Local Existence of the Solution for Stochastic Functional Differential Equations with Infinite Delay

Le Anh Minh¹, Nguyen Xuan Thuan² and Hoang Nam³

¹, ², ³Department of Mathematical Analysis
Hong Duc University, Vietnam
¹E-mail: leanhminh@hdu.edu.vn
²E-mail: thuannx7@gmail.com
³E-mail: hoangnam@hdu.edu.vn

(Received: 28-6-14 / Accepted: 14-8-14)

Abstract

In this paper we present and prove the existence of solution for stochastic functional differential equations with infinite delay in a separable Hilbert space respects to a local Lipchitz condition.

Keywords: Local existence, stochastic functional differential equation, local Lipchitz condition, infinite delay.

1 Introduction

a class of stochastic functional differential equations in a separable Hilbert space H which has the form:

\[
\begin{cases}
 dX(t) = AX(t)dt + f(t, X_t)dt + g(t, X_t)dW(t), & t \geq 0 \\
 X(t) = \varphi(t), & t \leq 0
\end{cases}
\]

where $A : D(A) \subset H \to H$ is a linear (possibly unbound) operator, φ is in the phase space B, and X_t is defined as

$$X_t(\theta) = X(t + \theta), \quad -\infty < \theta \leq 0,$$

$f : \mathbb{R}_+ \times B \to H$, $g : \mathbb{R}_+ \times B \to L_2^0$ are continuous functions.

In this paper, we present the condition for the local existence of solutions for (1)
2 Preliminaries

2.1 Basic Concepts of Stochastic Analysis

Let $\Omega, \mathcal{F}, \mathbb{P}$ be a complete probability space with a normal filtration $\{\mathcal{F}_t\}_{t \geq 0}$ i.e. a right continuous, increasing family of sub σ-fields of \mathcal{F} ($\mathcal{F}_t \subset \mathcal{F}_s \subset \mathcal{F}$, for all $0 \leq t < s < \infty$).

Definition 2.1. [2] An H-valued random variable is an \mathcal{F}-measurable function $X : \Omega \rightarrow H$ and a collection of random variables $X = \{X(t, \omega) : \Omega \rightarrow H, 0 \leq t \leq T\}$ is called a stochastic process.

Note. In this paper, we write $X(t)$ instead of $X(t, \omega)$.

Definition 2.2. [2] A stochastic process X is said to be adapted if for every t, $X(t)$ is \mathcal{F}_t-measurable.

Let K be a separable Hilbert space, Q be a nonnegative definite symmetric trace-class operator on K, and $\{e_n\}_{n=1}^\infty$ be an orthonormal basis in K, and let the corresponding eigenvalues of Q be λ_n i.e $Qe_n = \lambda_n e_n$, for $n = 1, 2, \ldots$. Let $w_n(t)$ be a sequence of real valued independent Brownian motions defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 2.3. [2] The process

$$W(t) = \sum_{n=1}^\infty \sqrt{\lambda_n} w_n(t) e_n$$

(2)

is called a Q-Weiner process in K.

Let $K_Q = Q^{1/2}K$ is a Hilbert space equipped with the norm

$$||u||_{K_Q} = ||Q^{1/2}u||_K, \ u \in K_Q$$

Clearly, K_Q is separable with complete orthonormal basis $\{\sqrt{\lambda_n} e_n\}_{n=1}^\infty$.

Now, let $L_Q^0 = L^0_2(K_Q, H)$ be the space of all Hilbert-Schmidt operators from K_Q to H. Then L^0_2 is a separable Hilbert space with norm

$$||L||_{L^0_2} = \sqrt{tr((LQ^{1/2})(LQ^{1/2})^*)}, \ L \in L^0_2.$$

Remark 2.4. For $\kappa \in B(K, H)$ this norm reduce to

$$||\kappa||_{L^0_2} = \sqrt{tr(\kappa Q \kappa^*)}$$
Now, for any $T \geq 0$, if $\Phi = \{\Phi(t), t \in [0, T]\}$ be an \mathcal{F}_t-adapted, L^0_2-valued process such that

$$E \left(\int_0^T tr \left((\Phi Q^{1/2}) (\Phi Q^{1/2})^* \right) ds \right) < \infty$$

then the stochastic integral $\int_0^t \Phi(s)dW(s) \in H$ be well defined by

$$\int_0^t \Phi(s)dW(s) = \lim_{n \to \infty} \sum_{i=1}^{n} \int_0^t \Phi(s) \sqrt{\lambda_i} e_i dw_i(s) \quad (3)$$

2.2 Phase Space

Let \mathcal{E} be a Banach space, we assume that the phase space $(\mathcal{B}, ||.||_{\mathcal{B}})$ is a seminormed linear space of functions mapping $(-\infty, 0]$ into \mathcal{E} satisfying the following fundamental axioms

(A1) For $a > 0$, if X is a function mapping $(-\infty, a]$ into \mathcal{E}, such that $X \in \mathcal{B}$ and X is continuous on $[0, a]$, then for every $t \in [0, a]$ the following conditions hold:

(i) X_t is in \mathcal{B};

(ii) $||X(t)|| \leq \mathcal{H}||X_t||_{\mathcal{B}}$;

(iii) $||X_t||_{\mathcal{B}} \leq K(t) \sup_{s \in [0, t]} ||X(s)|| + M(t)||X_0||_{\mathcal{B}}$;

where \mathcal{H} is a possitive constant, $K, M : [0, \infty) \to [0, \infty)$, K is continuous, M is locally bounded, and they are independent of X.

(A2) For the function X in (A1), X_t is a \mathcal{B}-valued continuous function for t in $[0, a]$.

(A3) The space \mathcal{B} is complete.

Example 2.5. We recall some useful phase space \mathcal{B}.

(i) Let BC be the space of bounded continuous functions from $(-\infty, 0]$ to \mathcal{E}, we define

$$C^0 := \{ \varphi \in BC : \lim_{\theta \to -\infty} \varphi(\theta) = 0 \}$$

and

$$C^\infty := \{ \varphi \in BC : \lim_{\theta \to -\infty} \varphi(\theta) \text{ exists in } \mathcal{E} \}$$
endowed with the norm
\[||\varphi||_B = \sup_{\theta \in (-\infty,0]} ||\varphi(\theta)|| \]

then \(C^0, C^\infty \) satisfies \((A_1) - (A_3)\). However, \(BC \) satisfies \((A_1), (A_3) \) but \((A_2) \) is not satisfied.

(ii) For any real constant \(\gamma \), we define the functional spaces \(C_\gamma \) by
\[C_\gamma = \left\{ \varphi \in C((-\infty,0], X) : \lim_{\theta \to -\infty} e^{\gamma \theta} \varphi(\theta) \text{ exists in } E \right\} \]
endowed with the norm
\[||\varphi|| = \sup_{\theta \in (-\infty,0]} e^{\gamma \theta} ||\varphi(\theta)||. \]

Then conditions \((A_1) - (A_3)\) are satisfied in \(C_\gamma \).

We prefer the reader to [3] for more comprehensive properties of phase space.

3 Main Results

Definition 3.1. [1] For \(\tau > 0 \), a stochastic process \(X \) is said to be a strong solution of \((1)\) on \((-\infty, \tau]\) if the following conditions holds

a) \(X(t) \) is \(\mathcal{F}_t \) - adapted for all \(0 \leq t \leq \tau \);

b) \(X(t) \) is almost surely continuous in \(t \);

c) for all \(0 \leq t \leq \tau \), \(X(t) \in D(A) \), \(\int_0^t ||AX(s)|| ds < +\infty \) almost surely, and

\[X(t) = X(0) + \int_0^t AX(s)ds + \int_0^t f(s,X_s)ds + \int_0^t g(s,X_s)dW(s) \quad (4) \]

with probability one;

d) \(X(t) = \varphi(t) \) with \(-\infty < t \leq 0\) almost surely.

Definition 3.2. [1] For \(\tau > 0 \), a stochastic process \(X \) is said to be a mild solution of \((1)\) on \((-\infty, \tau]\) if the following conditions holds

a) \(X(t) \) is \(\mathcal{F}_t \) - adapted for all \(0 \leq t \leq \tau \);
b) \(X(t) \) is almost surely continuous in \(t \);

c) for all \(0 \leq t \leq \tau \), \(X(t) \) is measurable, \(\int_0^t ||X(s)||^2ds < +\infty \) almost surely, and

\[
X(t) = T(t)\varphi(0) + \int_0^t T(t-s)f(s,X_s)ds + \int_0^t T(t-s)g(s,X_s)dW(s) \tag{5}
\]

with probability one;

d) \(X(t) = \varphi(t) \) with \(-\infty < t \leq 0 \) almost surely.

Remark 3.3. In [4], we proved that if \(A \) generates a strongly semi-group \((T(t))_{t \geq 0} \) in \(H \) and \(\varphi(0) \in \mathbb{D}(A) \) then (5) can be written as follow

\[
X(t) = T(t)\varphi(0) + \int_0^t T(t-s)f(s,X_s)ds + \int_0^t T(t-s)g(s,X_s)dW(s)
\]

This means a strong solution to be a mild one.

We assume that

\((M_1)\) \(A \) generates a strongly semigroup \((T(t))_{t \geq 0} \) in \(H \).

\((M_2)\) \(f(t,x) \) and \(g(t,x) \) satisfy local Lipchitz conditions respects to second argument i.e. for any \(\alpha > 0 \) be a given real number, there exists \(C_1(\alpha), C_2(\alpha) > 0 \) such that

\[
||f(t,x) - f(t,y)|| \leq C_1(\alpha)||x - y||_B,
\]

\[
||g(t,x) - g(t,y)||_{L^2} \leq C_2(\alpha)||x - y||_B
\]

for all \(t \geq 0 \), \(x, y \in B \) which satisfy \(||x||_B, ||y||_B \leq \alpha \).

Since Remark 3.3 we have our main result on the local existence of solution for (1).

Theorem 3.4. If \((M_1)\) and \((M_2)\) are satisfied then (1) has only local mild solution.

Proof. Let \(T > 0 \) be a fixed given real number. Since \(f, g \) satisfy Local Lipchitz condition then for each \(\alpha > 0 \) there exists \(\varphi \in B \) \((||\varphi||_B \leq \alpha) \), such that

\[
||f(t,\varphi)|| \leq C_1(\alpha)||\varphi||_B + ||f(t,0)|| \leq \alpha C_1(\alpha) + \sup_{s \in [0,T]} ||f(s,0)|| \leq C,
\]

\[
||g(t,\varphi)|| \leq C_2(\alpha)||\varphi||_B + ||g(t,0)|| \leq \alpha C_2(\alpha) + \sup_{s \in [0,T]} ||g(s,0)|| \leq C.
\]
where
\[
C = \max \left\{ \alpha C_1(\alpha) + \sup_{s \in [0,T]} ||f(s,0)||, \alpha C_2(\alpha) + \sup_{s \in [0,T]} ||g(s,0)|| \right\}
\]

For \(\varphi \in \mathcal{B} \), we chose \(\alpha = ||\varphi||_B + 1 \). Let \(C_{ad} \) be a spaces of all functions \(X \) which adapted with \(\{\mathcal{F}_t\}_{t \geq 0} \) such that \(X_0 \in \mathcal{B} \) and \(X : [0,T] \rightarrow H \) is continuous. \(C_{ad} \) is a Banach space with norm
\[
||X||_{ad} = ||X_0||_B + \max_{0 \leq t \leq T} \left(E||X(t)||^2 \right)^{1/2}
\]

Let \(Z \) be a closed subset of \(C_{ad} \) which is defined by
\[
Z = \{ X \in C_{ad} : X(s) = \varphi(s) \text{ for } s \in (-\infty,0] \text{ and } \sup_{0 \leq s \leq T} ||X(s) - \varphi(0)||_H \leq 1 \}
\]

Let \(U : Z \rightarrow Z \) be the operator defined by
\[
U(X)(t) = \begin{cases} T(t)\varphi(0) + \int_0^t T(t-s)f(s,X_s)ds + \int_0^t T(t-s)g(s,X_s)dW(s) & \text{for } t \in [0,T] \\ \varphi(t) & \text{for } t \leq 0 \end{cases}
\]

then \(U(Z) \subseteq Z \). Indeed,
\[
||U(X)(t) - \varphi(0)||_H^2 = E||U(X)(t) - \varphi(0)||^2
\]
\[
= E \left(\left\| T(t)\varphi(0) - \varphi(0) + \int_0^t T(t-s)f(s,X_s)ds + \int_0^t T(t-s)g(s,X_s)dW(s) \right\| \right)^2
\]
\[
\leq 3E||T(t)\varphi(0) - \varphi(0)||^2 + 3E \left\| \int_0^t T(t-s)f(s,X_s)ds \right\|^2
\]
\[
+ 3E \left\| \int_0^t T(t-s)g(s,X_s)dW(s) \right\|^2
\]
\[
\leq 3E||T(t)\varphi(0) - \varphi(0)||^2 + 3MT \int_0^t E||f(s,X_s)||^2 ds + 3M \int_0^t E||g(s,X_s)||_{L^2}^2 ds.
\]

Since \(||X(s) - \varphi(0)|| \leq 1 \) for \(s \in [0,T] \) and \(\alpha = ||\varphi||_B + 1 \) we have \(||X(s)|| \leq \alpha \), implies \(||X_s||_B \leq \alpha \) for \(s \in [0,T] \). Furthermore,
\[
||f(s,X_s)|| \leq C \quad \text{and} \quad ||g(t,X_s)|| \leq C.
\]
Hence
\[||U(X)(t) - \varphi(0)||^2_{H} \leq 3E||T(t)\varphi(0) - \varphi(0)||^2 + 3MC^2(T^2 + T) \]
where \(M = \sup_{0 \leq t \leq T} ||T(t)||^2 \). If \(T \) is small enough, such that
\[\sup_{0 \leq s \leq T} \{3E||T(s)\varphi(0) - \varphi(0)||^2 + 3MC^2(T^2 + T)\} \leq 1. \]
then for any \(t \in [0, T] \) we have \(||U(X)(t) - \varphi(0)|| \leq 1 \). In other words, \(U(Z) \subseteq Z \).

Now, for any \(X, Y \in Z \),
\[E||U(X)(t) - U(Y)(t)||^2 \]
\[= E||\int_{0}^{t} T(t-s)[f(s,X_s) - f(s,Y_s)]ds + \int_{0}^{t} T(t-s)[g(s,X_s) - g(s,Y_s)]dW(s)||^2 \]
\[\leq 2E \left(\int_{0}^{t} ||T(t-s)[f(s,X_s) - f(s,Y_s)]||ds \right)^2 \]
\[+ 2E \left(\int_{0}^{t} ||T(t-s)[g(s,X_s) - g(s,Y_s)]||dW(s) \right)^2 \]
\[\leq 2ME \left(\int_{0}^{t} ||f(s,X_s) - f(s,Y_s)||ds \right)^2 + 2ME \left(\int_{0}^{t} ||g(s,X_s) - g(s,Y_s)||dW(s) \right)^2 \]
\[\leq 2MC^2T \int_{0}^{t} E||X(s) - Y(s)||^2ds + 2MC^2 \int_{0}^{t} E||X(s) - Y(s)||^2ds \]
\[\leq 2MC^2(T + 1) \int_{0}^{t} E||X(s) - Y(s)||^2ds. \]

Now, for any \(a > 0 \), and \(t \in [0, T] \) we have
\[e^{-at}E||U(X)(t) - U(Y)(t)||^2 \]
\[\leq 2MC^2(T + 1) \int_{0}^{t} e^{-a(t-s)}e^{-as}E||X(s) - Y(s)||^2ds \]
\[\leq 2MC^2(T + 1) \max_{0 \leq s \leq t} e^{-as}E||X(s) - Y(s)||^2 \int_{0}^{t} e^{-a(t-s)}ds \]
\[\leq 2a^{-1}MC^2(T + 1) \max_{0 \leq s \leq t} e^{-as}E||X(s) - Y(s)||^2. \]
Therefore,

$$\max_{0 \leq t \leq T} e^{-at} E\|U(X)(t) - U(Y)(t)\|^2$$

$$\leq 2a^{-1}MC^2(T + 1) \max_{0 \leq s \leq T} e^{-as} E\|X(s) - Y(s)\|^2.$$

Finally, if $a > 2MC^2(T + 1)$ then U be a contraction mapping on Z respects to the norm

$$|||X||| = ||X_0||_B + \max_{0 \leq t \leq T} (e^{-at} E\|X(t)\|^2)^{1/2}, \quad X \in C_{ad}.$$

Since the norm $||.||$ is equivalent to the norm $||.||_{ad}$ then by applying fixed point theorem we conclude that (1) has only local mild solution.

\section{Conclusion}

Our main results is the Theorem 3.4, in which we present and prove the local existence of solution to a class of stochastic functional differential equations with infinite delay in a separable Hilbert space has the form (1). In this Theorem, we can replace Local Lipchitz condition (M_2) by some other conditions, for example

(M_3) For any $\alpha > 0$ be a given real number, there exists a constant $C(\alpha) > 0$ such that

$$||f(t, x) - f(t, y)|| + ||g(t, x) - g(t, y)||_{L_0^2} \leq C(\alpha)||x - y||_B$$

or

(M_3') For any $\alpha > 0$ be a given real number, there exists a constant $C(\alpha) > 0$ such that

$$\max\{||f(t, x) - f(t, y)||, ||g(t, x) - g(t, y)||_{L_0^2}\} \leq C(\alpha)||x - y||_B$$

Acknowledgements: The authors thank to all our coworkers for their valued comments.

References

