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ON DOMAIN-ROBUST PRECONDITIONERS FOR THE STOKES EQUATIONS ∗

MANFRED DOBROWOLSKI†

Abstract. It is well known that the LBB-constant of the Stokes equations and its discrete counterpart degenerate
on domains with high aspect ratio. For the solution of the corresponding linear system we propose two precondition-
ers that are proven to be independent of the aspect ratio of the underlying domain. Both preconditioners are based
on a refined approximation of the Schur complement using a coarser grid.
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1. Introduction. Let Ω ⊂ R
n, n ≥ 2, be a bounded domain. We are concerned with

linear systems arising from discretizations of the Stokes equations,

(1.1) −∆u + Dp = f in Ω, div u = g in Ω, u = 0 on∂Ω,

whereDi = ∂
∂xi

, D = (D1, . . . ,Dn)T . The vector fieldu = (u1, . . . , un) and the scalar
variablep can be regarded as the velocity and the pressure of a (very) viscous flow.

We use the standard Lebesgue and Sobolev spacesL2(Ω), H1(Ω) with norms

‖v‖2 =

∫

Ω

|v|2 dx, ‖v‖2
1 = ‖v‖2 + ‖Dv‖2.

The inner product inL2(Ω) is denoted by(·, ·). The spaceH1
0 (Ω) is the closure ofC∞

0 (Ω)
in H1(Ω). Moreover, we setX = H1

0 (Ω)n with norm|v|1 = ‖Dv‖ and

Y = L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

q dx = 0}.

The dual spaceX ′ of X is equipped with the norm

|f |−1 = sup
v∈X

f(v)

|v|1
.

Forf ∈ X ′ andg ∈ Y ′ = Y, the weak solution(u, p) ∈ X × Y of (1.1) is defined by

(Du,Dφ) − (div φ, p) = f(φ) ∀φ ∈ X,(1.2)

(div u, ψ) = (g, ψ) ∀ψ ∈ Y.(1.3)

The existence proof for the Stokes equations requires the so-called inf-sup- or LBB-
condition. For a large class of domains, it is proved in [3] that there exists a constant
L(Ω) > 0 which is the largest number such that

(1.4) L(Ω)‖q‖ ≤ sup
φ∈X

−(div φ, q)

|φ|1
= |Dq|−1 ∀q ∈ Y.

For a more elaborated proof of this inequality, see [11], and for an extension to John domains;
see [1]. An elementary proof which avoids the use of the theory of singular integrals is given
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in [5]. In [3] it is also proved that for domains with diameterR that are star-shaped with
respect to a ball of radiusr,

(1.5) L(Ω) ≥ c
( r

R

)n+1
.

In [7] it is shown that for stretched domains with aspect ratioa, we have the inequality
m/a ≤ L(Ω) ≤ M/a with m > 0. In particular, this result is true for plates and channels.
This result explains why most of the iterative methods for solving the linear system corre-
sponding to (1.2), (1.3) behave poorly on domains with high aspect ratio.

The aim of this paper is to improve the standard preconditioner for problem (1.2), (1.3),

(1.6) C−1 : X ′ × Y ′ → X × Y, C−1(f, g) =

[

Tf
g

]

,

where the inverse LaplacianT : X ′ → X is defined by

(1.7) (DTf,Dφ) = f(φ) ∀φ ∈ X.

By a simple energy estimate, it is easy to show that this preconditioner works in the con-
tinuous case and ish-independent for stable discretizations, but it depends onthe LBB-
constantL(Ω); see Section6. In order to overcome this difficulty, we define preconditioners
that use the LBB-condition only on the elements of a coarser mesh. Then the method does
not depend on the domainΩ and the constant in (1.5) is moderate for non-degenerate ele-
ments. The first preconditioner described in Section3 is the minimal modification of (1.6)
and improves the pressure values by solving a discrete Laplacian on a (very) coarse mesh.
An alternative is shown in Section5 for the standard stabilized finite element method. On an
arbitrary, not necessarily very coarse mesh, the Stokes equation is solved exactly or approxi-
mately with the aid of the same preconditioner.

Some modifications of the classical preconditioner (1.6) and the improved preconditioner
of Section5 are described and tested numerically in Section6.

As we have mentioned above, we believe that most of the known numerical methods
depend on the LBB-constantL(Ω), but it is difficult to prove this assertion since the methods
are usually tested only on the unit square or unit cube. The assertion is true for all methods
that are based on the Schur complement (see Section6) of the Stokes operator. This is also
numerically verified for the CG-method for the Schur complement in [8]. For other methods
of this type, we refer to [2, 10, 16, 18] and the literature cited there.

The situation is unclear for multigrid methods. Clearly, the standard convergence proof
is based on the LBB-constant. But in [13] it is explicitly stated that a multigrid method using
smoothed aggregation and the smoother of [4] is domain-robust. Since this method does not
fit into the framework of the present paper, further investigations of domain-robust multigrid
methods would be desirable.

In the context of domain decomposition methods, domain-robust methods are well known;
see [14] for the Stokes equations and [9] for almost incompressible elasticity.

2. The negative norm ofDq. Using integration by parts, it is easy to show forφ ∈ X
that‖div φ‖2 + ‖rotφ‖2 = |φ|21 and hence from (1.4) that

(2.1) |Dq|−1 ≤ sup
φ∈X

‖q‖ ‖div φ‖

|φ|1
≤ ‖q‖.

From a simple variational analysis, we can conclude that thesup in (1.4) is attained at
w = T (Dq), whereT is the inverse Laplacian from (1.7), and

(2.2) |Dq|−1 =
−(div w, q)

|w|1
= |w|1.



ETNA
Kent State University 

http://etna.math.kent.edu

62 M. DOBROWOLSKI

LEMMA 2.1. If Ωi, i = 1, . . . , I, are disjoint open subsets ofΩ, then

I
∑

i=1

‖Dq‖2
−1;Ωi

≤ ‖Dq‖2
−1;Ω ∀q ∈ Y.

Proof. Let wi ∈ X(Ωi) andw ∈ X be the solutions of the problems

(Dwi,Dφ)Ωi
= −(div φ, q)Ωi

∀φ ∈ X(Ωi), (Dw,Dφ) = −(div φ, q) ∀φ ∈ X.

Using (2.2) and extending the functionswi by 0, we obtain

I
∑

i=1

|Dq|2−1;Ωi
=

I
∑

i=1

|wi|
2
1;Ωi

= −

I
∑

i=1

∫

Ωi

q div wi dx =

I
∑

i=1

∫

Ωi

DwDwi dx

≤
1

2
|w|21 +

1

2

I
∑

i=1

|wi|
2
1;Ωi

=
1

2
|Dq|2−1 +

1

2

I
∑

i=1

|Dq|2−1;Ωi
.

3. A model preconditioner. In this section, we construct a domain-robust precondi-
tioner for the continuous Stokes equations. In view of the fact that only energy estimates are
used, the preconditioner can easily be extended to conforming finite element approximations;
see [12]. This will be explained in detail at the end of this section in Remark3.6.

The preconditioner is described for dimensionn = 3. Let Ω be a bounded polyhedral
domain and letΠH be a subdivision ofΩ into closed polyhedral elementsΛH of diame-
terH ∼ 1. In the following, the generic constantc is allowed to depend onH. It is assumed
that the intersection of two elements is void or contains a common point, edge or face. Let
YH ⊂ Y be the space of piecewise constant functions on the subdivision ΠH . The L2-
projectionQd

H : Y → YH is defined by

Qd
Hq(x) = µ(ΛH)−1

∫

ΛH

q(y) dy, x ∈ int ΛH .

Let FH = {ΓH} be the set of interior faces. To each faceΓH we fix a normal direction
ν = ν(ΓH) and denote the neighboring elements byΛ1,Λ2. We define the bilinear form
(·, ·)1,H : YH × YH → R by

(qH , ψH)1,H =
∑

ΓH∈FH

µ(ΓH)[qH ]ΓH
[ψH ]ΓH

,

where

[qH ]ΓH
= qH |Λ2

− qH |Λ1

denotes the “jump” ofqH from Λ1 to Λ2. Moreover, let us define the corresponding norm
| · |1,H onXH and the operator−∆H : YH → YH by

|qH |21,H = (qH , qH)1,H , (−∆HqH , ψH) = (qH , ψH)1,H ∀ψH ∈ YH .

The inverse of−∆H is denoted byTH .
Note that on a subdivision ofΩ into unit cubes, the stencil of∆H coincides with the

standard7-point finite difference stencil of the discrete Laplacian.
Define the operatorC : X × Y → X ′ × Y ′ by

C(v, q) =

[

−∆v
q − Qd

Hq − ∆HQd
Hq

]
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with inverseC−1 : X ′ × Y ′ → X × Y

C−1(f, g) =

[

Tf
g − Qd

Hg + THQd
Hg,

]

,

which will be the desired domain-robust preconditioner forthe Stokes equations. In the
discrete case, the computational effort of evaluating thispreconditioner is only slightly larger
than the evaluation of (1.6) sinceTH is determined on a coarse grid.

The spaceX × Y is equipped with the norm

‖(v, q)‖2
X×Y = |v|21 + |Dq|2−1.

The Stokes equations in weak form (1.2), (1.3) define a continuous and bijective operator
L : X × Y → X ′ × Y ′ which implies thatC−1L : X × Y → X × Y is also continuous and
bijective.

THEOREM 3.1. There are positive constantsc1, c2 such that

c1 ≤ ‖C−1L‖X×Y →X×Y ≤ c2,

where the constantsc1, c2 depend on the local shape of the subdivisionΠH and on Poincaŕe’s
inequality

‖v‖ ≤ cP |v|1 ∀v ∈ X.

We remark that the constantcP depends on the domainΩ, but on stretched domains we
can take a “small” directione in ‖v‖ ≤ cP ‖Dev‖. For example, ifΩ is contained in
Q = (0, a1) × (0, a2) × (0, a3) with a1 ≤ a2 ≤ a3 we have that‖v‖ ≤ a1‖D1v‖. Thus,cP

does not depend on the aspect ratio of the domain.
The dependence of the constantsc1, c2 on the subdivisionΠH will be explained after the

proof in Remark3.5. For the proof of the theorem, the following three technicallemmas are
required.

LEMMA 3.2. There is a constantc with

|DqH |−1 ≤ c|qH |1,H

for all qH ∈ YH .
Proof. From integration by parts, we obtain for arbitraryv ∈ X

−(div v, qH) = −
∑

ΛH

∫

ΛH

div v qH dx = −
∑

ΓH∈FH

∫

ΓH

ν · v[qH ]ΓH
dσ

≤ c
∑

ΓH∈FH

‖v‖ΓH
‖[qH ]ΓH

‖ΓH
,

where‖·‖ΓH
denotes theL2-norm onΓH . By the trace theorem, we have‖v‖ΓH

≤ c‖v‖1,2;Λ1

and hence, by Poincaré’s inequality

−(div v, qH) ≤ c|v|1|qH |1,H .

The result follows from the definition of the negative norm.
LEMMA 3.3. The following estimate holds for allq ∈ Y :

|Qd
Hq|1,H ≤ c|Dq|−1.
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Proof. LetΓH ∈ FH with neighboring elementsΛ1,Λ2 with measuresµ1, µ2. Denoting
by q the mean value ofq overΛ1 ∪ Λ2, we have

q =
q1 + q2

µ1 + µ2
, qi =

∫

Λi

q dx i = 1, 2.

From an elementary calculation it follows that

‖q − q‖2
Λ1∪Λ2

=

∫

Λ1∪Λ2

{

|q|2 − 2qq + |q|2
}

dx

=

∫

Λ1

|q|2 dx +

∫

Λ2

|q|2 dx −
|q1 + q2|

2

µ1 + µ2

≥
|q1|

2

µ1
+

|q2|
2

µ2
−

|q1 + q2|
2

µ1 + µ2

=
µ2

µ1(µ1 + µ2)
|q1|

2 +
µ1

µ2(µ1 + µ2)
|q2|

2 −
2

µ1 + µ2
q1q2

=
µ2µ1

µ1 + µ2

∣

∣

∣

q2

µ2
−

q1

µ1

∣

∣

∣

2

≥ mµ(ΓH)[Qd
Hq]2ΓH

.

Writing Ω(ΓH) = int (Λ1 ∪ Λ2) and denoting the LBB-constant onΩ(ΓH) by L(ΓH), we
obtain that

µ(ΓH)[Qd
Hq]2ΓH

≤
1

mL(ΓH)2
|Dq|2

−1;Ω(ΓH).

We sum this estimate overΓH . On the right-hand side, the domainsΩ(ΓH) overlap in a
locally finite way. Hence we can writeΩ(ΓH) = Ωij for i = 1, . . . , Ij , j = 1, . . . , J , such
that the domains{Ωij}i=1,...,Ij

are disjoint for every1 ≤ j ≤ J. We apply Lemma2.1 to
each∪iΩij and end up with the estimate

|Qd
Hq|21,H ≤

J

mL2
|Dq|2−1,

whereL is the minimum of the constantsL(ΓH).
LEMMA 3.4. The norms

(

‖q − Qd
Hq‖2 + |Qd

Hq|21

)1/2

and |Dq|−1

are equivalent inY with constants that do only depend on local properties of thesubdivi-
sionΠH .

Proof. From the LBB-condition onΛH and Lemma2.1, we obtain

‖q − Qd
Hq‖2 ≤ c

∑

ΛH

|Dq|2−1;ΛH
≤ c|Dq|2−1

and|Qd
Hq|21,H ≤ c|Dq|2−1 by Lemma3.3. The other direction is simply proved by the triangle

inequality, (2.1), and Lemma3.2,

|Dq|−1 ≤ |D(q − Qd
Hq)|−1 + |DQd

Hq|−1 ≤ ‖q − Qd
Hq‖ + |Qd

Hq|1.

Proof of Theorem3.1: For (u, p) ∈ X × Y, let v ∈ X andqH ∈ YH be the solutions of

(3.1) −∆v = −∆u + Dp, −∆HqH = Qd
Hdiv u.
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Then

(3.2) C−1L(u, p) =

[

v
q⊥ + qH ,

]

, q⊥ = div u − Qd
Hdiv u.

In view of the fact thatQd
Hq⊥ = 0, the norms‖q⊥‖ + |qH |1,H and |D(q⊥ + qH)|−1 are

equivalent by Lemma3.4.
For the estimate from above in Theorem3.1, we have to show that

(3.3) |v|21 + ‖q⊥‖
2 + |qH |21,H ≤ c2(|u|

2
1 + |Dp|2−1).

From the definition ofv andq⊥ in (3.1), (3.2), we immediately obtain that

|v|1 ≤ |u|1 + |Dp|−1

and

‖q⊥‖ = ‖(Id − Qd
H)div u‖ ≤ ‖div u‖ ≤ |u|1.

For the other term, we have by (3.1)

|qH |21,H = (div u, qH).

Treating the right-hand side exactly as in the proof of Lemma3.2, we obtain

|qH |21,H ≤ c|u|1|qH |1,H ,

which completes the proof of estimate (3.3).
For proving the estimate from below in Theorem3.1, we have to show that

(3.4) |u|21 + |Dp|2−1 ≤ c1(|v|
2
1 + ‖q⊥‖

2 + |qH |21,H).

From (3.2) and (3.1), we obtain

(div u, p) = (div u, p − Qd
Hp) + (div u,Qd

Hp)(3.5)

= (q⊥, p) + (qH , Qd
Hp)1,H .

For the first term on the right-hand side, we useq⊥ ⊥ YH and obtain from the local LBB-
condition on the domains intΛH and Lemma2.1

(q⊥, p) = (q⊥, p − Qd
Hp) ≤ ‖q⊥‖ ‖p − Qd

Hp‖

= ‖q⊥‖
(

∑

ΛH

‖p − Qd
Hp‖2

ΛH

)1/2

≤ c1‖q⊥‖
(

∑

ΛH

|Dp|2−1;ΛH

)1/2

≤
c1

2ǫ
‖q⊥‖

2 +
ǫ

2
|Dp|2−1,

where we have used Young’s inequalityab ≤ ǫ−1a2/2 + ǫb2/2. For the second term in (3.5),
we use Ḧolder’s inequality and Lemma3.3

(qH , Qd
Hp)1,H ≤ |qH |1,H |Qd

Hp|1,H ≤ c2|qH |1,H |Dp|−1 ≤
c2

2ǫ
|qH |21,H +

ǫ

2
|Dp|2−1.

Inserting the last two estimates into (3.5) gives

(div u, p) ≤ c(ǫ)(‖q⊥‖
2 + |qH |21,H) + ǫ|Dp|2−1.
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From (3.1), it follows that

|u|21 − (div u, p) ≤ |v|1|u|1

and hence, by the previous estimate,

(3.6) |u|21 ≤ |v|21 + c(ǫ)(‖q⊥‖
2 + |qH |21,H) + 2ǫ|Dp|2−1.

Again from (3.1), we have forw = T (Dp) (see (2.2))

(3.7) |Dp|2−1 = (Dp,w) = (Dv,Dw) − (Du,Dw) ≤ |Dp|−1(|u|1 + |v|1).

Now (3.4) follows from (3.6) and (3.7) by choosingǫ sufficiently small.
REMARK 3.5. The constantsc1, c2 depend on the LBB-constant onΛH andΛ1 ∪ Λ2 for

neighboring elements, on the trace constant‖u‖ΓH
≤ c‖u‖1;ΛH

, and onµ(ΛH)/µ(ΓH) for
ΓH ⊂ ΛH . All these constants are moderate for nondegenerateΛH with diameterH ∼ 1.

REMARK 3.6. The preconditioner of this section can also be used for conforming finite
element approximations in the spacesXh ⊂ X andYh ⊂ Y. In this case, it is not required
thatYh contains the spaceYH . The discrete negative norm ofDqh is

|Dqh|−1,h = sup
φh∈Xh

−(div φh, qh)

|φh|1
,

and it is assumed that the spaceXh is rich enough so that a discrete LBB-condition holds on
eachΛH ∈ ΠH ,

LH(ΛH)‖qh‖ΛH
≤ sup

φh∈Xh∩X(ΛH)

−(div φh, qh)

|φh|1

for all qh ∈ Yh with
∫

ΛH
qh dx = 0.

4. Finite elements. Let Ω ⊂ R
3 be a bounded polyhedral domain and letΠH be a

subdivision ofΩ into simplicesΛH satisfying the usual regularity condition: each simplex
contains a ball of radiusc−1

R H and is contained in a ball of radiuscRH. The intersection of
any two simplices is void or coincides with a common node, edge or face.

The subdivisionΠH is divided further to a subdivisionΠh of Ω satisfying the above
regularity condition withH replaced byh. Using continuous and piecewise linear shape
functions on the subdivisionsΠh,ΠH with or without zero boundary conditions, we obtain
finite dimensional spacesXH ⊂ Xh ⊂ X andYH ⊂ Yh ⊂ Y . If the subdivisionΠH is very
coarse it may happen thatXH = {0}.

The finite element functions defined above satisfy the well-known inverse estimates

|φh|1 ≤ ch−1‖φh‖, |φH |1 ≤ cH−1‖φH‖.

By Rh : X → Xh we denote the local approximation operator from [17] which satisfies
for v ∈ X

(4.1) ‖v − Rhv‖ ≤ ch|v|1, |Rhv|1 ≤ c|v|1.

Analogous estimates hold for the operatorRH : X → XH . In the case thatXH = {0} the
first estimate coincides with Poincaré’s inequality.
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Let Qh, QH be theL2-projections into the corresponding spaces of continuous piece-
wise linear functions. In our notation, we do not distinguish betweenQh : X → Xh and
Qh : Y → Yh,

Qhv ∈ Xh : (Qhv, φh) = (v, φh) ∀φh ∈ Xh,

Qhq ∈ Yh : (Qhq, ψh) = (q, ψh) ∀ψh ∈ Yh.

We have‖vh − QHvh‖ ≤ ‖vh‖, ‖QHvh‖ ≤ ‖vh‖ and

(4.2) ‖vh − QHvh‖ ≤ cH|vh|1, |QHvh|1 ≤ c|vh|1 ∀vh ∈ Xh.

The first estimate is proved by (4.1) for h := H, for the second we use the inverse estimate,

|QHvh|1 ≤ |QHvh − RHvh|1 + |RHvh|1 ≤ cH−1‖QHvh − RHvh‖ + c|vh|1

≤ cH−1
{

‖QHvh − vh‖ + ‖vh − RHvh‖
}

+ c|vh|1 ≤ c|vh|1.

LEMMA 4.1. For eachqh ∈ Yh there existswh ∈ Xh, |wh|1 = 1, such that

|Dqh|−1 ≤ ch|qh|1 + c(div wh, qh).

Proof. Let w = T (Dqh) ∈ X (see (2.2)). From (4.1), we obtain

|Dqh|−1 =
−(div w, qh)

|w|1
≤

−(div (w − Rhw), qh)

|w|1
+

−(div Rhw, qh)

|w|1

≤ ch|qh|1 + c
|(div Rhw, qh)|

|Rhw|1
.

The lemma is proved by settingwh = ±Rhw/|Rhw|1.

5. A preconditioner for a stabilized finite element method. We adopt the finite di-
mensional spacesXH ⊂ Xh ⊂ X andYH ⊂ Yh ⊂ Y from the previous section.

We consider a stabilized finite element approximation of theStokes equations with bilin-
ear forma(·, ·) : (Xh × Yh)2 → R defined by

a((uh, ph), (φh, ψh)) = (Duh,Dφh) − (div φh, ph) + (div uh, ψh) + ωh2(Dph,Dψh),

where the coefficientω > 0 is a stabilization parameter; see [6]. Then the corresponding
operatorLh : Xh × Yh → Xh × Yh, Lh = (Lh,X , Lh,Y ) is

a((uh, ph), (φh, ψh)) = (Lh(uh, ph), (φh, ψh))

= (Lh,X(uh, ph), φh) + (Lh,Y (uh, ph), ψh) ∀φh ∈ Xh ∀ψh ∈ Yh.

For (uh, ph) ∈ Xh × Yh, we define(vh, qh) ∈ Xh × Yh by

(Dvh,Dφh) =(Duh,D(φh − QHφh)) − (div (φh − QHφh), ph) ∀φh ∈ Xh,(5.1)

(qh, ψh) =(div uh, ψh − QHψh)(5.2)

+ ωh2(Dph,D(ψh − QHψh)) ∀ψh ∈ Yh,

or
vh = Th(Id − QH)Lh,X(uh, ph), qh = (Id − QH)Lh,Y (uh, ph),
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whereTh : Xh → Xh denotes the inverse of the discrete Laplacian. Furthermore, define
(vH , qH) ∈ XH × YH by

(DvH ,DφH) − (div φH , qH) =(Duh,DφH) − (div φH , ph) ∀φH ∈ XH ,(5.3)

(div vH , ψH) + ωH2(DqH ,DψH) =(div uh, ψH)(5.4)

+ ωh2(Dph,DψH) ∀ψH ∈ YH ,

or
(vH , qH) = L−1

H QHLh(uh, ph).

Then the preconditioner for the stabilized finite element method is defined by

C−1Lh(uh, ph) =

[

vh + vH

qh + qH

]

=

[

Th(Id − QH)Lh,X(uh, ph)
(Id − QH)Lh,Y (uh, ph)

]

+ L−1
H

[

QHLh,X(uh, p)

QHLh,Y (uh, ph)

]

.

Clearly it holds thatC−1Lh : Xh × Yh → Xh × Yh.
In the following, the constantsc, c1, c2, . . . may depend on the constantcR from Section4

and on the constantcL in the inequality

(5.5) ‖qh − QHqh‖ ≤ cL|Dqh|−1 ∀qh ∈ Yh.

The constants do not depend onh,H and the LBB-constantL(Ω).
The spaceXh × Yh is equipped with the norm

‖(vh, qh)‖2
Xh×Yh

= |vh|
2
1 + |Dqh|

2
−1.

THEOREM 5.1. There exist positive constantsc1, c2 such that

c1 ≤ ‖C−1Lh‖Xh×Yh→Xh×Yh
≤ c2.

We use the following technical lemmas.
LEMMA 5.2. The following estimates hold

‖qh‖ ≤ c|Dqh|−1 ∀qh ∈ Yh, qh ⊥ YH ,(5.6)

|DQHqh|−1 ≤ c|Dqh|−1 ∀qh ∈ Yh,(5.7)

|QHqh|1 ≤ cH−1|Dqh|−1 ∀qh ∈ Yh,(5.8)

|qh|1 ≤ ch−1|Dqh|−1 ∀qh ∈ Yh.(5.9)

Proof. The inequality (5.6) is simply proved by usingqh ⊥ YH and (5.5),

‖qh‖
2 = (qh, qh − QHqh) ≤ ‖qh‖ ‖qh − QHqh‖ ≤ ‖qh‖ cL|Dqh|−1.

The second estimate follows from the triangle inequality,|Dψ|−1 ≤ ‖ψ‖ (see (2.1)),
and (5.5)

|DQHqh|−1 ≤ |D(QHqh − qh)|−1 + |Dqh|−1

≤ ‖QHqh − qh‖ + |Dqh|−1 ≤ (cL + 1)|Dqh|−1.
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For the proof of the estimate (5.8), we use the operatorQd
H from Section3 and obtain

from the inverse estimate

|QHqh|
2
1 =

∑

ΛH

|QHqh − Qd
Hqh|

2
1;ΛH

≤ cH−2
∑

ΛH

‖QHqh − Qd
Hqh‖

2
ΛH

≤ cH−2
∑

ΛH

(‖QHqh − qh‖
2
ΛH

+ ‖qh − Qd
Hqh‖

2
ΛH

).

The first term can be bounded by (5.5), the second by the local LBB-condition onΛH and
Lemma2.1

∑

ΛH

‖qh − Qd
Hqh‖

2
ΛH

≤ c
∑

ΛH

|Dqh|
2
−1;ΛH

≤ c|Dqh|
2
−1.

For the last estimate we use theL2-projectionQd
h into the piecewise constant functions

onΠh and Lemma2.1

|qh|
2
1 =

∑

Λh

|qh − Qd
hqh|

2
1;Λh

≤ ch−2‖qh − Qd
hqh‖

2 ≤ ch−2|Dqh|
2
−1.

LEMMA 5.3. The norms
(

‖qh − QHqh‖
2 + |DQHqh|

2
−1

)1/2
and |Dqh|−1

are equivalent onYh.
Proof. This is a consequence of (5.5), (5.7) and

|Dqh|−1 ≤ |D(qh − QHqh)|−1 + |DQHqh|−1 ≤ ‖qh − QHqh‖ + |DQHqh|−1.

Proof of Theorem5.1: From (5.1) and (5.2), it follows that (Dvh,DvH) = 0 and
QHqh = 0. From Lemma5.3, we obtain that‖(vh + vH , qh + qH)‖Xh×Yh

is equivalent
to

(

|vh|
2
1 + |vH |21 + ‖qh‖

2 + |DqH |2−1

)1/2
.

For the estimate from above in Theorem5.1, it is sufficient to prove that

(5.10) |vh|
2
1 + |vH |21 + ‖qh‖

2 + |DqH |2−1 + ωH2|qH |21 ≤ c2

(

|uh|
2
1 + |Dph|

2
−1

)

.

The proof of this estimate is very similar to the proof of the corresponding estimate in Theo-
rem3.1. Insertingφh = vh in (5.1) and using (4.2) yield

|vh|
2
1 ≤ (|uh|1 + |Dph|−1)|vh − QHvh|1 ≤ c(|uh|1 + |Dph|−1)|vh|1.

From insertingψh = qh in (5.2) and using the inverse estimate, it follows that

‖qh‖
2 ≤‖div u‖ ‖qh − QHqh‖ + ωh2|ph|1|qh − QHqh|1

≤|uh|1‖qh‖ + ch|ph|1‖qh‖.

Now (5.9) applied toph completes the estimate for‖qh‖.
For estimating|vH |21 and|qH |21, we setφH = vH in (5.3), ψH = qH in (5.4) and add the

resulting equalities

|vH |21 + ωH2|qH |21 = (Duh,DvH) − (div vH , ph) + (div uh, qH) + ωh2(Dph,DqH)

≤ c(ǫ)|uh|
2
1 + c|Dph|

2
−1 + ch2|ph|

2
1 + ǫ|DqH |2−1 +

1

2
|vH |21 +

ω

2
H2|qH |21.
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Using (5.9) for ph, we conclude that

(5.11) |vH |21 + ωH2|qH |21 ≤ c(ǫ)|uh|
2
1 + c|Dph|

2
−1 + 2ǫ|DqH |2−1.

For estimating|DqH |−1, we use Lemma4.1for h := H

(5.12) |DqH |−1 ≤ cH|qH |1 + c(div wH , qH)

for wH ∈ XH with |wH |1 = 1. By (5.3) for φH = wH ,

(div wH , qH) = −(Duh,DwH) + (div wH , ph) + (DvH ,DwH)

≤ |uh|1 + |Dph|−1 + |vH |1

and hence, by (5.12)

|DqH |−1 ≤ cH|qH |1 + c|vH |1 + c|uh|1 + c|Dph|−1.

We square this estimate and multiply it with a sufficiently small constantη > 0,

η|DqH |2−1 ≤
ω

2
H2|qH |21 +

1

2
|vH |21 + c|uh|

2
1 + c|Dph|

2
−1.

The proof of (5.10) is completed by adding this estimate to (5.11) and choosingǫ sufficiently
small.

For the proof of the estimate from below in Theorem5.1, we show that

(5.13) |uh|
2
1 + |Dph|

2
−1 + ωh2|ph|

2
1 ≤ c1

(

|vh|
2
1 + |vH |21 + ‖qh‖

2 + |DqH |2−1

)

,

From (5.1) and (5.3), we obtain by choosingφh = uh andφH = QHu and using (4.2)

|uh|
2
1 − (div uh, ph) =(Duh,D(uh − QHuh)) − (div (uh − QHuh), ph)(5.14)

+ (Duh, QHuh) − (div QHuh, ph)

=(Dvh,Duh) + (DvH ,DQHu) − (div QHuh, qH)

≤
1

2
|uh|

2
1 + c|vh|

2
1 + c|vH |21 + c|DqH |−1.

Similarly, by (5.2) and (5.4)

(div uh, ph) + ωh2|ph|
2
1 =(div uh, ph − QHph) + ωh2(Dph,D(ph − QHph))(5.15)

+ (div uh, QHph) + ωh2(Dph,DQHph)

=(qh, ph) + (div vH , QHph) + ωH2(DqH ,DQHph)

=A + B + C.

Fromqh ⊥ YH and (5.5), we obtain

A = (qh, ph − QHph) ≤ ‖qh‖ ‖ph − QHph‖ ≤ cL‖qh‖ |Dph|−1.

For the second term, we use (5.7)

B ≤ |vH |1|DQHph|−1 ≤ c|vH |1|Dph|−1.

The last term is bounded by (5.8),

ωH2(DqH ,DQHph) ≤ ωH2|qH |1|QHph|1 ≤ cω|DqH |−1|Dph|−1.
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Collecting these estimates, adding (5.15) and (5.14), and using Young’s inequality
ab ≤ ǫa2/2 + ǫ−1b2/2, yield for everyǫ > 0

|uh|
2
1 + ωh2|ph|

2
1 ≤c(ǫ)

(

|vh|
2
1 + |vH |21 + ‖qh‖

2 + |DqH |2−1

)

+ ǫ|Dph|
2
−1.(5.16)

For estimating|Dph|−1, we use Lemma4.1

(5.17) |Dph|−1 ≤ ch|ph|1 + c(div wh, ph)

for wh ∈ Xh with |wh|1 = 1. From (5.1) and (5.3), we conclude

(div wh, ph) =(div (wh − QHwh, ph)) + (div QHwh, ph)

=(Duh,D(wh − QHwh)) − (Dvh,Dwh) + (Duh,DQHwh)

− (DvH ,DQHwh) + (qH , div QHwh)

≤c(|uh|1 + |vh|1 + |vH |1| + |DqH |−1).

Combining this estimate with (5.17) gives

|Dph|−1 ≤ c(h|ph|1 + |uh|1 + |vh|1 + |vH |1 + |DqH |−1).

(5.13) follows from this estimate and (5.16).

6. Modifications of the preconditioners and numerical results. We start with a slight
modification of the standard preconditioner (1.6). The analysis is carried out for the continu-
ous problem, but remains true for all conforming discretizations of the Stokes equations.

The eigenvalue problem for the Schur complementS = −div TD, whereT : X ′ → X
is the inverse Laplacian from (1.7), is defined by

(6.1) Sq = µq q ∈ Y.

From [15] we know that in the case of a domain with smooth boundary all spectral values of
S are eigenvalues withµ ∈ R andµmin = L(Ω)2, µmax = 1.

For a parametera > 0 we set

C =

[

−∆ 0
0 1/a

]

such that the preconditioned problem is

C−1L =

[

T 0
0 a

] [

−∆ D
div 0

]

=

[

1 TD
a div 0

]

.

There is a one-to-one corresponding between the eigenvalueproblem for the Schur comple-
ment in (6.1) and the eigenvalue problem for the preconditioned operator

(6.2) C−1L(v, q) = λ(v, q).

We take the negative divergence of the first equation in (6.2)

−div v + Sq = −λdiv v

and use the second equation for expressing divv

Sq = (1 − λ)div v = (1 − λ)
λ

a
q,
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which gives the relation

(6.3) (1 − λ)λ = aµ.

On the other hand, assume that we have a solutionq of the eigenvalue problem (6.1) with
eigenvalueµ. For everyλ ∈ C satisfying (6.3), we setv = −TDq/(1 − λ) and

C−1L(v, q) =

[

1 TD
a div 0

] [

v
q

]

=

[

− 1
1−λTDq + TDq

− a
1−λdiv TDq

]

=

[

− λ
1−λTDq

aµ
1−λq

]

= λ(v, q).

The best choice in (6.3) seems to bea = 1
4 , which is also confirmed by numerical

experiments. In this case, allλ are real with

λ =
1

2
±

1

2

√

1 − µ

such that for smallµmin

λmin ∼
µmin

4
, λmax ∼ 1,

λmax

λmin
∼

4

µmin
.

Thus, the condition number of this preconditioned method islarger than the condition number
of the Schur complement, which isµ−1

min. Nevertheless, the preconditioned method should be
preferred in view of the fact that in the CG-method for the Schur complement the systemTf
must be solved exactly.

For our numerical experiments we use the stabilized finite element method described in
Section5 using piecewise linear elements on plane domainsΩ ⊂ R

2,

(Duh,Dφh) − (div φh, ph) = (fh, φh)h ∀φh ∈ Xh,(6.4)

(div uh, ψh) + ωh2(Dph,Dψh) = (gh, ψh)h ∀ψh ∈ Yh,(6.5)

for (fh, gh) ∈ Xh ×Yh. The inner product(·, ·)h is formed by the standard cubature formula
using the nodes of each element (= lumped mass matrix). Let{φh,j}, {ψh,l} be the nodal
bases of the spacesXh andYh, respectively. Define the matrices

A = (aij), aij = (Dφh,j ,Dφh.i),

B = (bkj), bkj = (div φh,j , ψh,k),

C = (ckl), ckl = ωh2(Dψh,l,Dψh,k),

D = (dij), dij = (φh,j , φh,i)h,

D′ = (d′kl), d′kl = (ψh,l, ψh,k)h.

By the lumped mass matrix technique, the matricesD and D′ are diagonal with entries
dii = O(h2). Now the system (6.4), (6.5) is equivalent to the linear system

(6.6)

[

A −BT

B C

] [

u
p

]

=

[

Df
D′g

]

,

where the coefficient vectors are underlined.
Method I is the standard preconditioner (1.6), which is now

C−1
I =

[

Ã−1 0
0 1

4D′−1

]

,
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whereÃ−1 is an approximation ofA−1 consisting of one step of a multigridV -cycle with
three smoothing steps with the standard lexicographic Gauss-Seidel method for solving the
systemAu = f.

Method II is the preconditioner described in Section5. According to Section4, we
assume that the triangulationΠh is constructed by refining a coarse triangulationΠH s times.
Moreover, assume thatXH = {0}. Let Nh = dimYh, NH = dimYH . Each nodal basis
functionψH,k of YH can be represented in the form

ψH,k =

Nh
∑

l=1

rklψh,l.

The matrixR ∈ R
NH×Nh with R = (rkl) satisfies forq ∈ Yh

(q, ψH,k) =
∑

l

rkl(q, ψh,l) ⇒ q
H

= Rq

and, apart from a factor, coincides with the restriction operator of the underlying finite dif-
ference method. In order to avoid the solution of a linear system for the computation of the
L2-projection, we replaceQH by the operator̃QH : Yh → YH defined by

Q̃Hq(PH,k) =
(q, ψH,k)

(1, ψH,k)
.

SinceQ̃H reproduces locally linear functions, it is a consistent approximation ofQH . The
matrix representation of̃QH is 4−sRT R (n = 2!). Denoting the matrix corresponding to
ωH2(DψH,l,DψH,k) byCH , the preconditioner can be represented in the caseXH = {0} as

C−1
II =

[

Ã−1 0
0 1

4D′−1(INh
− 4−sRT R) + 1

10RT C−1
H R

]

,

where the second factor1/10 was determined by experiment.
In the stabilized method we useω = 0.1. The domains areΩN = (0, N) × (0, 1) and

the mesh parameters areh = 1/64 andH = 1 implying XH = {0}. We start with a random
vector(u0, p0

) and determine the initial residualr0 of the system (6.6) (not the residual of
the preconditioned system!). Then 20 steps of the preconditioned GMRES-algorithm are
performed with residualr20. The number

ρ = 20

√

r20

r0

can be regarded as the convergence factor of the method. Using the methods I and II the
following convergence factorsρ are obtained on the domainsΩN :

N 1 4 16 64
I 0.646 0.808 0.962 0.989
II 0.633 0.702 0.737 0.730

These convergence factors are stable with respect to the mesh size, which is demonstrated by
the results forh = 1/128 and againH = 1:

N 1 4 16 64
I 0.650 0.807 0.958 0.988
II 0.641 0.716 0.724 0.730
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