \).

Proposition 3.15 Let \(A \) and \(Y \) be any subsets of a bitopological space \(X \), if \(A \in (i, j)-\xi O(X) \) and \(Y \) is regular semi-open in \(\tau_i \) and \(\tau_j \), then \(A \cap Y \in (i, j)-\xi O(Y) \)

Proof. Let \(A \in (i, j)-\xi O(X) \), then \(A \in \tau_j(X) \) and \(A = \cup F_\alpha \) where \(F_\alpha \in i-SC(X) \) for each \(\alpha \), then \(A \cap Y = \cup F_\alpha \cap Y = \cup (F_\alpha \cap Y) \), since \(Y \in RSO(X, \tau_j) \), then \(Y \in j-SO(X) \) and by Theorem 2.6, \(A \cap Y \in \tau_j(Y) \) and since \(Y \in RSO(X, \tau_i) \) then \(Y \in i-SC(X) \) and hence \(F_\alpha \cap Y \in i-SC(X) \) for each \(\alpha \), since \(F_\alpha \cap Y \subseteq Y \) and \(F_\alpha \cap Y \in i-SC(X) \) for each \(\alpha \), then by Theorem 2.6, \(F_\alpha \cap Y \in i-SC(Y) \) therefore by Corollary 3.2 \(A \cap Y \in (i, j)-\xi O(Y) \).

Proposition 3.16 If \(Y \) is an \(i \)-open and \(j \)-open subspace of a bitopological space \(X \) and \(A \in (i, j)-\xi O(X) \), then \(A \cap Y \in (i, j)-\xi O(Y) \)

Proof. Let \(A \in (i, j)-\xi O(X) \), then \(A \in \tau_j(X) \) and \(A = \cup F_\alpha \) where \(F_\alpha \in i-SC(X) \) for each \(\alpha \), then \(A \cap Y = \cup F_\alpha \cap Y = \cup (F_\alpha \cap Y) \), since \(Y \) is \(j \)-open subspace of \(X \) then \(Y \in j-SO(X) \) and hence by Theorem 2.6 \(A \cap Y \in \tau_j(Y) \), and since \(Y \) is an \(i \)-open subspace of \(X \) then by Theorem 2.6 \(F_\alpha \cap Y \in i-SC(Y) \) for each \(\alpha \) then by Corollary 3.2 \(A \cap Y \in (i, j)-\xi O(Y) \).

From the above proposition we obtain the following corollary:

Corollary 3.17 If either \(Y \in RSO(X, \tau_j) \) and \(Y \in RSO(X, \tau_i) \) or \(Y \) is an \(i \)-open and \(j \)-open subspace of a bitopological space \(X \), and \(A \in (i, j)-\xi O(X) \), then \(A \cap Y \in (i, j)-\xi O(Y) \)

The following result shows that any union of \((i, j)-\xi O(X) \) sets in bitopological space \((X, \tau_1, \tau_2) \) is \((i, j)-\xi O(X) \).

Proposition 3.18 Let \(\{A_\lambda : \lambda \in \Delta\} \) be family of \((i, j)-\xi \)-open sets in bitopological space \((X, \tau_1, \tau_2) \), then \(\cup \{A_\lambda : \lambda \in \Delta\} \) is an \((i, j)-\xi \)-open set.

Proof. Let \(\{A_\lambda : \lambda \in \Delta\} \) be family of \((i, j)-\xi \)-open sets in bitopological space \((X, \tau_1, \tau_2) \). Since \(A_\lambda \) is \(j \)-open for each \(\lambda \in \Delta \) then \(\cup \{A_\lambda : \lambda \in \Delta\} \) is \(j \)-open set in a space \(X \). Suppose that \(x \in \cup A_\lambda \), this implies that there exist \(\lambda_0 \in \Delta \) such that \(x \in A_{\lambda_0} \) and since \(A_{\lambda_0} \) is \((i, j)-\xi \)-open set, so there exists \(i \)-semi-closed set \(F \) in \(X \) such that \(x \in F \subseteq A_{\lambda_0} \subseteq \cup A_\lambda \) for all \(\lambda \in \Delta \). Therefore, \(\cup \{A_\lambda : \lambda \in \Delta\} \) is an \((i, j)-\xi \)-open set.

The following result shows that finite intersection of \((i, j)-\xi O(X) \) sets in bitopological space \((X, \tau_1, \tau_2) \) is \((i, j)-\xi O(X) \).
Proposition 3.19 Any finite intersection of \((i, j)\)-\(\xi\)-open sets in bitopological space \((X, \tau_1, \tau_2)\), is an \((i, j)\)-\(\xi\)-open set.

Proof. Let \(A_i\) be \((i, j)\)-\(\xi\)-open for \(i = 1, 2, \ldots, n\), in bitopological space \((X, \tau_1, \tau_2)\). Then \(\cap A_i\) is \(j\)-open in a space \(X\). Let \(x \in \cap A_i\), then \(x \in A_i\) for \(i = 1, 2, \ldots, n\), but \(A_i\) is \((i, j)\)-\(\xi\)-open, so there exists semi-closed \(F_i\) for each \(i = 1, 2, \ldots, n\), such that \(x \in F_i \subseteq A_i\). This implies that \(x \in \cap F_i \subseteq \cap A_i\). Therefore, \(\cap A_i\) is an \((i, j)\)-\(\xi\)-open set. Hence, the family \((i, j)\)-\(\xi\)-open subset of \((X, \tau_1, \tau_2)\) forms a bitopology on \(X\).

4 On \((i, j)\)-\(\xi\)- operators

Definition 4.1 A subset \(N\) of a bitopological space \((X, \tau_1, \tau_2)\) is called \((i, j)\)-\(\xi\)-neighbourhood of a subset \(A\) of \(X\) if there exists an \((i, j)\)-\(\xi\)-open set \(U\) such that \(A \subseteq U \subseteq N\). When \(A = \{x\}\), we say that \(N\) is \((i, j)\)-\(\xi\)- neighbourhood of \(x\).

Definition 4.2 A point \(x \in X\) is said to be an \((i, j)\)-\(\xi\)-interior point of \(A\) if there exists an \((i, j)\)-\(\xi\)- open set \(U\) containing \(x\) such that \(U \subseteq A\). The set of all \((i, j)\)-\(\xi\)- interior points of \(A\) is said to be \((i, j)\)-\(\xi\)-interior of \(A\) and it is denoted by \((i, j)\)-\(\xi\)-Int\((A)\)

Proposition 4.3 Let \(X\) be a bitopological space and \(A \subseteq X\), \(x \in X\), then \(x\) is \((i, j)\)-\(\xi\)-interior of \(A\) if and only if \(A\) is an \((i, j)\)-\(\xi\)-neighbourhood of \(x\).

Proposition 4.4 A subset \(G\) of a bitopological space \(X\) is \((i, j)\)-\(\xi\)-open if and only if it is an \((i, j)\)-\(\xi\)-neighbourhood of each of its points .

Proposition 4.5 Let \(A\) be any subset of a bitopological space \(X\). If a point \(x\) in the \((i, j)\)-\(\xi\)-Int\((A)\), then there exists an \(i\)-semi-closed set \(F\) of \(X\) containing \(x\) and \(F \subseteq A\).

Proof. Suppose that \(x \in (i, j)\)-\(\xi\)-Int\((A)\), then there exists an \((i, j)\)-\(\xi\)-open set \(U\) of \(X\) containing \(x\) such that \(x \in U \subseteq A\). Since \(U\) is an \((i, j)\)-\(\xi\)-open set, so there exists an \(i\)-semi-closed set \(F\) such that \(x \in F \subseteq U \subseteq A\). Hence, \(x \in F \subseteq A\).

Some properties of \((i, j)\)-\(\xi\)-interior operators on a set are given in the following:

Theorem 4.6 For any subsets \(A\) and \(B\) of a bitopological space \(X\), the following statements are true:

1. The \((i, j)\)-\(\xi\)-interior of \(A\) is the union of all \((i, j)\)-\(\xi\)-open sets contained in \(A\).
2. \((i,j)\)-\(\xi\)-Int\((A)\) is an \((i,j)\)-\(\xi\)-open set in \(X\) contained in \(A\).

3. \((i,j)\)-\(\xi\)-Int\((A)\) is the largest \((i,j)\)-\(\xi\)-open set in \(X\) contained in \(A\).

4. \(A\) is an \((i,j)\)-\(\xi\)-open set if and only if \(A = (i,j)\)-\(\xi\)-Int\((A)\)

5. \((i,j)\)-\(\xi\)-Int\((\phi)\) = \(\phi\).

6. \((i,j)\)-\(\xi\)-Int\((X)\) = \(X\)

7. \((i,j)\)-\(\xi\)-Int\((A)\) \(\subseteq\) \(A\).

8. If \(A \subseteq B\), the \((i,j)\)-\(\xi\)-Int\((A)\) \(\subseteq\) \((i,j)\)-\(\xi\)-Int\((B)\).

9. \((i,j)\)-\(\xi\)-Int\((A)\) \(\cap\) \((i,j)\)-\(\xi\)-Int\((B)\) = \((i,j)\)-\(\xi\)-Int\((A \cap B)\).

10. \((i,j)\)-\(\xi\)-Int\((A)\) \(\cup\) \((i,j)\)-\(\xi\)-Int\((B)\) \(\subseteq\) \((i,j)\)-\(\xi\)-Int\((A \cup B)\).

Proof. Straightforward.

In general \((i,j)\)-\(\xi\)Int\((A)\) \(\cup\) \((i,j)\)-\(\xi\)Int\((B)\) \(\neq\) \((i,j)\)-\(\xi\)Int\((A \cup B)\) as it shown in the following example:

Example 4.7 Let \(X = \{a, b, c\}\), \(\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}\) and \(\tau_2 = \{\phi, \{b, c\}, X\}\), then \((i,j)\)-\(\xi\)O\((X)\) = \(\{\phi, \{b, c\}, X\}\) if we take \(A = \{a, b\}\) and \(B = \{b, c\}\), then \((i,j)\)-\(\xi\)Int\((A)\) = \(\phi\), and \((i,j)\)-\(\xi\)Int\((B)\) = \(\{b, c\}\), \((i,j)\)-\(\xi\)Int\((A \cup B)\) = \((i,j)\)-\(\xi\)Int\((X)\) = \(X\).

In general \((i,j)\)-\(\xi\)Int\((A)\) \(\subseteq\) \(j\)-Int\((A)\), but \((i,j)\)-\(\xi\)Int\((A)\) \(\neq\) \(j\)-Int\((A)\), which is shown in the following example:

Example 4.8 Let \(X = \{a, b, c\}\), \(\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}\) and \(\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}\), then \((i,j)\)-\(\xi\)O\((X)\) = \(\{\phi, \{b, c\}, X\}\), if we take \(A = \{a\}\), then \((i,j)\)-\(\xi\)Int\((A)\) = \(\phi\), but \(j\)-Int\((A)\) = \(A\). Hence \((i,j)\)-\(\xi\)Int\((A)\) \(\neq\) \(j\)-Int\((A)\).

Definition 4.9 The intersection of all \((i,j)\)-\(\xi\)-closed set containing \(F\) is called the \((i,j)\)-\(\xi\)-closure of \(F\) and we denoted it by \((i,j)\)-\(\xi\)Cl\((F)\)

Corollary 4.10 Let \(F\) be any subset of a space \(X\). A point \(x\) in \(X\) is in the \((i,j)\)-\(\xi\)-closed of \(F\) if and only if \(F \cap U \neq \phi\) for every \((i,j)\)-\(\xi\)-open set \(U\) containing \(x\).

Proposition 4.11 Let \(A\) be any subset of a bitopological space \(X\). If a point \(x\) in the \((i,j)\)-\(\xi\)-closure of \(A\), then \(F \cap A \neq \phi\) for every \(i\)-semi-closed set \(F\) of \(X\) containing \(x\).
Proof. Suppose that $x \in (i,j)\text{-}\xi cl(A)$, then by Corollary 4.10, $A \cap U \neq \emptyset$ for every $(i,j)\text{-}\xi$-open set U of X containing x. Since U is an $(i,j)\text{-}\xi$-open set, so there exists an i-semi-closed set F containing x, such that $F \subseteq U$. Hence, $F \cap A \neq \emptyset$.

Some properties of $(i,j)\text{-}\xi$-closure operators on a set are given.

Theorem 4.12 For any subsets A and B of a bitopological space X, the following statements are true:

1. The $(i,j)\text{-}\xi$-closure of A is the intersection of all $(i,j)\text{-}\xi$-closed sets containing A.
2. $(i,j)\text{-}\xi cl(A)$ is an $(i,j)\text{-}\xi$-closed set in X containing A.
3. $(i,j)\text{-}\xi cl(A)$ is the smallest $(i,j)\text{-}\xi$-closed set in X containing A.
4. A is an $(i,j)\text{-}\xi$-closed set if and only if $A = (i,j)\text{-}\xi cl(A)$
5. $(i,j)\text{-}\xi cl(\emptyset) = \emptyset$.
6. $(i,j)\text{-}\xi cl(X) = X$
7. $A \subseteq (i,j)\text{-}\xi cl(A)$.
8. If $A \subseteq B$, then $(i,j)\text{-}\xi cl(A) \subseteq (i,j)\text{-}\xi cl(B)$.
9. $(i,j)\text{-}\xi cl(A) \cap (i,j)\text{-}\xi cl(B) \subseteq (i,j)\text{-}\xi cl(A \cap B)$.
10. $(i,j)\text{-}\xi cl(A) \cup (i,j)\text{-}\xi cl(B) = (i,j)\text{-}\xi Int(A \cup B)$.

Proof. Directly from Definition 4.9.

Corollary 4.13 For any subset A of a bitopological space X, then the following statements are true:

1. $X \setminus ((i,j)\text{-}\xi Cl(A)) = (i,j)\text{-}\xi Int(X \setminus A)$
2. $X \setminus ((i,j)\text{-}\xi Int(A)) = (i,j)\text{-}\xi Cl(X \setminus A)$
3. $(i,j)\text{-}\xi Int(A) = X \setminus ((i,j)\text{-}\xi Cl(X \setminus A))$

It is clear that $j\text{-}Cl(F) \subseteq (i,j)\text{-}\xi Cl(F)$, the converse may be false as shown in the following example:

Example 4.14 Considering a space X as defined in Example 3.3, if we take $F = \{a,b\}$, then $j\text{-}Cl(F) = \{a,b\}$, and $(i,j)\text{-}\xi Cl(F) = X$, this shows that $(i,j)\text{-}\xi Cl(F)$ is not a subset of $j\text{-}Cl(F)$.

Corollary 4.15 If A is any subset of a bitopological space X, then (i,j)-$\xi\text{Int}(A) \subseteq j\text{-Int}(A) \subseteq A \subseteq j\text{-Cl}(A) \subseteq (i,j)$-$\xi\text{Cl}(A)$.

Definition 4.16 Let A be a subset of a bitopological space X, A point $x \in X$ is said to be (i,j)-ξ-limit point of A if for each (i,j)-ξ-open set U containing x, $U \cap (A \setminus \{x\}) \neq \emptyset$. The set of all (i,j)-ξ-limit point of A is called (i,j)-ξ-derived set of A and is denoted by (i,j)-$\xi D(A)$.

In general It is clear that (i,j)-$\xi D(A) \subseteq j\text{-}D(A)$, but the converse may not be true as shown in the following example:

Example 4.17 Considering the space X as defined in Example 3.3 if we take $A = \{a,c\}$, So (i,j)-$\xi D(A) = \{a\}$ and $j\text{-}D(A) = \{b\}$, hence (i,j)-$\xi D(A)$ is not a subset of $j\text{-}D(A)$.

Theorem 4.18 Let X be a bitopological space and A be a subset of X, then $A \cup (i,j)$-$\xi D(A)$ is (i,j)-ξ-closed.

Proof. Let $x \notin A \cup (i,j)$-$\xi D(A)$. This implies that $x \notin A$ and $x \notin (i,j)$-$\xi D(A)$. Since $x \notin (i,j)$-$\xi D(A)$, then there exists an (i,j)-ξ-open U of X which contains no point of A other than x, but $x \notin A$, so U contains no point of A, which implies that $U \subseteq X \setminus A$. Again, U is an (i,j)-ξ-open set for each of its points. But as U does not contain any point of A, no point of U can be (i,j)-ξ-limit point of A. Therefore, no point of U can belong to (i,j)-$\xi D(A)$. This implies that $U \subseteq X \setminus (i,j)$-$\xi DA$. Hence, it follows that $x \in X \setminus A \cap (X \setminus (i,j)$-$\xi D(A)) = X \setminus (A \cup (i,j)$-$\xi D(A))$, Therefore $A \cup (i,j)$-$\xi D(A)$ is an (i,j)-ξ-closed. Hence (i,j)-$\xi d(A) \subseteq A \cup (i,j)$-$\xi D(A)$.

Corollary 4.19 If a subset A of a bitopological space X is (i,j)-ξ-closed, then A contains the set of all its (i,j)-ξ-limit points.

Theorem 4.20 Let A be any subset of a bitopological space X, then the following statements are true:

1. $((i,j)$-$\xi D((i,j)$-$\xi D(A))) \setminus A \subseteq (i,j)$-$\xi D(A)$
2. (i,j)-$\xi D(A \cup (i,j)$-$\xi D(A)) \subseteq A \cup (i,j)$-$\xi D(A)$

Proof. Obvious.

Theorem 4.21 Let X be a bitopological space and A be a subset of X, then: (i,j)-$\xi \text{Int}(A) = A \setminus ((i,j)$-$\xi D(X \setminus A))$

Proof. Obvious.
Definition 4.22 If A is a subset of a bitopological space X, then (i,j)-\(\xi\)-boundary of A is (i,j)-\(\xi\)\(Cl(A) \cap ((i,j)\cdot\xi Int(A))^c\), and denoted by (i,j)-\(\xi\)\(Bd(A)\)

Theorem 4.23 For any subset A of a bitopological space X, the following statements are true:

1. (i,j)-\(\xi\)\(Bd(A) = (i,j)$-\(\xi\)\(Bd(X \setminus A)\)

2. $A \in (i,j)$-\(\xi\)\(O(X)\) if and only if (i,j)-\(\xi\)\(Bd(A) \subseteq X \setminus A\), that is $A \cap (i,j)$-\(\xi\)\(Bd(A)\) = φ.

3. $A \in (i,j)$-\(\xi\)\(C(X)\) if and only if (i,j)-\(\xi\)\(Bd(A) \subseteq A\).

4. (i,j)-\(\xi\)\(Bd((i,j)$-\(\xi\)\(Bd(A)) \subseteq (i,j)$-\(\xi\)\(Bd(A)\)

5. (i,j)-\(\xi\)\(Bd((i,j)$-\(\xi\)\(Int(A)) \subseteq (i,j)$-\(\xi\)\(Bd(A)\)

6. (i,j)-\(\xi\)\(Bd((i,j)$-\(\xi\)\(Cl(A)) \subseteq (i,j)$-\(\xi\)\(Bd(A)\)

7. (i,j)-\(\xi\)\(Int(A) = A \setminus ((i,j)$-\(\xi\)\(Bd(A))\)

Proof. Directly from Definition 4.22.

Theorem 4.24 Let A be a subset of a bitopological space X, then (i,j)-\(\xi\)\(Bd(A) = \phi\) if and only if A is both (i,j)-\(\xi\)-open and (i,j)-\(\xi\)-closed set.

Proof. Let A be (i,j)-\(\xi\)-open and (i,j)-\(\xi\)-closed, then $A = (i,j)$-\(\xi\)\(Int(A) = (i,j)$-\(\xi\)\(cl(A)\), hence by Definition 4.22 $A = (i,j)$-\(\xi\)\(Cl(A) - (i,j)$-\(\xi\)\(Int(A))\) = φ.

References

(i,j)-\xi-Open sets in bitopological spaces

