On Λ_e-Sets and V_e-Sets and the Associated Topology τ^{Λ_e}

Murad Özkoc1 and Burcu Sünbül Ayhan2

1,2Muğla Sıtkı Koçman University, Faculty of Science Department of Mathematics, 48000, Menteşe-Muğla, Turkey
1E-mail: murad.ozkoc@mu.edu.tr
2E-mail: brcyhn@gmail.com

(Received: 15-10-15 / Accepted: 5-12-15)

Dedicated to Prof. Dr. Zekeriya GÜNEY on the occasion of his 67th birthday.

Abstract

The aim of this paper is to introduce and investigate the topologies defined through Λ_e-sets and V_e-sets. For this aim, we define the notions of Λ_e-sets and V_e-sets and investigate some of the fundamental properties of them.

Keywords: e-open sets, Λ_e-sets, V_e-sets, topology τ^{Λ_e}, e-T_1, $T_{\frac{1}{2}}$.

1 Introduction

In 1986, Maki [9] introduced and studied the notion of a generalized Λ-set in a topological space X. Also, he looked into the relationship between the given topology τ and the topology τ^Λ which is generated by the family of generalized Λ-sets. Recently, three generalizations of the notion of Λ-set are obtained and studied by Caldas and Dontchev [2], Ganster and Jafari and Noiri [7], Caldas and Jafari and Noiri [3]. They continued the work of Maki [9].

The main goal of this paper is to continue research along these directions but this time by utilizing the e-open sets. We introduce Λ_e-sets and V_e-sets in a given topological space and thus obtain new topologies defined by these families of sets. We also consider some of the fundamental properties of these new topologies.
We shall use the well-known accepted language almost in the whole of the article.

2 Preliminaries

In this section let us recall some definitions and results which are used in this paper. Throughout this paper, writing spaces X and Y we always mean topological spaces on which no separation axioms are assumed. For a subset A of a space X, the closure of A and the interior of A, are denoted by $cl(A)$ and $int(A)$, respectively. The set of all open neighborhoods of the point x of X is denoted by $U(x)$. A subset A of a space X is called δ-open [11] if $A = int_\delta(A)$, where $int_\delta(A) = \{x | (\exists U \in U(x))(int(cl(U)) \subset A)\}$. The complement of a δ-open set is called δ-closed [11]. Equivalently, a subset A of a space X is called δ-closed [11] if $A = cl_\delta(A)$, where $cl_\delta(A) = \{x | (\forall U \in U(x))(int(cl(U)) \cap A \neq \emptyset)\}$. A subset A of a space X is called e-open (resp. preopen [10]) if $A \subset cl(int_\delta(A)) \cup int(cl_\delta(A))$ (resp. $A \subset int(cl(A))$). The complement of an e-open (resp. preopen) set is called e-closed (resp. preclosed). The family of all regular open (resp. regular closed, e-open, e-closed, preopen, preclosed) subsets of X is denoted by $RO(X)$ (resp. $RC(X)$, $eO(X)$, $eC(X)$, $PO(X)$, $PC(X)$).

Lemma 2.1. [6] The family of all e-open sets in a given topological space X is closed under arbitrary unions.

Lemma 2.2. Let (X, τ) be a topological space and $A \subset X$. If $\tau = RO(X)$, then the interior of A and the closure of A are equal to the δ-interior of A and the δ-closure of A, respectively. Therefore $BO(X) = eO(X)$.

3 Λ_e-Sets and V_e-Sets

In this section, we introduce the notions of Λ_e-sets and V_e-sets and study some of their fundamental properties.

Definition 3.1. Let (X, τ) be a topological space and $A \subset X$. We define the subsets A^{Λ_e} and A^{V_e} as follows:

$A^{\Lambda_e} := \bigcap\{E | (A \subset E)(E \in eO(X))\}$ and $A^{V_e} := \bigcup\{F | (F \subset A)(F \in eC(X))\}$.

Theorem 3.2. Let (X, τ) be a topological space and $A \subset X$. Then:

(a) $A^{\Lambda_e} = \{x | (\forall E \in eO(X))(A \subset E)(x \in E)\}$,

(b) $A^{V_e} = \{x | (\exists F \in eC(X))(F \subset A)(x \in F)\}$.
Proof:

(a) \(x \notin A^\Lambda_e \iff (\exists E \in eO(X))(A \subset E)(x \notin E)\)
\(\iff x \notin \{x | (\forall E \in eO(X))(A \subset E)(x \in E)\}.\)

(b) \(x \in A^V_e \iff (\exists F \in eC(X))(F \subset A)(x \in F)\)
\(\iff x \in \{x | (\exists F \in eC(X))(F \subset A)(x \in F)\}.\)

Theorem 3.3. Let \((X, \tau)\) be a topological space. Then the following statements are satisfied:

(a) \(A \subset X \implies A \subset A^\Lambda_e,\)
(b) \(A \subset B \subset X \implies A^\Lambda_e \subset B^\Lambda_e,\)
(c) \(A \subset X \implies (A^\Lambda_e)^\Lambda_e = A^\Lambda_e,\)
(d) \(A \in eO(X) \implies A = A^\Lambda_e,\)
(e) \(A \subset \mathcal{P}(X) \implies (\bigcup A)^\Lambda_e = \bigcup_{A \in A} A^\Lambda_e,\)
(f) \(A \subset \mathcal{P}(X) \implies (\bigcap A)^\Lambda_e \subset \bigcap_{A \in A} A^\Lambda_e,\)
(g) \(A \subset X \implies (X \setminus A)^\Lambda_e = X \setminus A^V_e.\)

Proof: (a) Clear.

(b) Let \(A \subset B \subset X.\)
\(x \notin B^\Lambda_e \implies (\exists E \in eO(X))(B \subset E)(x \notin E)\)
\(\implies x \notin E \implies x \notin A^\Lambda_e.\)

(c) Let \(A \subset X.\)
\(x \in (A^\Lambda_e)^\Lambda_e \implies (\forall E \in eO(X))(A \subset E)(x \in E)\)
\(\implies (\forall E \in eO(X))(a \subset E)(x \in E)\)
\(\implies x \in A^\Lambda_e.\)

(d) Let \(A \in eO(X).\)
\[A^\Lambda_e = \bigcap \{E | (A \subset E)(E \in eO(X))\} \bigcup_{A \in A} \implies A^\Lambda_e = A.\]

(e) Let \(A \subset \mathcal{P}(X).\)
\(x \notin (\bigcup A)^\Lambda_e \implies (\exists E \in eO(X))(\bigcup A \subset E)(x \notin E)\)
\(\implies (\exists E \in eO(X))(\forall A \in A)(A \subset E)(x \notin E)\)
\(\implies (\forall A \in A)(\exists E \in eO(X))(A \subset E)(x \notin E)\)
\(\implies (\forall A \in A)(x \notin A^\Lambda_e)\)
\(\implies x \notin \bigcup_{A \in A} A^\Lambda_e.\)
\[x \notin \bigcup_{A \in \mathcal{A}} A^{A_e} \Rightarrow (\forall A \in \mathcal{A}) (x \notin A^{A_e}) \]
\[\Rightarrow (\forall A \in \mathcal{A}) (\exists E \in eO(X)) (A \subset E) (x \notin E) \]
\[\Rightarrow \left(\bigcup_{(A \in \mathcal{A})(A \subset E)} E \in eO(X) \right) \left(\bigcup_{(A \in \mathcal{A})(A \subset E)} A \subset \bigcup_{(x \notin E \in eO(X))} E \right) \left(x \notin \bigcup_{(A \in \mathcal{A})(A \subset E)} E \right) \]
\[\Rightarrow x \notin (\bigcup \mathcal{A})^{A_e}. \]

(f) Let \(\mathcal{A} \subset \mathcal{P}(X) \).
\[x \notin \bigcap_{A \in \mathcal{A}} A^{A_e} \Rightarrow (\exists A \in \mathcal{A})(x \notin A^{A_e}) \]
\[\Rightarrow (\exists A \in \mathcal{A})(\exists E \in eO(X))(A \subset E)(x \notin E) \]
\[\Rightarrow (\exists E \in eO(X))(\exists A \in \mathcal{A})(A \subset E)(x \notin E) \]
\[\Rightarrow (\exists E \in eO(X))(\bigcap A \subset E)(x \notin E) \]
\[\Rightarrow x \notin (\bigcap \mathcal{A})^{A_e}. \]

(g) Let \(A \subset X \).
\[X \setminus A^{V_e} = \bigcap \{ X \setminus F \mid (X \setminus A \subset X \setminus F)(X \setminus F \in eO(X)) \} = (X \setminus A)^{A_e}. \]

Theorem 3.4. Let \((X, \tau)\) be a topological space. Then the following statements are satisfied:

(a) \(A \subset X \Rightarrow A^{V_e} \subset A \),
(b) \(A \subset B \subset X \Rightarrow A^{V_e} \subset B^{V_e} \),
(c) \(A \subset X \Rightarrow (A^{V_e})^{V_e} = A^{V_e} \),
(d) \(A \in eC(X) \Rightarrow A = A^{V_e} \),
(e) \(\mathcal{A} \subset \mathcal{P}(X) \Rightarrow (\bigcap \mathcal{A})^{V_e} = \bigcap_{A \in \mathcal{A}} A^{V_e} \),
(f) \(\mathcal{A} \subset \mathcal{P}(X) \Rightarrow \bigcup_{A \in \mathcal{A}} A^{V_e} \subset (\bigcup \mathcal{A})^{V_e} \),

Proof: It follows directly from Definition 3.1 and Theorem 3.3.

Definition 3.5. Let \((X, \tau)\) be a topological space and \(A \subset X \). Then we define the notions \(\Lambda_e \)-set and \(V_e \)-set as follows:

\(A \) is called \(\Lambda_e \)-set \(\iff A = A^{\Lambda_e} \) and \(\Lambda_e(X) := \{ A \mid (A \subset X)(A = A^{\Lambda_e}) \} \)

\(A \) is called \(V_e \)-set \(\iff A = A^{V_e} \) and \(V_e(X) := \{ A \mid (A \subset X)(A = A^{V_e}) \} \).

Proposition 3.6. Let \((X, \tau)\) be a topological space. Then the following statements are satisfied:

(a) \(eO(X) \subset \Lambda_e(X) \),
(b) \(eC(X) \subset V_e(X) \).
Proof: It follows directly from Definition 3.1 and Definition 3.5.

It is not difficult to see that every Λ_e-set need not to be e-open as shown by the following example.

Example 3.7. Let $X = \{a, b, c, d\}$ be and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}, \{a, c, d\}\}$. The set $\{d\}$ is Λ_e-set but it is not e-open.

Theorem 3.8. Let (X, τ) be a topological space. Then the following statements are satisfied:

(a) $\emptyset, X \in \Lambda_e(X) \cap V_e(X)$,
(b) $A \in \Lambda_e(X) \Leftrightarrow X \setminus A \in V_e(X)$,
(c) $A \subset \Lambda_e(X) \Rightarrow (\bigcup A \in \Lambda_e(X)) \cap (\bigcap A \in \Lambda_e(X))$,
(d) $A \subset V_e(X) \Rightarrow (\bigcup A \in V_e(X)) \cap (\bigcap A \in V_e(X))$.

Proof: (a) and (b) are obvious.

(c) Let $A \subset \Lambda_e(X)$.

\[
A \in A \subset \Lambda_e(X) \Rightarrow A = A^{\Lambda_e} \\
\Rightarrow \bigcup A = \bigcup A^{\Lambda_e} = \left(\bigcup A \right)^{\Lambda_e} \\
\Rightarrow \bigcup A = \left(\bigcup A \right)^{\Lambda_e} \\
\Rightarrow \bigcup A \in \Lambda_e(X).
\]

\[
A \in A \subset \Lambda_e(X) \Rightarrow A = A^{\Lambda_e} \\
\Rightarrow \bigcap A = \bigcap A^{\Lambda_e} \supset \left(\bigcap A \right)^{\Lambda_e} \\
\Rightarrow \bigcap A \supset \left(\bigcap A \right)^{\Lambda_e} \\
\Rightarrow \bigcap A \in \Lambda_e(X).
\]

(d) Let $A \subset \Lambda_e(X)$.

\[
A \in A \subset V_e(X) \Rightarrow A = A^{V_e} \\
\Rightarrow \bigcup A = \bigcup A^{V_e} \subset \left(\bigcup A \right)^{V_e} \\
\Rightarrow \bigcup A \subset \left(\bigcup A \right)^{V_e} \\
\Rightarrow \bigcup A \in V_e(X).
\]

\[
A \in A \subset V_e(X) \Rightarrow A = A^{V_e} \\
\Rightarrow \bigcap A = \bigcap A^{V_e} = \left(\bigcap A \right)^{V_e} \\
\Rightarrow \bigcap A = \left(\bigcap A \right)^{V_e} \\
\Rightarrow \bigcap A \in V_e(X).
\]
Remark 3.9. $\Lambda_e(X)$ (resp. $V_e(X)$) defines a topology on X containing all e-open (resp. e-closed) sets. Clearly, $(X, \Lambda_e(X))$ and $(X, V_e(X))$ are Alexandroff spaces [1], i.e. arbitrary intersections of open sets are open.

Recall that a space (X, τ) is said to be e-T_1 [5] if for each pair of distinct points x and y of X there exists an e-open set containing x but not y. It is not difficult to show that a space (X, τ) is e-T_1 if and only if singletons are e-closed. We now compare additional characterizations of e-T_1 spaces.

Theorem 3.10. Let (X, τ) be a topological space. Then the following properties are equivalent:

(a) (X, τ) is e-T_1,
(b) $\mathcal{P}(X) = \Lambda_e(X)$,
(c) $\mathcal{P}(X) = V_e(X)$.

Proof: It is obvious that (b) \iff (c).

(a) \Rightarrow (c) : Let (X, τ) be e-T_1 space.

\[
\begin{align*}
 x \in A \subset X \\
 (X, \tau) \text{ is } e-T_1 \\
 \Rightarrow \quad \{x\} \subset A(\{x\} \in eC(X)) \\
 \Rightarrow \quad A = \bigcup_{x \in A} \{x\} \subset A(\{x\} \in eC(X)) \\
 \Rightarrow \quad A = A^\Lambda_e \\
 \Rightarrow \quad A \in V_e(X).
\end{align*}
\]

(c) \Rightarrow (a) : Let A be V_e-set for all subsets of X.

\[
\begin{align*}
 x \in X \Rightarrow \{x\} \subset X \Rightarrow \{x\} = \{x\}^{V_e} \Rightarrow \{x\} \in eC(X).
\end{align*}
\]

Recall that a subset A of a topological space (X, τ) is said to be generalized closed (briefly g-closed) [8] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$. A topological space (X, τ) is said to be $T_{\frac{1}{2}}$ if every g-closed subset of X is closed. Dunham [4] pointed out that (X, τ) is $T_{\frac{1}{2}}$ if and only if for each $x \in X$ the singleton $\{x\}$ is open or closed.

Theorem 3.11. Let (X, τ) be a topological space. Then the following properties hold:

(a) $(X, \Lambda_e(X))$ and $(X, V_e(X))$ are $T_{1/2}$.
(b) If (X, τ) is an e-T_1 space, then $\Lambda_e(X) = V_e(X) = \mathcal{P}(X)$.

Proof:

(a) $x \in X \Rightarrow (\{x\} \in PC(X) \vee \{x\} \in \tau)$

\[
\begin{align*}
 \Rightarrow \quad (\{x\} \in eC(X) \vee \{x\} \in eO(X)) \\
 \Rightarrow \quad (X \setminus \{x\} \in eO(X) \vee \{x\} \in eO(X)) \\
 \Rightarrow \quad (X \setminus \{x\} \in \Lambda_e(X) \vee \{x\} \in \Lambda_e(X))(\{x\} \in V_e(X) \vee X \setminus \{x\} \in V_e(X)).
\end{align*}
\]
(b) This follows from Theorem 3.10.

4 Generalized Λ_e-Sets and Generalized V_e-Sets

Definition 4.1. Let (X, τ) be a topological space and $A \subset X$. Then we define the notion of generalized Λ_e-set (br. $g\Lambda_e$-set) as follows:

A is called generalized Λ_e-set $\iff [(A \subset F)(F \in eC(X)) \Rightarrow A^{\Lambda_e} \subset F]$

$g\Lambda_e(X) := \{A|(A \subset X)(A$ is $g\Lambda_e$-set)$

Definition 4.2. Let (X, τ) be a topological space and $A \subset X$. Then we define the notion of generalized V_e-set (br. gV_e-set) as follows:

A is generalized V_e-set $\iff X \setminus A$ is generalized Λ_e-set

$gV_e(X) := \{A|(A \subset X)(A$ is gV_e-set)$

Theorem 4.3. Let (X, τ) be a topological space. Then the following properties hold:

(a) $g\Lambda_e(X) = \Lambda_e(X)$,
(b) $gV_e(X) = V_e(X)$.

Proof: (a) Let $A \in \Lambda_e(X)$.

\[
(A \subset F)(F \in eC(X)) \Rightarrow A = A^{\Lambda_e} \Rightarrow A^{\Lambda_e} \subset F \Rightarrow A \in g\Lambda_e(X).
\]

Suppose that $A \in g\Lambda_e(X)$ but $A \notin \Lambda_e(X)$.

$A \notin \Lambda_e(X) \Rightarrow A \neq A^{\Lambda_e} \Rightarrow A \subsetneq A^{\Lambda_e} \Rightarrow (\exists x \in X)(x \in A^{\Lambda_e} \setminus A)$

\[
\Rightarrow (\{x\} \in \tau \lor \{x\} \in PC(X))
\]

\[
\Rightarrow (\{x\} \in eO(X) \lor \{x\} \in eC(X))
\]

First case.

$\{x\} \in eO(X) \Rightarrow X \setminus \{x\} \in eC(X)$

\[
x \in A^{\Lambda_e} \setminus A \Rightarrow x \notin A \Rightarrow A \subset X \setminus \{x\}) \Rightarrow A^{\Lambda_e} \subset X \setminus \{x\} \text{ which is a contradiction.}
\]

Second case.

$\{x\} \in eC(X) \Rightarrow X \setminus \{x\} \in eO(X)$

\[
x \in A^{\Lambda_e} \setminus A \Rightarrow x \notin A \Rightarrow A \subset X \setminus \{x\}) \Rightarrow A^{\Lambda_e} \subset X \setminus \{x\} \text{ which is a contradiction.}
\]

(b) This is proved in a similar way.
5 The Associated Topology τ^Λ_e

Definition 5.1. Let (X, τ) be a topological space and $A \subset X$. Then we define the subsets $C^\Lambda_e(A)$ and $I^\Lambda_v(A)$ as follows:

$$C^\Lambda_e(A) := \bigcap \{U | (A \subset U) (U \in \Lambda_e(X))\},$$

$$I^\Lambda_v(A) := \bigcup \{V | (V \subset A) (V \in V_e(X))\}.$$

Theorem 5.2. Let (X, τ) be a topological space and $A \subset X$. Then the following statements are satisfied.

(a) $C^\Lambda_e(\emptyset) = \emptyset$,
(b) $A \subset C^\Lambda_e(A)$,
(c) $\bigcup_{\Lambda \in A} C^\Lambda_e(A) = C^\Lambda_e(\bigcup A)$,
(d) $A \subset B \Rightarrow C^\Lambda_e(A) \subset C^\Lambda_e(B)$,
(e) $C^\Lambda_e(C^\Lambda_e(A)) = C^\Lambda_e(A)$,
(f) $A \in \Lambda_e(X) \Rightarrow C^\Lambda_e(A) = A$,
(g) $A \in V_e(X) \Rightarrow I^\Lambda_v(A) = A$,
(h) $C^\Lambda_e(X \setminus A) = X \setminus I^\Lambda_v(A)$.

Proof: (a) and (b) are clear from Definition 5.1.

(c) Let $x \notin C^\Lambda_e(\bigcup A)$.

$$x \notin C^\Lambda_e(\bigcup A) \Rightarrow (\exists E \in \Lambda_e(X)) (\bigcup A \subset E) (x \notin E)$$

$$\Rightarrow (\exists E \in \Lambda_e(X)) (\forall A \in A) (A \subset E) (x \notin E)$$

$$\Rightarrow (\forall A \in A) (\exists E \in \Lambda_e(X)) (A \subset E) (x \notin E)$$

$$\Rightarrow (\forall A \in A) (x \notin C^\Lambda_e(A))$$

$$\Rightarrow x \notin \bigcup_{\Lambda \in A} C^\Lambda_e(A).$$

(d) Let $x \notin C^\Lambda_e(B)$.

$$x \notin C^\Lambda_e(B) \Rightarrow (\exists E \in \Lambda_e(X)) (B \subset E) (x \notin E)$$

$$\Rightarrow (\exists E \in \Lambda_e(X)) (A \subset E) (x \notin E) \Rightarrow x \notin C^\Lambda_e(A).$$

(e) Let $x \notin C^\Lambda_e(A)$.

$$x \notin C^\Lambda_e(A) \Rightarrow (\exists E \in \Lambda_e(X)) (A \subset E) (x \notin E)$$

$$\Rightarrow (\exists E \in \Lambda_e(X)) (C^\Lambda_e(A) \subset C^\Lambda_e(E) = E) (x \notin E)$$

$$\Rightarrow x \notin C^\Lambda_e(C^\Lambda_e(A)).$$
(f), (g) and (h) are clear from Definition 5.1.

Corollary 5.3. Let X be a nonempty set. The map $\Lambda_{e}: \mathcal{P}(X) \to \mathcal{P}(X)$ is a Kuratowski closure operator.

Definition 5.4. Let $\tau^{\Lambda_{e}}$ be the topology on X generated by Λ_{e} in the usual manner, i.e., $\tau^{\Lambda_{e}} = \{A|(A \subset X)(\Lambda_{e}(X \setminus A) = X \setminus A)\}$. We define the family $\rho^{\Lambda_{e}}$ by $\rho^{\Lambda_{e}} := \{A|(A \subset X)(\Lambda_{e}(A) = A)\}$.

Theorem 5.5. Let (X, τ) be a topological space. Then the following properties hold.

(a) $\tau^{\Lambda_{e}} = \{A|(A \subset X)(I^{V_{e}}(A) = A)\}$,
(b) $\Lambda_{e}(X) = \rho^{\Lambda_{e}}$,
(c) $V_{e}(X) = \tau^{\Lambda_{e}}$,
(d) $eC(X) = \tau^{\Lambda_{e}} \Rightarrow \Lambda_{e}(X) = eO(X, \tau)$,
(e) $\Lambda_{e}(X) \subset eO(X) \Rightarrow \tau^{\Lambda_{e}} = \{A|(A \subset X)(A = A^{V_{e}})\}$,
(f) $\Lambda_{e}(X) \subset eC(X) \Rightarrow eO(X) = \tau^{\Lambda_{e}}$.

Proof: (a) This is clear from Definition 5.4 and Theorem 5.2(h).

\[A \in \{A|(A \subset X)(\Lambda_{e}(X \setminus A) = X \setminus A)\} \iff (A \subset X)(\Lambda_{e}(X \setminus A) = X \setminus A) \]
\[(A \subset X)(X \setminus I^{\Lambda_{e}}(A) = X \setminus A) \]
\[(A \subset X)(\Lambda_{e}(A) = A) \]
\[A \in \{A|(A \subset X)(\Lambda_{e}(A) = A)\}. \]

(b) Let $A \in \Lambda_{e}(X)$. $A \in \Lambda_{e}(X) \iff \Lambda_{e}(A) = A \iff A \in \rho^{\Lambda_{e}}$.

(c) Let $A \in V_{e}(X)$. $A \in V_{e}(X) \iff I^{V_{e}}(A) = A \iff A \in \tau^{V_{e}}$.

(d) Let $eC(X) = \tau^{\Lambda_{e}}$.

\[A \in \Lambda_{e}(X) \Rightarrow A \in \rho^{\Lambda_{e}} \Rightarrow X \setminus A \in \tau^{\Lambda_{e}} \Rightarrow X \setminus A \in eC(X) \Rightarrow A \in eO(X). \]

(e) Let $\Lambda_{e}(X) \subset eO(X)$.

\[A \in \tau^{\Lambda_{e}} \iff (A \subset X)(X \setminus A = \Lambda_{e}(X \setminus A)) \]
\[(A \subset X)(X \setminus A = \bigcup\{U|(X \setminus A \subset U)(U \in \Lambda_{e}(X))\}) \]
\[(A \subset X)(X \setminus A = \bigcup\{U|(X \setminus A \subset U)(U \in eO(X))\}) \]
\[(A \subset X)(X \setminus A = (X \setminus A)^{\Lambda_{e}}) \]
\[(A \subset X)(X \setminus A = X \setminus A^{V_{e}}) \]
\[(A \subset X)(A = A^{V_{e}}) \]
\[A \in \{A|(A \subset X)(A = A^{V_{e}})\}. \]

(f) Let $\Lambda_{e}(X) \subset eC(X)$.

\[A \in \tau^{\Lambda_{e}} \Rightarrow A \in V_{e}(X) \Rightarrow X \setminus A \in \Lambda_{e}(X) \]
\[\Lambda_{e}(X) \subset eC(X) \Rightarrow X \setminus A \in eC(X) \Rightarrow A \in eO(X). \]

\[A \in eO(X) \Rightarrow A \in \Lambda_{e}(X) \]
\[\Lambda_{e}(X) \subset eC(X) \Rightarrow A \in eC(X) \Rightarrow A \in V_{e}(X) \Rightarrow A \in \tau^{\Lambda_{e}}. \]
Theorem 5.6. Let (X, τ) be a topological space.

\[eO(X) = \tau^{\Lambda_e} \Rightarrow \tau^{\Lambda_e} = \mathcal{P}(X). \]

Proof: Let \(eO(X) = \tau^{\Lambda_e} \).

\[\{x\} \notin eO(X) \Rightarrow \{x\} \in eC(X) \Rightarrow \{x\} \in V_e(X) \Rightarrow \{x\}^{V_e} = \{x\} \Rightarrow \{x\} \in \tau^{\Lambda_e} \]

\[\Rightarrow (\forall x \in X)(\{x\} \in \tau^{\Lambda_e}) \Rightarrow \tau^{\Lambda_e} = \mathcal{P}(X). \]

6 Conclusion

If the open sets and the regular open sets coincide in a topological space, then all of the results which are obtained in this paper are the same in [3] because \(eO(X) = BO(X) \) when the open sets and the regular open sets are the same as we stated in Lemma 2.2.

References

