μ− Geodetic Iteration Number and
μ− Geodetic Number of a Fuzzy Graph

J.P. Linda and M.S. Sunitha

Department of Mathematics, National Institute of Technology
Calicut, Kozhikode - 673601, India

1E-mail: lindajpsj@gmail.com
2E-mail: sunitha@nitc.ac.in

(Received: 12-6-13 / Accepted: 15-7-13)

Abstract

In this paper the concepts of μ−geodesic, μ−eccentricity, μ−radius,
μ−diameter, μ−center, μ−geodetic closure, μ−geodetic iteration number are
introduced. It is proved that if $G : (V, \sigma, \mu)$ is a connected fuzzy graph on n
nodes such that each pair of nodes is joined by a strong arc then the μ−distance
between two nodes is the reciprocal of its arc length. Also the concepts of
μ−convex set, μ−geodetic cover, μ−geodetic basis, μ−geodetic number, μ−check
node, μ−convex hull, μ−hull number are introduced. A sufficient condition for
a fuzzy graph to have its node set as μ−geodetic basis is obtained. μ−peripheral
vertex, μ−peripheral path and μ−eccentric vertex of fuzzy graph are analyzed.

Keywords: μ−geodesic, μ−eccentricity, μ−radius, μ−geodetic closure,
μ−geodetic iteration number, μ−convex set, μ−geodetic cover, μ−geodetic ba-
sis, μ−geodetic number, μ−check node, μ−convex hull, μ−hull number.

1 Introduction

Fuzzy graphs are introduced by Rosenfeld [8]. Rosenfeld has obtained the
fuzzy analogue of several graph theoretic concepts like paths, cycles, trees
and connectedness and established some of the properties [8]. Bhattacharya
has introduced fuzzy groups and metric notion in fuzzy graphs. Bhutani and
Rosenfeld have introduced the concept of strong arcs [1] and geodesic distance
in fuzzy graphs [2]. The definition of a geodesic basis, median are also given
by the same author. Several important works on fuzzy graphs can be found in [9]. Some metric aspects using the \(\mu \)-distance is defined by Rosenfeld [8] and further studied by Sunitha and Vijayakumar [11]. In this paper, geodetic number and geodetic number of fuzzy graphs based on \(\mu \)-distance is introduced.

2 Preliminaries

The following definitions are from [8], [1], [7], [6] and [10].

A fuzzy graph is denoted by \(G : (V, \sigma, \mu) \) where \(V \) is a vertex set, \(\sigma \) is a fuzzy subset of \(V \) and \(\mu \) is a fuzzy relation on \(\sigma \), i.e., \(\mu(x, y) \leq \sigma(x) \land \sigma(y) \) \(\forall x, y \in V \). We consider fuzzy graph \(G \) with no loops and assume that \(V \) is finite and nonempty, \(\mu \) is reflexive (i.e., \(\mu(x, x) = \sigma(x), \forall x \)) and symmetric(i.e., \(\mu(x, y) = \mu(y, x), \forall (x, y) \)). In all the examples \(\sigma \) is chosen suitably. Also, we denote the underlying crisp graph by \(G^* : (\sigma^*, \mu^*) \) where \(\sigma^* = \{ u \in V : \sigma(u) > 0 \} \) and \(\mu^* = \{ (u, v) \in V \times V : \mu(u, v) > 0 \} \). The fuzzy graph \(H : (\tau, \nu) \) is said to be a partial fuzzy subgraph of \(G : (\sigma, \mu) \) if \(\nu \subseteq \mu \) and \(\tau \subseteq \sigma \). Let \(P \subseteq V \), the fuzzy graph \(H : (P, \tau, \nu) \) is called a fuzzy subgraph of \(G : (V, \sigma, \mu) \) induced by \(P \) if \(\tau(x) = \sigma(x) \forall x \in P \) and \(\nu(x, y) = \mu(x, y) \forall x, y \in P \). \(G : (V, \sigma, \mu) \) is called trivial if \(|\sigma^*| = 1\).

A path \(P \) of length \(n \) is a sequence of distinct nodes \(u_0, u_1, ..., u_n \) such that \(\mu(u_{i-1}, u_i) > 0, \forall i = 1, 2, ..., n \) and the degree of membership of a weakest arc is defined as its strength. If \(u_0 = u_n \) and \(n \geq 3 \) then \(P \) is called a cycle and \(P \) is called a fuzzy cycle, if it contains more than one weakest arc. The strength of a cycle is the strength of the weakest arc in it. The strength of connectedness between two nodes \(x \) and \(y \) is defined as the maximum of the strength of all paths between \(x \) and \(y \) and is denoted by \(CONN_G(x, y) \). A fuzzy graph \(G : (\sigma, \mu) \) is connected if for every \(x, y \) in \(\sigma^* \), \(CONN_G(x, y) > 0 \). A fuzzy graph \(G \) is said to be complete if \(\mu(u, v) = \sigma(u) \land \sigma(v), \forall u, v \in \sigma^* \). A connected fuzzy graph \(G : (\sigma, \mu) \) is a fuzzy tree if it has a fuzzy spanning subgraph \(F : (\sigma, \nu) \), which is a tree where for all arcs \((x, y) \) not in \(F \) there exists a path from \(x \) to \(y \) in \(F \) whose strength is more than \(\mu(x, y) \). An arc of a fuzzy graph is called strong if its weight is at least as great as the connectedness of its end nodes when it is deleted. Depending on \(CONN_G(x, y) \) of an arc \((x, y) \) in a fuzzy graph \(G \), Sunil Mathew and M.S.Sunitha [10] defined three different types of arcs. Note that \(CONN_{G^*-(x,y)}(x, y) \) is the the strength of connectedness between \(x \) and \(y \) in the fuzzy graph obtained from \(G \) by deleting the arc \((x, y) \). An arc \((x, y) \) in \(G \) is \(\alpha- \) strong if \(\mu(x, y) > CONN_{G^*-(x,y)}(x, y) \). An arc \((x, y) \) in \(G \) is \(\beta- \) strong if \(\mu(x, y) = CONN_{G^*-(x,y)}(x, y) \). An arc \((x, y) \) in \(G \) is \(\delta- \) arc if \(\mu(x, y) < CONN_{G^*-(x,y)}(x, y) \). A fuzzy cut node \(w \) is a node in \(G \) whose removal reduces the strength of connectedness between some pair of nodes in
G. If $\mu(u, v) > 0$, then u and v are called neighbors. Also v is called strong neighbor of u if arc (u,v) is strong. A node z is a fuzzy end node of G if it has exactly one strong neighbor in G.

For any path $P: u_0, u_1, ..., u_n$ the μ-length of P, $l(P)$ is defined as the sum of reciprocals of arc weights. That is $l(P) = \sum^{n}_{i=1} \frac{1}{\mu(u_{i-1}, u_i)}$. If $n = 0$ define $l(P) = 0$, and μ-distance $d_\mu(u, v)$ is the smallest μ-length of any $u-v$ path.

3 μ- Geodesics in Fuzzy Graph

In crisp graph the concept of geodesic and geodesic iteration number are discussed in [3] and [4]. Here we are extending these ideas to fuzzy graphs. Depending on μ-distance we define μ-geodesic, μ-eccentricity, μ-radius, μ-diameter, μ-center, μ-geodetic closure and μ-geodetic iteration number as follows.

Definition 3.1 Any path P from x to y with smallest μ-length is called μ-geodesic from x to y. i.e., Any path P from x to y whose μ-length is $d_\mu(u, v)$ is called μ-geodesic from x to y.

Definition 3.2 The μ-eccentricity $e_\mu(u)$ of a node u in G is given by

$$ e_\mu(u) = \text{Max}_{v \in V} d_\mu(u, v) $$

The minimum μ-eccentricity among the vertices of G is its μ-radius denoted by $r_\mu(G)$.

$$ r_\mu(G) = \text{Min}_{v \in V} e_\mu(u) $$

A node v is a μ-central node if,

$$ e_\mu(v) = r_\mu(G) $$

Let $C_\mu(G)$ be the set of all μ-central nodes of G. Then the fuzzy subgraph induced by $C_\mu(G)$ denoted by $< C_\mu(G) >$ is called μ-center of G.

The maximum μ-eccentricity among the vertices of G is its μ-diameter denoted by $d_\mu(G)$.

$$ d_\mu(G) = \text{Max}_{v \in V} e_\mu(u) $$

A node v is a μ-peripheral node or μ-diametral node if,
Example 3.3 Consider the fuzzy graph given in Fig.1.

Here $\mu-$ peripheral nodes are u and y.
$\mu-$ central nodes are x and v.

$r_\mu(G) = 2.68$.
$d_\mu(G) = 4.21$.

Definition 3.4 Let S be a set of nodes of a connected fuzzy graph $G : (V, \sigma, \mu)$. Then the $\mu-$ geodetic closure of S is the set of all nodes that lie on $\mu-$ geodesics between nodes of S denoted by (S_μ).

Example 3.5 Consider the fuzzy graph given in Fig.1.

If $S = \{u, w\}$.
Then $(S_\mu) = \{u, v, w\}$.
Similarly if $S = \{u, x, y\}$.
Then $(S_\mu) = \{u, v, w, x, y\}$.

4 $\mu-$ Geodetic Iteration Number for a Fuzzy Graph $[\mu-\text{gin}(G)]$

Let S be a set of nodes of a connected fuzzy graph $G : (V, \sigma, \mu)$. Let $S_{\mu}^1, S_{\mu}^2, ...$, are $\mu-$ closures where $S_{\mu}^1 = (S_\mu), S_{\mu}^2 = (S_{\mu}^1) = ((S_\mu))$ etc. Since we consider only finite fuzzy graphs, the process of taking closures must terminate with some smallest n such that $S_{\mu}^n = S_{\mu}^{n-1}$. That is repeat the closure operation until the stability occurs.

Definition 4.1 The smallest value of n so that $S_{\mu}^n = S_{\mu}^{n-1}$ is called $\mu-$ geodetic iteration number of S denoted by $\mu-\text{gin}(S)$. Now $\mu-\text{gin}(G)$ is the maximum value of $\mu-\text{gin}(S)$, for all $S \subset V(G)$.
Remark 4.2 For a trivial fuzzy graph G, $\mu - \text{gin}(G) = 0$.

Example 4.3 Consider the fuzzy graph given in Fig.1.

Taking $S = \{u, x, y\}$
$S_1^1 = (S_\mu) = \{u, x, v, w, y\}$
$S_\mu^2 = S_1^1$
Therefore
$\mu - \text{gin}(S) = 2$.
It can be verified that maximum value of $\mu - \text{gin}(S) = 2$ for all $S \subset V(G)$.
Therefore
$\mu - \text{gin}(G) = 2$.

Theorem 4.4 Let $G : (V, \sigma, \mu)$ be a connected fuzzy graph on n nodes such that each pair of nodes is joined by a strong arc. Then

$$d_\mu(u, v) = \frac{1}{\mu(u,v)}.$$

Also

$$d_\mu(u, v) = \frac{1}{\text{CONN}_G(u,v)}.$$

Proof
Given that all arcs in G are strong. Thus G contain only $\alpha-$ strong and $\beta-$ strong arcs. Therefore we have two cases.

Case.1
Let (u, v) be an arc in G which is $\beta-$ strong. Consider all other $u - v$ paths in G. Then the weight of the weakest arc in any $u - v$ path is $\mu(u, v)$. Therefore
$\text{CONN}_G(u, v) = \mu(u, v)$. (By definition of $\beta-$ strong)

Now let $P : u = u_0, u_1, ..., u_n = v$ be such a $u - v$ path. Then the $\mu-$ length of the path P is

$$l(P) = \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)} > \frac{1}{\mu(u, v)}$$

Also $\mu-$distance $d_\mu(u, v)$ is the smallest $\mu-$length of any $u - v$ path. Therefore

$$d_\mu(u, v) = \frac{1}{\mu(u,v)}.$$

Case.2
Let (u, v) be an arc in G which is $\alpha-$ strong. Then
$\text{CONN}_G(u, v) = \mu(u, v)$. (By definition of $\alpha-$ strong).
Consider all other $u-v$ paths in P. Let $P : u = u_0, u_1, ..., u_n = v$ be such a $u - v$ path and (x, y) be an arc in G. Then
\[\mu(x, y) < \mu(u, v) \quad \text{(By definition of} \alpha-\text{strong)} \]

i.e.,

\[\frac{1}{\mu(x, y)} > \frac{1}{\mu(u, v)} \]

Hence

\[l(P) = \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)} > \frac{1}{\mu(u, v)} \]

Also \(\mu- \) distance \(d_\mu(u, v) \) is the smallest \(\mu- \) length of any \(u-v \) path. Therefore

\[d_\mu(u, v) = \frac{1}{\mu(u, v)} \]

If the arc is \(\alpha- \) strong or \(\beta- \) strong, then

\[\mu(u, v) = \text{CONN}_{G}(u, v) \ [10] \]

Therefore

\[d_\mu(u, v) = \frac{1}{\text{CONN}_{G}(u, v)}. \]

Hence the proof.

Corollary 4.5 For a complete fuzzy graph \(G : (V, \sigma, \mu) \) on \(n \) nodes

\[d_\mu(u, v) = \frac{1}{\mu(u, v)}. \]

Remark 4.6 For a complete fuzzy graph \(G \), each arc is a \(\mu- \) geodesic between its end nodes. So when we consider any \(S \subseteq V(G) \), any pair of nodes in \(S \) is connected by a \(\mu- \) geodesic, i.e., no \(\mu- \) geodesic between a pair of nodes of \(S \) contains another node. So \(S_\mu^1 = (S_\mu) = S \). This is true for any \(S \subseteq V(G). \) Hence \(\mu- \) gin\((G) = 1 \) for a complete fuzzy graph \(G \).

Remark 4.7 The converse of Theorem 4.4 need not be true. That is if \(G : (V, \sigma, \mu) \) is a connected fuzzy graph with \(d_\mu(u, v) = \frac{1}{\mu(u, v)} \) for each arc \((u, v) \)

\(\forall u, v \in V(G) \), it does not imply that each pair of nodes in \(G \) is joined by a strong arc.

Example 4.8 Consider the fuzzy graph given in Fig.2.
Here for each arc \((u,v)\) we have \(d_\mu(u,v) = \frac{1}{\mu(u,v)}\). But arc \((u,v)\) and arc \((u,w)\) are not strong arcs.

5 \(\mu\)– Geodetic Number of a Fuzzy Graph \([\mu–gn(G)]\)

Depending on \(\mu\)–distance we define \(\mu\)–convex set, \(\mu\)–geodetic cover, \(\mu\)–geodetic basis, and \(\mu\)–geodetic number of a fuzzy graph as follows. Then a sufficient condition for a fuzzy graph to have its node set as \(\mu\)–geodetic basis is obtained.

Definition 5.1 A set \(S\) is \(\mu\)–convex if all nodes on any \(\mu\)–geodesic between two of its nodes are contained in \(S\). Thus \(S\) is convex if \((S_\mu) = S\).

Example 5.2 Consider the fuzzy graph given in Fig.1.

If \(S = \{u, v, w\}\), then \((S_\mu) = S\). Therefore \(S\) is a \(\mu\)–convex set.

Definition 5.3 A \(\mu\)–geodetic cover of \(G\) is a set \(S \subseteq V(G)\) such that every node of \(G\) is contained in a \(\mu\)–geodesic joining some pair of nodes in \(S\).

Example 5.4 Consider the fuzzy graph given in Fig.1.
If \(S = \{u, x, y\}\).
Then \((S_\mu) = \{u, w, x, v, y\} = V(G)\).
Therefore \(S\) is a \(\mu\)–geodetic cover.

Consider the fuzzy graph given in Fig.2.
If \(S = \{u, v, x, w\}\).
Then \((S_\mu) = \{u, v, x, w\} = V(G)\).
Therefore \(S\) is a \(\mu\)–geodetic cover.

Proposition 5.5 A connected fuzzy graph has at least one \(\mu\)–geodetic cover.

Definition 5.6 The \(\mu\)–geodetic number of \(G\) denoted by \(\mu–gn(G)\), is the minimum order of its \(\mu\)–geodetic covers and any cover of order \(\mu–gn(G)\) is a \(\mu\)–geodetic basis.
Example 5.7 Consider the fuzzy graph given in Fig.1.

Here \(\{u, x, y\} \) is a \(\mu \)-geodetic basis and \(\mu - gn(G) = 3 \).

Definition 5.8 For a \(\mu \)-geodetic cover \(S \), a node in \(G \setminus S \) is called a \(\mu \)-check node.

Remark 5.9 In crisp graphs [3] the unique geodetic basis of a tree consists of all its end nodes. But for a fuzzy tree \(\mu \)-geodetic basis need not be the set of fuzzy end nodes of \(G \).

Example 5.10 Consider the fuzzy graph given in Fig.3.

Here fuzzy end nodes are \(v \) and \(w \). But \(\{v, w\} \) is not a \(\mu \)-geodetic cover, and \(\mu \)-geodetic basis is \(\{v, w, u\} \).

Theorem 5.11 Let \(G : (V, \sigma, \mu) \) be a connected fuzzy graph on \(n \) nodes such that each pair of nodes in \(G \) is joined by a strong arc. Then \(\mu \)-geodetic number, \(\mu - gn(G) = n \).

Proof

Given \(G : (V, \sigma, \mu) \) be a connected fuzzy graph on \(n \) nodes such that each pair of nodes in \(G \) is joined by a strong arc. Then

\[
d_{\mu}(u, v) = \frac{1}{\text{CONN}_{\mu}(u, v)}
\]

for each arc \((u, v)\). [by Theorem 4.4]

Therefore no node lie on a \(\mu \)-geodesic between any two other nodes. Hence \(\mu \)-geodetic basis consists of all nodes of \(G \). Thus \(\mu - gn(G) = n \).

Corollary 5.12 For a complete fuzzy graph \(G \), \(\mu - gn(G) = n \).

Remark 5.13 Converse of Theorem 5.11 need not be true. If \(G : (V, \sigma, \mu) \) is a connected fuzzy graph on \(n \) nodes with \(\mu - gn(G) = n \), it does not imply that each pair of nodes in \(G \) is joined by a strong arc.

Consider the fuzzy graph given in Fig.2.

\(\mu - gn(G) = 4 \), But arc \((u, v)\) and arc \((u, w)\) are not strong arcs.
Theorem 5.14 For any connected fuzzy graph G, $\mu-\text{gn}(G)=2$ if and only if there exists $\mu-$peripheral nodes u and v such that every node of G is on a $\mu-$peripheral path joining u and v. Also let $P: u = u_0, u_1, u_2, ..., u_n = v$ be a $\mu-$peripheral path then

$$d_{\mu}(u,v) = d_{\mu}(u_0,u_1) + d_{\mu}(u_1,u_2) + d_{\mu}(u_2,u_3) + ... + d_{\mu}(u_{n-1},u_n).$$

Proof

Let u and v be such that each node of G is on $\mu-$peripheral path P joining u and v. Since G is nontrivial, $\mu-\text{gn}(G) \geq 2$. Since P is a $\mu-$geodesic joining u and v, each node of G is on a $\mu-$geodesic between u and v. So $S=\{u,v\}$ is a $\mu-$geodetic basis and $\mu-\text{gn}(G)=2$.

Conversely let $\mu-\text{gn}(G)=2$ and $S=\{u,v\}$ be a $\mu-$geodetic basis for G. To Prove that $d_{\mu}(G) = d_{\mu}(u,v)$.

Assume $d_{\mu}(u,v) < d_{\mu}(G)$.

Then \exists $\mu-$peripheral nodes s and t such that s and t belong to distinct $\mu-$geodesics joining u and v and $d_{\mu}(s,t) = d_{\mu}(G)$.

Then, $d_{\mu}(u,v) = d_{\mu}(u,s) + d_{\mu}(s,v)$ (1)

$$d_{\mu}(u,v) = d_{\mu}(u,t) + d_{\mu}(t,v)$$ (2)

$$d_{\mu}(s,t) \leq d_{\mu}(s,u) + d_{\mu}(u,t)$$ (3)

$$d_{\mu}(s,t) \leq d_{\mu}(s,v) + d_{\mu}(v,t)$$ (4)

Since $d_{\mu}(u,v) < d_{\mu}(s,t)$

(3) \implies $d_{\mu}(u,v) < d_{\mu}(s,u) + d_{\mu}(u,t)$ and by (1)

$d_{\mu}(s,v) < d_{\mu}(u,t)$ and from (4)

$d_{\mu}(s,t) < d_{\mu}(u,t) + d_{\mu}(v,t) = d_{\mu}(u,v)$ by (1), which is a contradiction. Thus u and v must be $\mu-$peripheral nodes.

Next Given $P: u = u_0, u_1, u_2, ..., u_n = v$ be a $\mu-$peripheral path. Since every node of G is on $\mu-$peripheral path,

$$d_{\mu}(u_i-1, u_i) = \frac{1}{\mu(u_{i-1},u_i)}.$$

Therefore $d_{\mu}(u,v) = \min \{ \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1},u_i)} \}.

= \sum_{i=1}^{n} d_{\mu}(u_{i-1}, u_i).

Therefore

$$d_{\mu}(u,v) = d_{\mu}(u_0,u_1) + d_{\mu}(u_1,u_2) + d_{\mu}(u_2,u_3) + ... + d_{\mu}(u_{n-1}, u_n).$$

Hence the proof.
Remark 5.15 In crisp graph G, if v is a node that is farthest from u, then v is not a cut node of G [5]. But in fuzzy graphs, if v is a node that is farthest from u in G, then v can be a fuzzy cut node of G. That is in fuzzy graphs fuzzy cut node can be μ–eccentric node and μ–peripheral node.

Example 5.16 Consider the fuzzy graph given in Fig.4.

\[\text{Fig.4} \]

In Fig.4 v is a fuzzy cut node and v is an μ–eccentric node of w as well. Also v is a μ–peripheral node.

6 μ–Convex Hull of a Fuzzy Graph

In this section μ–convex hull and μ–hull number of a fuzzy graph with respect to μ–distance is defined.

Definition 6.1 Let $S \subseteq V(G)$ and repeatedly take its closures $S^1_\mu = (S_\mu), S^2_\mu = (S^1_\mu) = ((S_\mu))$ etc. Since we consider only fuzzy graphs with finite number of nodes, this process of taking closures must terminate with some smallest n such that $S^n_\mu = S^{n-1}_\mu$. The resulting set is called μ–convex hull of S in G, and is denoted by $[S_\mu]$.

Example 6.2 Consider the fuzzy graph given in Fig.1.

Here let $S = \{u, x, y\}$, which is not μ–convex, and μ–convex hull of S in G, $[S_\mu] = \{u, v, w, x, y\}$.

Remark 6.3 It is clear from the definition that a subset $S \subseteq V(G)$ is μ–convex if and only if $[S_\mu] = S$. Also $[S_\mu]$ is the smallest μ–convex set containing S.

Definition 6.4 The minimum order of the set $S \subseteq V(G)$ such that $[S_\mu] = V(G)$ is called the μ–hull number of G denoted by $h_\mu(G)$ and such a set is called minimum μ–hull set of G.
Example 6.5 Consider the fuzzy graph given in Fig.1.

\[S = \{u, x, y\} \]
\[[S_\mu] = \{u, v, w, x, y\} = \text{V}(G) \]
\[S = \{u, x, y\} \text{ is a minimum } \mu-\text{hull set.} \]
\[h_\mu(G) = 3. \]

Remark 6.6 Let \(G : (V, \sigma, \mu) \) be a connected fuzzy graph with \(G^* \) complete and all arcs in \(G \) are strong. Then \(h_\mu(G) = n \).

Proposition 6.7 For a connected fuzzy graph \(G : (V, \sigma, \mu) \), \(2 \leq h_\mu(G) \leq n \), where \(n \) is the number of nodes in \(G \).

7 Conclusion

In this paper, we introduced \(\mu \)-geodesic, \(\mu \)-eccentricity, \(\mu \)-radius, \(\mu \)-diameter, \(\mu \)-center, \(\mu \)-geodetic closure, \(\mu \)-geodetic iteration number, \(\mu \)-convex set, \(\mu \)-geodetic cover, \(\mu \)-geodetic basis, \(\mu \)-geodetic number, and \(\mu \)-convex hull of a fuzzy graph and studied some properties.

References

