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AN ITERATIVE SUBSTRUCTURING ALGORITHM FOR
A C

0 INTERIOR PENALTY METHOD ∗

SUSANNE C. BRENNER† AND KENING WANG‡

Abstract. We study an iterative substructuring algorithm for aC0 interior penalty method for the biharmonic
problem. This algorithm is based on a Bramble-Pasciak-Schatzpreconditioner. The condition number of the pre-

conditioned Schur complement operator is shown to be bounded by C
“

1 + ln( H
h

)
”

2

, whereh is the mesh size of

the triangulation,H represents the typical diameter of the nonoverlapping subdomains, and the positive constantC
is independent ofh, H, and the number of subdomains. Corroborating numerical resultsare also presented.

Key words. biharmonic problem, iterative substructuring, domain decomposition,C0 interior penalty methods,
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1. Introduction. Consider the following weak formulation of a fourth order model
problem on a bounded polygonal domainΩ in R2.

Findu ∈ H2
0 (Ω) such that

(1.1)
∫

Ω

∇2u : ∇2v dx =

∫

Ω

fv dx

for all v ∈ H2
0 (Ω), wheref ∈ L2(Ω) and∇2w : ∇2v =

∑2
i,j=1

∂2w
∂xi∂xj

∂2v
∂xi∂xj

is the inner
product of the Hessian matrices of the functionsw andv.

The model problem (1.1) can be solved byC0 interior penalty methods [10, 17, 25, 29].
For simplicity we assume thatΩ has a quasi-uniform triangulationTh consisting of rectangles,
and we takeVh ⊂ H1

0 (Ω) to be theQ2 Lagrange finite element space associated withTh. The
discrete problem for (1.1) is to finduh ∈ Vh such that

(1.2) Ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh,

where

Ah(uh, v) =
∑

D∈Th

∫

D

∇2uh : ∇2v dx

+
∑

e∈Eh

∫

e

({{

∂2uh

∂n2

}} [[

∂v

∂n

]]

+

{{

∂2v

∂n2

}} [[

∂uh

∂n

]])

ds

+
∑

e∈Eh

σ

|e|

∫

e

[[

∂uh

∂n

]] [[

∂v

∂n

]]

ds,

(1.3)

Eh is the set of all edges ofTh, |e| is the length of the edgee, andσ > 0 is a penalty parameter.
The jump[[·]] and the average{{·}} are defined as follows.
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If e is an interior edge ofTh shared by two elementsD− andD+ of Th, andne is the
unit normal vector pointing fromD− to D+, then we define one

[[

∂v

∂n

]]

=
∂v+

∂ne
−

∂v−
∂ne

and

{{

∂2v

∂n2

}}

=
1

2

(

∂2v+

∂n2
e

+
∂2v−
∂n2

e

)

,

wherev± = v
∣

∣

D±
. Note that the values of the jumps and averages are independent of the

choices ofD±. For an edgee on the boundary ofΩ, we takene to be the outward pointing
unit normal vector and define

[[

∂v

∂n

]]

= −
∂v

∂ne
and

{{

∂2v

∂n2

}}

=
∂2v

∂n2
e

.

TheC0 interior penalty method is consistent in the sense that

Ah(u, v) =

∫

Ω

fv dx ∀ v ∈ Vh.

Moreover, forσ > 0 sufficiently large (which is assumed to be the case), there exist positive
constantsC1 andC2 independent ofh such that

(1.4) C1Ah(v, v) ≤ |v|2H2(Ω,Th) ≤ C2Ah(v, v) ∀ v ∈ Vh,

where

|v|2H2(Ω,Th) =
∑

D∈Th

|v|2H2(D) +
∑

e∈Eh

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
.

Consequently, the error‖u − uh‖H2(Ω,Th) is quasi-optimal [17].
C0 interior penalty methods, which belong to the class of discontinuous Galerkin meth-

ods, have certain advantages over the usual finite element methods for fourth order problems.
They are simpler thanC1 finite element methods. They come in a natural hierarchy (which is
not the case for classical nonconforming finite element methods), and they preserve the sym-
metric positive definite property of the continuous problem(which is not the case for mixed
finite element methods). They have also been applied to many other fourth order problems
[11, 12, 18, 25, 33, 38, 39].

As an approximation of a fourth order differential operator, the condition number of the
discrete problem grows at the rate ofh−4; cf. [31]. Thus a good preconditioner is essential for
solving the discrete problem efficiently and accurately. Previously we have shown in [19] that
the two-level additive Schwarz preconditioner for classical finite element methods [24] can be
extended toC0 interior penalty methods with similar performance. In thispaper we will ex-
tend the Bramble-Pasciak-Schatz preconditioner [8] to C0 interior penalty methods and show
that the preconditioned system satisfies similar conditionnumber estimates as in the case
of classical finite element methods. This extension requires a new treatment of the degrees
of freedom on the interface of the subdomains, which is discussed in Section2. The tech-
niques developed in this paper can be applied toC0 interior penalty methods on general do-
mains with simplicial triangulations, and they are also useful for other discontinuous Galerkin
methods for fourth order problems [4, 34]. We note that domain decomposition algorithms
for other discontinuous Galerkin methods can be found in [1, 2, 3, 5, 13, 22, 23, 26, 27, 30].

The rest of this paper is organized as follows. We introduce the iterative substructuring
algorithm in Section2. In Section3 we construct a trace norm that plays a key role in the
analysis of the preconditioned system. The condition number estimates are then derived in
Section4, and numerical results are presented in Section5. AppendixA contains the proof
of a lemma that is crucial for the analysis in Section4.
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2. An iterative substructuring algorithm. We begin with a nonoverlapping domain
decomposition ofΩ consisting of rectangular (open) subdomainsΩ1,Ω2, . . . ,ΩJ aligned
with Th such that

Ωi ∩ Ωj = ∅ if i 6= j,

Ω̄ =

J
⋃

j=1

Ω̄j ,

∂Ωj ∩ ∂Ωl = ∅, a vertex, or an edge if j 6= l.

We assume the subdomains are shape regular and denote the typical diameter of the subdo-
mains byH. The interface of the subdomains is the setΓ =

⋃J
j=1 Γj , whereΓj = ∂Ωj .

REMARK 2.1. Note that∂Ω is part of the interface because the boundary condition for
the normal derivative is only enforced weakly through the penalty term in (1.3).

The off-interface spaceVh(Ω \ Γ) ⊂ Vh is defined by

Vh(Ω \ Γ) = {v ∈ Vh : v vanishes to first order onΓ},

i.e., v ∈ Vh belongs toVh(Ω \ Γ) if and only if v and its normal derivative vanish onΓ.
Since the condition that the normal derivative ofv vanishes onΓ is implicit in terms of the
standard degrees of freedom (dofs) of theQ2 finite element, it is more convenient for both
implementation and analysis to modify the dofs forVh as follows.

(i) For an elementD away from the interfaceΓ, we keep the standard dofs, namely the
values ofv ∈ Vh at the four vertices ofD, at the four midpoints along∂D, and at
the center ofD (cf. the left-hand side of Figure2.1).

(ii) For an elementD that is away from the corners of the subdomains but has an edgee
on Γ, we take the dofs to be the values ofv and its normal derivative at the vertices
and the midpoint ofe and the values ofv at the vertices and midpoint of the edge
parallel toe (cf. the middle of Figure2.1).

(iii) Finally, suppose a corner of the subdomain is also a vertexp of an elementD ande1

ande2 are the two edges ofD that sharep as a common vertex (i.e.,e1, e2 ⊂ Γ).
In this case we take the dofs to be the value ofv at p, the values of its first order
derivatives and second order mixed derivative atp, the values ofv at the other three
vertices ofD, and the values of the normal derivative ofv at the endpoints ofe1

ande2 that are different fromp (cf. the right-hand side of Figure2.1).
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FIG. 2.1.Dofs for theQ2 element.

The dofs for the three cases are depicted in Figure2.1, where the solid dot• denotes the
pointwise evaluation of the shape functions, the arrow6denotes the pointwise evaluation

of the directional derivatives of the shape functions, and the double arrow¡µ¡µ denotes the
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pointwise evaluation of the mixed second order derivative of the shape functions. It is easy to
check that in each case a biquadratic polynomial is uniquelydetermined by the dofs.

REMARK 2.2. If one of the edges ofD is on the boundary of the subdomain, then the
values ofv and ∂v

∂n are uniquely determined by the dofs associated with the nodes on that
edge (cf. the middle and the right-hand side in Figure2.1).

The modified (global) dofs forVh are depicted on the left of Figure2.2 for a square
divided into four subdomains.
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FIG. 2.2.Modified dofs forVh andVh(Γ).

Let v ∈ Vh. The dofs ofv associated with the nodes that are not onΓ are standard. The
dofs ofv associated with the nodes onΓ can be divided into the following cases.

(i) There are three dofs associated with a node onΓ that is interior toΩ and not the cor-
ner of any subdomain, namely the value ofv and the values of the normal derivatives
of v from the two sides.

(ii) At a node on∂Ω that is not the corner of any subdomain, there is only one dof,
namely the value of the normal derivative ofv.

(iii) There is also only one dof at a node that is one of the corners ofΩ, namely the value
of the mixed second order derivative∂

2v
∂x1∂x2

.
(iv) At a node onΓ ∩ ∂Ω that is the common corner of two subdomains, there are three

dofs, namely the value of the normal derivative ofv and the values of the two mixed
second order derivatives ofv from the two subdomains.

(v) There are nine dofs associated with a node onΓ that is the common vertex of four
subdomains: the value ofv, the values of∂v

∂x1

from left and right, the values of∂v
∂x2

from below and above, and the values of the mixed second orderderivatives ofv
from the four subdomains.

In terms of the new dofs,v ∈ Vh(Ω \ Γ) if and only if the dofs ofv alongΓ are identically 0.
We will use these new dofs forVh in the rest of the paper.

REMARK 2.3. SinceVh is a subspace ofH1
0 (Ω), the dofs represented by solid dots

on ∂Ω are not included in the global dofs. On the other hand, the normal derivative and
mixed second order derivative of a finite element function inVh are not constrained along∂Ω
and therefore the dofs represented by arrows and double arrows along∂Ω are included in the
global dofs.

Next we define the interface spaceVh(Γ) to be the orthogonal complement ofVh(Ω \Γ)
with respect toAh(·, ·), i.e.,

Vh(Γ) = {v ∈ Vh : Ah(v, w) = 0, ∀w ∈ Vh(Ω \ Γ)}.



ETNA
Kent State University 

http://etna.math.kent.edu

ITERATIVE SUBSTRUCTURING ALGORITHM 317

The functions inVh(Γ) will be referred to as discrete biharmonic functions. They are uniquely
determined by the dofs associated withΓ (cf. the right-hand side of Figure2.2 for the case
where a square is divided into four subdomains). The discrete biharmonic functions enjoy the
following minimum energy property.

LEMMA 2.4. We have

Ah(v, v) ≤ Ah(w,w)

for anyv ∈ Vh(Γ) andw ∈ Vh that have identical dofs alongΓ.
Proof. Sincew − v ∈ Vh(Ω \ Γ), we have by orthogonality

Ah(w,w) = Ah((w − v) + v, (w − v) + v)

= Ah(w − v, w − v) + Ah(v, v) ≥ Ah(v, v).

The solution of the discrete problem (1.2) can be decomposed as

uh = u̇h + ūh,

whereu̇h ∈ Vh(Ω\Γ) andūh ∈ Vh(Γ), and then (1.2) is equivalent to the following problem.
Find u̇h ∈ Vh(Ω \ Γ) andūh ∈ Vh(Γ) such that

Ah(u̇h, v) =

∫

Ω

fv dx ∀ v ∈ Vh(Ω\Γ),

Ah(ūh, v) =

∫

Ω

fv dx ∀ v ∈ Vh(Γ).(2.1)

Let Vh(Ωj) be the space ofQ2 finite element functions onΩj that vanish to first order
on ∂Ωj , i.e., it is the restriction ofVh(Ω \ Γ) to Ωj . Thenu̇h,j = u̇h

∣

∣

Ωj
∈ Vh(Ωj) and we

have

(2.2) Ah(u̇h,j , v) =

∫

Ω

fṽ dx ∀ v ∈ Vh(Ωj),

whereṽ ∈ Vh is the trivial extension ofv. Therefore, for1 ≤ j ≤ J, u̇h,j can be computed by
solving the subdomain problems (2.2) in parallel, and it only remains to construct an efficient
solver for (2.1).

Let Sh : Vh(Γ) −→ Vh(Γ)′ be the Schur complement operator defined by

(2.3) 〈Shv1, v2〉 = Ah(v1, v2) ∀ v1, v2 ∈ Vh(Γ),

where 〈·, ·〉 is the canonical bilinear form between a vector space and itsdual. We can
rewrite (2.1) as

(2.4) Shūh = fh,

wherefh ∈ Vh(Γ)′ is defined by〈fh, v〉 =
∫

Ω
fv dx for all v ∈ Vh(Γ). The last ingredient

of the iterative substructuring algorithm is provided by a preconditioner forSh introduced by
Bramble-Pasciak-Schatz [8] for classical finite element methods. Equation (2.4) can then be
solved efficiently by the preconditioned conjugate gradient method.

The Bramble-Pasciak-Schatz (BPS) preconditioner involves local edge spaces and a
global coarse space. LetE1, E2, . . ., EL be the (closed) edges of the subdomains. The edge
spaceVℓ (⊂ Vh(Γ)) associated with the edgeEℓ is defined as follows. A discrete biharmonic
functionv belongs toVℓ if and only if
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(i) v vanishes identically outside the subdomains that containEℓ as a boundary edge,
(ii) the dofs ofv at the nodes onΓ \ Eℓ are identically 0.

Thus the discrete biharmonic functions in an edge space are determined by the dofs depicted
in Figure2.3, where on the left we have an edge shared by two subdomains andon the right
we have an edge on∂Ω that belongs to the boundary of only one subdomain.

t

t

t

t

t

-
-
-
-
-

¾
¾
¾
¾
¾

?

6

@R@R¡ª¡ª

¡µ¡µ@I@I

-
-
-
-
-

@R@R

¡µ¡µ

FIG. 2.3.Dofs for edge spaces.

The edge spaceVℓ is connected toVh(Γ) by the natural injectionIℓ, and there is an SPD
operatorSℓ : Vℓ −→ V ′

ℓ defined by

(2.5) 〈Sℓv, w〉 = Ah(v, w) ∀v, w ∈ Vℓ.

For the BPS preconditioner, the global communication amongsubdomains is provided
by the coarse spaceV0 = VH ⊂ H1

0 (Ω), which is theQ1 Lagrange finite element space
associated with the subdomainsΩ1, . . . ,ΩJ . (The dofs for theQ1 Lagrange finite element
are depicted on the left-hand side of Figure2.4.) We defineS0 : VH −→ V ′

H by

(2.6) 〈S0v, w〉 = AH(v, w) ∀ v, w ∈ VH ,

whereAH is the analog ofAh.
The connection betweenVH andVh(Γ) is given by an operatorI0 constructed by the

following procedure. Let̂VH ⊂ H2
0 (Ω) be theQ3 Bogner-Fox-Schmit finite element space

associated withTH . (The dofs for thisC1 element are depicted in the middle of Figure2.4.)
First we define an enriching operatorEH : VH −→ V̂H by averaging, i.e., we define the dof
of EHv at a node to be the average of the dofs ofv at the same node from all the subdomains
sharing that node. More precisely, we take

(EHv)(p) = v(p),

∇(EHv)(p) =
1

4

∑

Ωj∈TH,p

∇vj(p),

∂2(EHv)

∂x1∂x2
(p) =

1

4

∑

Ωj∈TH,p

∂2vj

∂x1∂x2
(p),

wherep is any subdomain vertex in the interior ofΩ, TH,p is the set of the four subdomains
sharingp as a vertex, andvj = v

∣

∣

Ωj
. The following result can be easily obtained by a direct

calculation; cf. [9, 17, 20] for similar estimates.
LEMMA 2.5. There exists a positive constantC3 depending only on the shape regularity

of TH such that

|EHv|H2(Ω) ≤ C3

√

AH(v, v) ∀ v ∈ VH .
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FIG. 2.4. H1 conformingQ1 Lagrange finite element andH2-conforming Bogner-Fox-Schmit elements (Q3

andQ4).

We takeI0v ∈ Vh(Γ) to be the discrete biharmonic function whose dofs onΓ (cf. the
right-hand side of Figure2.2) are identical with the corresponding dofs ofEHv.

REMARK 2.6. If we define the dofs ofI0v directly from v, then the performance of
the preconditioner will be adversely affected by the different scalings that appear in the
penalty terms forAH(·, ·) andAh(·, ·). This problem is avoided byI0 defined above be-
causeEHv ∈ H2

0 (Ω) and the penalty term associated withAh(·, ·) has no effect onI0v.
We can now define the BPS preconditionerBBPS : Vh(Γ)′ −→ Vh(Γ) by

BBPS = I0S
−1
0 It

0 +

L
∑

ℓ=1

IℓS
−1
ℓ It

ℓ ,

whereIt
ℓ : Vh(Γ)′ −→ V ′

ℓ is the transpose ofIℓ : Vℓ −→ Vh(Γ), i.e.,

〈It
ℓφ, v〉 = 〈φ, Iℓv〉 ∀ v ∈ Vℓ, φ ∈ Vh(Γ)′.

It is easy to see thatVh(Γ) =
∑L

ℓ=0 IℓVℓ. It then follows from the theory of additive
Schwarz preconditioners [6, 14, 24, 28, 32, 35, 36, 37, 40, 41] that the eigenvalues ofBBPSSh

are positive and that the maximum and minimum eigenvalues ofBBPSSh are characterized by
the following formulas:

λmax(BBPSSh) = max
v∈Vh(Γ)

v 6=0

〈Shv, v〉

min
v=

PL
ℓ=0

Iℓvℓ

vℓ∈Vℓ

L
∑

ℓ=0

〈Sℓvℓ, vℓ〉

,(2.7)

λmin(BBPSSh) = min
v∈Vh(Γ)

v 6=0

〈Shv, v〉

min
v=

PL
ℓ=0

Iℓvℓ

vℓ∈Vℓ

L
∑

ℓ=0

〈Sℓvℓ, vℓ〉

.(2.8)

3. A trace norm. In this section we construct a trace norm onVh(Γ) that only involves
integrals defined onΓ, and which is equivalent to the energy norm

√

Ah(·, ·). It will play an
important role in the derivation of a lower bound forλmin(BBPSSh).

To avoid the proliferation of constants, from now on we use the notationA . B to
represent the statementA ≤ (constant)×B, where the positive constant does not depend
onh, H, andJ . The notationA ≈ B is equivalent toA . B andB . A.

Let Vh,j , 1 ≤ j ≤ J , be the restrictions ofVh to the subdomainΩj , i.e., it is theQ2

finite element space associated withTh,j (the restriction ofTh to Ωj) whose members vanish
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on∂Ω ∩ ∂Ωj . We introduce a seminorm|||·|||H2(Ωj ,Th,j) onVh,j defined by

|||v|||2H2(Ωj ,Th,j)
=

∑

D∈Th
D⊂Ωj

|v|2H2(D) +
∑

e∈Eh
e⊂Ωj

1

|e|

∥

∥

[[

∂v
∂n

]]
∥

∥

2

L2(e)
∀ v ∈ Vh,j .

We can then write

(3.1) |v|2H2(Ω,Th) =
∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

|||vj |||
2
H2(Ωj ,Th,j)

∀ v ∈ Vh,

wherevj = v
∣

∣

Ωj
.

Let Ṽh,j be theQ4 Bogner-Fox-Schmit finite element space onΩj associated withTh,j

such that its members vanish on∂Ω ∩ ∂Ωj . (The dofs for thisC1 element are depicted on
the right-hand side of Figure2.4.) Our construction of the trace norm onVh(Γ) uses the
enriching mapEj : Vh,j −→ Ṽh,j defined by averaging: at any node ofṼh,j , we assign a
dof of Ejv to be the average of the corresponding dofs ofv from the elements that share that
node. More precisely, for a givenv ∈ Vh,j , the dofs ofEjv ∈ Ṽh,j are defined as follows.

(i) Ejv equalsv at all nodes (vertices, midpoints, centers) ofTh,j .

(ii) At an interior vertex ofTh,j , ∇(Ejv) (respectively∂2(Ejv)
∂x1∂x2

) is the average of∇v

(respectively ∂2v
∂x1∂x2

) at that vertex from the four elements sharingp as a common
vertex.

(iii) At a vertex of Th,j on ∂Ωj that is not a corner ofΩj , ∂(Ejv)
∂n = ∂v

∂n while the tan-
gential (respectively mixed second order) derivative ofEjv is the average of the
tangential (respectively mixed second order) derivativesof v from the two elements
sharingp as a common vertex.

(iv) At the midpoint of an interior edge, the normal derivative of Ejv is the average of
the two normal derivatives ofv (from the two sides) at that midpoint.

(v) At the midpoint of an edge on∂Ωj , the normal derivativeEjv equals the normal
derivative ofv.

(vi) The dofs ofEjv at the four corners ofΩj are identical with the dofs ofv at the
corners.

REMARK 3.1. In view of Remark2.2, the dofs ofEjv on ∂Ωj are determined by the
dofs ofv on∂Ωj .

The following result again can be obtained by a direct calculation.
LEMMA 3.2. We have, for1 ≤ j ≤ J ,

(3.2) |Ejv|H2(Ωj) . |||v|||H2(Ωj ,Th,j) ∀ v ∈ Vh,j .

We can also define a mapFj : Ṽh,j −→ Vh,j by assigning the dofs ofFjv ∈ Vh,j to be
identical with the corresponding dofs ofv ∈ Ṽh,j . The following result can be derived by a
simple element-wise calculation.

LEMMA 3.3. We have, for1 ≤ j ≤ J ,

|||Fjw|||H2(Ωj ,Th,j) . |w|H2(Ωj) ∀w ∈ Ṽh,j .

From the definitions ofEj andFj , it is easy to see thatFj(Ejv) = v for all v ∈ Vh,j .
The lemma below follows directly from Lemma3.2and Lemma3.3.

LEMMA 3.4. We have, for1 ≤ j ≤ J ,

|||v|||H2(Ωj ,Th,j) ≈ |Ejv|H2(Ωj) ∀ v ∈ Vh,j .
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Given anyvj ∈ Vh,j , we define the functionsD1vj andD2vj on∂Ωj by

(3.3) D1vj =
∂(Ejvj)

∂x1

∣

∣

∣

∂Ωj

and D2vj =
∂(Ejvj)

∂x2

∣

∣

∣

∂Ωj

.

In view of Remark3.1, the functionsD1v andD2v can be computed from the dofs ofv
associated withΓj . Recall that the Sobolev seminormH1/2(∂Ωj) is given by

|w|2H1/2(∂Ωj)
=

∫

∂Ωj

∫

∂Ωj

|w(x) − w(y)|2

|x − y|2
ds(x)ds(y).

The following result shows that on the spaceVh(Γ), the energy norm
√

Ah(·, ·) is equivalent
to a trace norm that only involves integrals defined onΓ. Its proof is given in AppendixA.

LEMMA 3.5. We have

(3.4) Ah(v, v) ≈
∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

(

|D1vj |
2
H1/2(∂Ωj)

+ |D2vj |
2
H1/2(∂Ωj)

)

for all v ∈ Vh(Γ), wherevj is the restriction ofv to Ωj for 1 ≤ j ≤ J .

4. Condition number estimates.First we consider an upper bound for the eigenvalues
of the operatorBBPSSh.

LEMMA 4.1. The maximum eigenvalue ofBBPSSh satisfies the following estimate:

(4.1) λmax(BBPSSh) . 1.

Proof. Let v ∈ Vh(Γ) be arbitrary, and letvℓ ∈ Vℓ for 0 ≤ ℓ ≤ L satisfy

(4.2) v =

L
∑

ℓ=0

Iℓvℓ.

It follows from (2.3) and the Cauchy-Schwarz inequality that

(4.3) 〈Shv, v〉 = Ah(

L
∑

ℓ=0

Iℓvℓ,

L
∑

k=0

Ikvk) . Ah(I0v, I0v) + Ah(

L
∑

ℓ=1

Iℓvℓ,

L
∑

k=1

Ikvk).

Let z ∈ Vh be defined byz
∣

∣

Ωj
= Fj

(

EHv0

∣

∣

Ωj

)

. Thenz andI0v have identical dofs alongΓ
and hence

Ah(I0v0, I0v0) ≤ Ah(z, z) ≈ |z|2H2(Ω,Th)

=

J
∑

j=1

|||zj |||
2
H2(Ωj ,Th,j)

. |EHv0|
2
H2(Ω) . 〈S0v0, v0〉

(4.4)

by Lemma2.4, (1.4), (3.1), Lemma3.3, Lemma2.5, and (2.6). Here we have also used the
fact that

[[

∂z
∂n

]]

= 0 onΓ. Finally sinceAh(Iℓvℓ, Ikvk) = 0 unless the subdomainsΩℓ andΩk

are sufficiently close, we have by (2.5)

(4.5) Ah(
L

∑

ℓ=1

Iℓvℓ,
L

∑

k=1

Ikvk) .

L
∑

ℓ=1

Ah(Iℓvℓ, Iℓvℓ) =
L

∑

ℓ=1

〈Sℓvℓ, vℓ〉.
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Putting the estimates (4.3)–(4.5) together, we find〈Shv, v〉 .
∑L

ℓ=0〈Sℓvℓ, vℓ〉 and therefore

(4.6) 〈Shv, v〉 . min
v=

PL
ℓ=0

Iℓvℓ

vℓ∈Vℓ

L
∑

ℓ=0

〈Sℓvℓ, vℓ〉 ∀ v ∈ Vh(Γ).

The bound (4.1) then follows from (2.7) and (4.6).
In order to obtain a lower bound for the eigenvalues ofBBPSSh, we need to construct

a particular decomposition (4.2) for any givenv ∈ Vh(Γ) so that the energy of the func-
tionsvℓ ∈ Vℓ can be estimated in terms of the energy ofv.

First of all,v0 ∈ VH is defined by the condition thatv0(p) = v(p) at the vertices ofTH ,
i.e., at the corners of the subdomainsΩ1, . . . ,ΩJ . We can treatV0 as theQ1 interpolant of
the functionEhv ∈ H2

0 (Ω), whereEh : Vh −→ Ṽh ⊂ H2
0 (Ω) is defined using averaging

and theQ4 Bogner-Fox-Schmit finite element spaceṼh. The operatorEh, which is an analog
of EH : vH −→ V̂H , satisfies (by a direct calculation) the following analog ofthe estimate in
Lemma2.5

(4.7) |Ehv|H2(Ω) . |v|H2(Ω,Th) ∀ v ∈ Vh.

REMARK 4.2. The operatorsEh : Vh −→ Ṽh andEj : Vh,j −→ Ṽh,j are not related.
LEMMA 4.3. The following estimate holds

(4.8) 〈S0v0, v0〉 . 〈Shv, v〉 ∀ v ∈ Vh(Γ).

Proof. By the standard interpolation error estimate for theQ1 element, we have

(4.9) ‖v0 − Ehv‖L2(Ωj) + H|v0 − Ehv|H1(Ωj) + H2|v0 − Ehv|H2(Ωj) . H2|Ehv|H2(Ωj)

for 1 ≤ j ≤ J . Let E belong toEH , the set of the edges of the subdomains. It follows
from (4.9) and the trace theorem with scaling that

1

|E|

∥

∥

[[

∂v0

∂n

]]∥

∥

2

L2(E)
=

1

|E|

∥

∥

∥

[[

∂(v0−Ehv)
∂n

]]∥

∥

∥

2

L2(E)

.
∑

Ωj∈TH,E

[

H−2|v0 − Ehv|2H1(Ωj)
+ |v0 − Ehv|2H2(Ωj)

]

.
∑

Ωj∈TH,E

|Ehv|2H2(Ωj)
,

(4.10)

whereTH,E is the set of the subdomains sharingE as a common edge.
Summing up (4.9) over Ωj ∈ TH and (4.10) over E ∈ EH , we find by (1.4), (2.6),

and (4.7),

〈S0v0, v0〉 ≈ |v0|
2
H2(Ω,TH) =

J
∑

j=1

|v0|
2
H2(Ωj)

+
∑

E∈EH

1

|E|

∥

∥

[[

∂v0

∂n

]]
∥

∥

2

L2(E)

. |Ehv|2H2(Ω) . |v|2H2(Ω,Th) ≈ Ah(v, v) = 〈Shv, v〉.

Let w = v − I0v0. It follows from (4.4) and (4.8) that

(4.11) |w|2H2(Ω,Th) ≈ Ah(w,w) . Ah(v, v) + Ah(I0v0, I0v0) . Ah(v, v) = 〈Shv, v〉.
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We also have a discrete Sobolev inequality.
LEMMA 4.4. We have, for1 ≤ j ≤ J andwj = w

∣

∣

Ωj
= (v − I0v0)

∣

∣

Ωj
,

‖∇Ejwj‖L∞(∂Ωj) .
(

1 + ln(H
h )

)
1

2 |Ejwj |H2(Ωj).

Proof. Since∇Ejwj ∈ H1(Ωj), by a standard discrete Sobolev inequality [8, 16], we
have

‖∇Ejwj‖L∞(∂Ωj) .
(

1 + ln(H
h )

)
1

2

(

H−1‖∇Ejwj‖L2(∂Ωj) + |∇Ejwj |H1/2(Ωj)

)

.

Furthermore, sinceEjwj = wj = 0 at the corners ofΩj , we also have [15, Lemma 4.8]

H−1‖∇Ejwj‖L2(∂Ωj) + |∇Ejwj |H1/2(Ωj) . |Ejwj |H2(Ωj).

Now we choosevℓ ∈ Vℓ, for 1 ≤ ℓ ≤ L, so that (4.2) holds, i.e.,w =
∑L

ℓ=1 vℓ.
By comparing the dofs forVh(Γ) (cf. the right-hand side of Figure2.2) and the dofs for
the edge spaces (cf. Figure2.3), we see that the dofs ofvℓ are uniquely determined by the
corresponding dofs ofw except the mixed second order derivatives at a common cornerof
four subdomains. At such a node we choose the mixed second order derivative ofvℓ to be 1

2
of the corresponding mixed second order derivative ofw.

It follows from Lemma3.5that

L
∑

ℓ=1

〈Sℓvℓ, vℓ〉 ≈
L

∑

ℓ=1

[

∑

e∈Eh
e⊂Γ

∥

∥

[[

∂vℓ

∂n

]]∥

∥

2

L2(e)

+
∑

Ωk∈TH,Eℓ

(

|D1vℓ|
2
H1/2(∂Ωk) + |D2vℓ|

2
H1/2(∂Ωk)

)

]

,

(4.12)

whereTH,Eℓ
is the set of the subdomains that shareEℓ as a common edge.

We begin by estimating the first sum on the right-hand side of (4.12).
LEMMA 4.5. We have

L
∑

ℓ=1

∑

e∈Eh
e⊂Γ

∥

∥

[[

∂vℓ

∂n

]]∥

∥

2

L2(e)
.

(

1 + ln(H
h )

)

|w|2H2(Ω,Th).

Proof. We will focus on the estimate forvℓ associated with an interior vertical (closed)
edgeEℓ (cf. the left-hand side of Figure2.3). The cases of horizontal edges and boundary
edges can be handled in a similar fashion.

Let Ωj1 andΩj2 be the two subdomains sharingEℓ as a common edge ande be a (closed)
edge inEh ande ⊂ ∂Ωj1 ∪ ∂Ωj2 . There are several possibilities.

(i) If e does not intersectEℓ, then
[[

∂vℓ

∂n

]]

= 0 because the normal derivative ofvℓ is
identically 0 from both sides ofe.

(ii) If e ⊂ Eℓ but does not touch either endpoints ofEℓ, then
[[

∂vℓ

∂n

]]

=
[[

∂w
∂n

]]

one.
(iii) If e ⊂ Eℓ does touch the endpointp of Eℓ, then

[[

∂vℓ

∂n

]]

6=
[[

∂w
∂n

]]

on e because

the derivatives∂vℓ,1

∂x1

and ∂vℓ,2

∂x1

have been set to0 at p and the mixed second order

derivatives ∂2vℓ,1

∂x1∂x2

(p) and ∂2vℓ,2

∂x1∂x2

(p) equal one half of the corresponding mixed
second order derivatives ofw atp. In this case we have by scaling

1

|e|

∥

∥

[[

∂vℓ

∂n

]]∥

∥

2

L2(e)
.

1

|e|

∥

∥

[[

∂w
∂n

]]∥

∥

2

L2(e)
.
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(iv) If e is one of the four horizontal edges that touchp, say e ⊂ ∂Ωj1 , then we
have

∣

∣

[[

∂vℓ

∂n

]]∣

∣ =
∣

∣

∂vℓ,1

∂x2

∣

∣ one becausevℓ is identically 0 on the other side. Since∂vℓ,1

∂x2

one is determined by the values of∂wℓ,1

∂x2

and ∂2wℓ,1

∂x1∂x2

atp, we have by scaling and a
standard inverse estimate

∣

∣

∣

∣

[[

∂vℓ

∂n

]]∣

∣

∣

∣

.

∣

∣

∣

∣

∂wℓ,1

∂x2
(p)

∣

∣

∣

∣

+ |e|

∣

∣

∣

∣

∂2wℓ,1

∂x1∂x2
(p)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂Ej1wℓ,1

∂x2
(p)

∣

∣

∣

∣

+ |e|

∣

∣

∣

∣

∂2Ej1wℓ,1

∂x1∂x2
(p)

∣

∣

∣

∣

.

∥

∥

∥

∥

∂Ej1wℓ,1

∂x2

∥

∥

∥

∥

L∞(e)

on the edgee. Note that we have used the defining properties (iii) and (vi)of Ej that
appear just before Remark3.1.

Summing up the contributions over all the cases, we find

L
∑

ℓ=1

∑

e∈Eh
e⊂Γ

∥

∥

∥

∥

[[

∂vℓ

∂n

]]∥

∥

∥

∥

2

L2(e)

.
1

|e|

∑

e∈Eh
e⊂Γ

∥

∥

∥

∥

[[

∂w

∂n

]]∥

∥

∥

∥

2

L2(e)

+
J

∑

j=1

|∇Ejwj |
2
L∞(Ωj)

.
1

|e|

∑

e∈Eh
e⊂Γ

∥

∥

∥

∥

[[

∂w

∂n

]]∥

∥

∥

∥

2

L2(e)

+
(

1 + ln(H
h )

)

J
∑

j=1

|Ejwj |
2
H2(Ωj)

.
1

|e|

∑

e∈Eh
e⊂Γ

∥

∥

∥

∥

[[

∂w

∂n

]]∥

∥

∥

∥

2

L2(e)

+
(

1 + ln(H
h )

)

J
∑

j=1

|||wj |||
2
H2(Ωj ,Th,j)

.
(

1 + ln(H
h )

)

|w|2H2(Ω,Th)

by using Lemma4.4, (3.2), and (3.1).
We now turn to the second sum on the right-hand side of (4.12).
LEMMA 4.6. We have

L
∑

ℓ=1

∑

Ωk∈TH,Eℓ

(

|D1vℓ|
2
H1/2(∂Ωk) + |D2vℓ|

2
H1/2(∂Ωk)

)

.
(

1 + ln(H
h )

)2
J

∑

j=1

|||wj |||
2
H2(Ωj ,Th,j)

.

(4.13)

Proof. This time we will focus on a horizontal edgeEℓ (cf. Figure4.1). Let Ωk be
a subdomain that sharesEℓ as a common edge,vℓ,k = vℓ

∣

∣

Ωk
andwk = w

∣

∣

Ωk
. First we

considerD1vℓ,k on∂Ωk. Sincevℓ,k andwk have identical dofs that define them as piecewise
quartic polynomials onEℓ in thex1 variable (cf. Figure4.1), we havevℓ,k = wk on Eℓ and
hence

(4.14) D1vℓ,k =
∂Ekvℓ,k

∂x1
=

∂Ekwk

∂x1
on Eℓ.

The dofs ofD1vℓ,k

∣

∣

∂Ωk
are identically zero outsideEℓ except those at the endpoints and

midpoints ofe5 ande7 (cf. Figure4.1). It follows that

(4.15) D1vℓ,k = 0 on ∂Ωk \ (e6 ∪ e5 ∪ Eℓ ∪ e7 ∪ e8).
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FIG. 4.1.Dofs forvℓ,k (left) andwk (right) onΩk ∈ TH,Eℓ
.

Moreover, the dofs of the piecewise quartic polynomialD1vℓ,k (in thex2 variable) at these

nodes are determined by the values of∂wk

∂x1

= ∂Ekwk

∂x1

and ∂2wk

∂x2∂x1

= ∂2Ekwk

∂x2∂x1

at the endpoints
of Eℓ. Therefore, by scaling, we have

(4.16)

∥

∥

∥

∥

∂Ekvℓ,k

∂x1

∥

∥

∥

∥

L∞(e5∪e6∪e7∪e8)

.

∥

∥

∥

∥

∂Ekwk

∂x1

∥

∥

∥

∥

L∞(∂Ωk\Eℓ)

,

and hence, in view of (4.14),

(4.17) ‖D1vℓ,k‖L∞(∂Ωk) .

∥

∥

∥

∥

∂Ekwk

∂x1

∥

∥

∥

∥

L∞(∂Ωk)

.

Let Eℓ,k = e6 ∪ e5 ∪Eℓ ∪ e7 ∪ e8. By (4.15) and a standard estimate for truncated piecewise
polynomials (cf. [8, Section 3], [37, Section 4.6], [14, Section 7.5]), we have

(4.18) |D1vℓ,k|
2
H1/2(∂Ωk) . |D1vℓ,k|

2
H1/2(Eℓ,k) +

(

1 + ln(H
h )

)

‖D1vℓ,k‖
2
L∞(Eℓ,k).

Furthermore, we have by the relations (4.14)–(4.16) and scaling

|D1vℓ,k|H1/2(Eℓ,k)

≤

∣

∣

∣

∣

D1vℓ,k −
∂Ekwk

∂x1

∣

∣

∣

∣

H1/2(Eℓ,k)

+

∣

∣

∣

∣

∂Ekwk

∂x1

∣

∣

∣

∣

H1/2(Eℓ,k)

.

∥

∥

∥

∥

∂Ekwk

∂x1

∥

∥

∥

∥

L∞(∂Ωk)

+

∣

∣

∣

∣

∂Ekwk

∂x1

∣

∣

∣

∣

H1/2(∂Ωk)

.

(4.19)

Combining (4.17)–(4.19), Lemma4.4, the trace theorem, and Lemma3.2, we conclude that

|D1vℓ,k|
2
H1/2(∂Ωk)

.

∣

∣

∣

∣

∂Ekwk

∂x1

∣

∣

∣

∣

2

H1/2(Ωk)

+
(

1 + ln(H
h )

)

∥

∥

∥

∥

∂Ekwk

∂x1

∥

∥

∥

∥

2

L∞(∂Ωk)

.
(

1 + ln(H
h )

)2
|Ekwk|

2
H2(Ωk) .

(

1 + ln(H
h )

)2
|||wk|||

2
H2(Ωk,Th,k).

(4.20)

Next we considerD2vℓ,k =
∂Ekvℓ,k

∂x2

on ∂Ωk. The dofs of the piecewise quartic polyno-

mial ∂Ekvℓ,k

∂x2

on Eℓ (in the x1 variable) are identical with those for the piecewise quartic

polynomial ∂Ekwk

∂x2

except at the vertices and midpoints ofe1 and e4 (cf. Figure4.1). It
follows that

D2vℓ,k =
∂Ekvℓ,k

∂x2
=

∂Ekwk

∂x2
on Eℓ \ (e1 ∪ e2 ∪ e3 ∪ e4).(4.21)
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Moreover, the difference between∂Ekvℓ,k

∂x2

and ∂Ekwk

∂x2

on e1 ∪ e2 ∪ e3 ∪ e4 is determined by

the values of∂wk

∂x2

= ∂Ekwk

∂x2

and ∂2wk

∂x1∂x2

= ∂2Ekwk

∂x1∂x2

at the two endpoints ofEℓ. Therefore we
have

(4.22)

∥

∥

∥

∥

D2vℓ,k −
∂Ekwk

∂x2

∥

∥

∥

∥

L∞(e1∪2∪e3∪e4)

.

∥

∥

∥

∥

∂Ekwk

∂x2

∥

∥

∥

∥

L∞(Eℓ)

.

Finally we observe that

(4.23) the functionD2vℓ,k =
∂Ekvℓ,k

∂x2

= 0 on∂Ωk \ Eℓ.

Using (4.21)–(4.23) and arguments similar to the ones for the derivation of (4.20), we have

|D2vℓ,k|
2 . |D2vℓ,k|

2
H1/2(Eℓ)

+
(

1 + ln(H
h )

)

‖D2vℓ,k‖
2
L∞(Eℓ)

.

∣

∣

∣

∣

∂Ekwk

∂x2

∣

∣

∣

∣

2

H1/2(∂Ωk)

+
(

1 + ln(H
h )

)

∥

∥

∥

∥

∂Ekwk

∂x2

∥

∥

∥

∥

2

L∞(∂Ωk)

(4.24)

.
(

1 + ln(H
h )

)2
|Ekwk|

2
H2(Ωk) .

(

1 + ln(H
h )

)2
|||wk|||

2
H2(Ωk,Th,k).

The estimate (4.13) follows by summing up (4.20) and (4.24) over the edgesE1, . . . , EL.

We can now establish a lower bound for the eigenvalues ofBBPSSh.
LEMMA 4.7. The minimum eigenvalue ofBBPSSh satisfies the following estimate:

λmin(BBPSSh) &
(

1 + ln(H
h )

)−2
.

Proof. Letv ∈ Vh(Γ) be arbitrary, and letvℓ ∈ Vℓ for 0 ≤ ℓ ≤ L be the particular decom-
position ofv that we have constructed. It follows from (4.12), Lemma4.5, Lemma4.6, (3.1),
and (4.11), that

L
∑

ℓ=0

〈Sℓvℓ, vℓ〉 .
(

1 + ln(H
h )

)

|w|2H2(Ω,Th) +
(

1 + ln(H
h )

)2
J

∑

j=1

|||wj |||
2
H2(Ωj ,Th,j)

.
(

1 + ln(H
h )

)2
|w|2H2(Ω,Th) ≈

(

1 + ln(H
h )

)2
〈Shv, v〉

and hence

min
v=

PL
ℓ=0

Iℓvℓ

vℓ∈Vℓ

L
∑

ℓ=0

〈Sℓvℓ, vℓ〉 .
(

1 + ln(H
h )

)2
〈Shv, v〉,

which together with (2.8) implies the lower bound.
Lemma4.1 and Lemma4.7 immediately imply the following bound on the condition

number of the preconditioned systemBBPSSh.
THEOREM 4.8. We have

κ(BBPSSh) =
λmax(BBPSSh)

λmin(BBPSSh)
≤ C

(

1 + ln(H
h )

)2
,

where the positive constantC is independent ofh, H, andJ .
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5. Numerical results. In this section, we report some numerical results for our model
problem on the unit square. We take the penalty parameterσ in Ah,AH , andAℓ to be5 in the
numerical experiments, and we compute the maximum eigenvalue, the minimum eigenvalue,
and the condition number ofBBPSSh for different values ofh, H andJ .

For each choice ofh, H, andJ , we generate a vectorvh ∈ Vh(Γ) randomly as our exact
solution and compute the right-hand sideg. Then we apply the preconditioned conjugate
gradient algorithm to the linear systemShz = g with the Bramble-Pasciak-Schatz precon-
ditioner and0 as the initial value. The iteration is stopped when the energy norm error is
reduced by a factor of10−6 and the minimum and maximum eigenvalues are estimated by
the Lanczos algorithm. The average results over 5 random choices ofvh are reported in the
tables below.

REMARK 5.1. Since we are solving a fourth order problem, the condition number ofSh

is very large for smallh. This is the reason why we use a more stringent stopping criterion
than the usual criterion based on the residual error.

The results for the eigenvalues and condition numbers for4 subdomains,16 subdomains,
and64 subdomains are reported in Table5.1, Table5.2, and Table5.3, respectively. They
agree with the estimates in Lemma4.1, Lemma4.7, and Theorem4.8. The average number
of iterations in these computations are presented in Table5.4, where the scalability of the
preconditioner can be observed.

TABLE 5.1
Eigenvalues and condition numbers forH = 1/2 (4 subdomains).

λmax(BBPSSh) λmin(BBPSSh) κ(BBPSSh)
√

κ(BBPSSh)

h=1/4 6.6170 0.4945 13.3825 3.6582
h=1/8 6.5345 0.2617 24.9672 4.9967
h=1/16 6.5354 0.1675 39.0163 6.2463
h=1/32 6.5359 0.1157 56.5020 7.5168
h=1/64 6.5360 0.0845 77.3800 8.7966

TABLE 5.2
Eigenvalues and condition numbers forH = 1/4 (16 subdomains).

λmax(BBPSSh) λmin(BBPSSh) κ(BBPSSh)
√

κ(BBPSSh)

h=1/8 6.8434 0.2235 30.6210 5.5336
h=1/16 6.6952 0.1387 48.2550 6.9466
h=1/32 6.6847 0.0978 68.3611 8.2681
h=1/64 6.6808 0.0725 92.1217 9.5980

TABLE 5.3
Eigenvalues and condition numbers forH = 1/8 (64 subdomains).

λmax(BBPSSh) λmin(BBPSSh) κ(BBPSSh)
√

κ(BBPSSh)

h=1/16 6.8785 0.1742 39.4859 6.2838
h=1/32 6.7239 0.1173 57.3270 7.5715
h=1/64 6.7102 0.0825 81.3200 9.0178
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TABLE 5.4
Average number of iterations for reducing the energy norm error by a factor of10−6.

H = 1/2 H = 1/4 H = 1/8 H = 1/16 H = 1/32

H/h = 2 22 37 43 43 43
H/h = 4 21 36 41 41 —
H/h = 8 20 38 42 — —
H/h = 16 21 39 — — —
H/h = 32 22 — — — —

To illustrate the practical performance of the preconditioner, we present in Table5.5 the
number of iterations required to reduce the energy error by afactor of 10−2 for varioush
andH.

TABLE 5.5
Average number of iterations for reducing the energy norm error by a factor of10−2.

H = 1/2 H = 1/4 H = 1/8 H = 1/16 H = 1/32

H/h = 2 9 13 14 14 14
H/h = 4 9 10 11 11 —
H/h = 8 9 10 10 — —
H/h = 16 8 8 — — —
H/h = 32 7 — — — —

Appendix A. Proof of Lemma 3.5. We need two technical results for the proof of
Lemma3.5. The first one is a trace theorem proven in [15, Lemmas 4.1–4.3].

LEMMA A.1. We have, for1 ≤ j ≤ J ,

|∇w|H1/2(∂Ωj) . |w|H2(Ωj) ∀w ∈ H2(Ωj).

Furthermore, given anyw ∈ H2(Ωj), there exists̃w ∈ H2(Ωj) such that

w̃
∣

∣

∂Ωj
= w

∣

∣

∂Ωj
, ∇w̃

∣

∣

∂Ωj
= ∇w

∣

∣

∂Ωj
and |w̃|H2(Ωj) . |∇w|H1/2(∂Ωj).

The second result concerns aQ4 Bogner-Fox-Schmit quasi-interpolant for a funct-
ion ζ ∈ H2(Ωj). Suppose that for each edgee ∈ Eh such thate ⊂ Ω̄j , a unit normal vectorne

has been chosen. Letζe ∈ P4(e) andζ∗e ∈ P4(e) be theL2(e) projections ofζ|e and ∂ζ
∂ne

∣

∣

e
,

respectively. We then assign the dofs of an quasi-interpolant vζ in theQ4 Bogner-Fox-Schmit
space associated withTh,j as follows.

If m is the midpoint of an edgee ∈ Eh,j (the set of the edges ofTh,j), we define

(A.1) vζ(m) = ζ(m) and
(

∇vζ(m)
)

· ne = ζ∗e (m).

If p is a vertex inTh,j , then we choose an edgee ∈ Eh,j with p as an endpoint and define

(A.2) vζ(p) = ζ(p), te ·
(

∇2vζ(p)
)

ne = (ζ∗e )′(p),

and(∇vζ)(p) to be the vector satisfying

(∇vζ)(p) · ne = ζ∗e (p),(A.3)

(∇vζ)(p) · te = ζ ′e(p),(A.4)
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wherete is a unit tangent vector ofe andζ ′e (respectively(ζ∗e )′) is the derivative ofζe (re-
spectivelyζ∗e ) in the direction ofte. Finally, for the centerc of an elementD ∈ Th, we
define

(A.5) vζ(c) = ζ(c).

Note that the choice of the dofs ofvζ at a vertexp is not unique since there are many
edges sharingp as a common endpoint. In order to control the behavior ofvζ on ∂Ωj for
anyp on ∂Ωj , we choosee to be an edge on∂Ωj . Furthermore, we choosee to be an edge
on ∂Ω ∩ ∂Ωj if p belongs to∂Ω ∩ ∂Ωj . (Admissible edges represented by thick lines for
various vertices represented by bullets are depicted in FigureA.1.)

Ωj

tt

t

t

t

∂Ω

FIG. A.1. Admissible edges in the definition of the dofs ofvζ at vertices.

REMARK A.2. If both ζ and ∂ζ
∂n belong toP4(e) on all the boundary edgese on ∂Ωj ,

thenζe = ζ andζ∗e = ∂ζ
∂ne

on all the boundary edges, which impliesvζ = ζ to first order
on∂Ω.

REMARK A.3. If ζ = 0 on∂Ω ∩ ∂Ωj , thenvζ = 0 on∂Ω ∩ ∂Ωj and hencevζ ∈ Vh,j .
LEMMA A.4. We have, for1 ≤ j ≤ J ,

(A.6) |vζ |H2(Ωj) . |ζ|H2(Ωj) ∀ ζ ∈ H2(Ωj).

Proof. Let D∗ ∈ Th,j be arbitrary, and lete1, e2 be the two edges ofD∗ sharingp as a

common endpoint. Suppose(∇vζ,e1
)(p) and

∂2vζ,e1

∂x1∂x2

(p) are defined by (A.2)–(A.4) usingζe1

andζ∗e1
and(∇vζ,e2

)(p) and
∂2vζ,e2

∂x1∂x2

(p) are defined by (A.2)–(A.4) usingζe2
andζ∗e2

.
If ζ ∈ P1(D∗), then it is clear that

(∇vζ,e1
)(p) = (∇vζ,e2

)(p) and
∂2vζ,e1

∂x1∂x2
(p) =

∂2vζ,e2

∂x1∂x2
(p).

Hence, by the Bramble-Hilbert Lemma [7] and scaling, we have

|(∇vζ,e1
)(p) − (∇vζ,e2

)(p)|2 . |ζ|2H2(D∗)(A.7)

and

∣

∣

∣

∣

∂2vζ,e1

∂x1∂x2
(p) −

∂2vζ,e2

∂x1∂x2
(p)

∣

∣

∣

∣

2

. (diam D∗)
−2|ζ|2H2(D∗).(A.8)

The estimates (A.7) and (A.8) measure the effect of choosing different edges (from the same
element) in the definition of the quasi-interpolantvζ .
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Suppose now the interpolantvζ,D∗
of ζ is defined onD∗ by (A.1)–(A.5) in a particu-

lar way, namely the dofs ofvζ,D∗
at a vertexp of D∗ are defined by using the edge that

precedesp in the counterclockwise direction. The triangle inequality and a standard inverse
estimate [21, 14] imply that

|vζ |
2
H2(D∗) . |vζ,D∗

|2H2(D∗) + |vζ − vζ,D∗
|2H2(D∗)

. |vζ,D∗
|2H2(D∗) + (diam D∗)

−4‖vζ − vζ,D∗
‖2

L2(D∗).
(A.9)

First we claim that

(A.10) |vζ,D∗
|H2(D∗) . |ζ|H2(D∗).

Indeed, since all the dofs ofvζ,D∗
defined by (A.1)–(A.5) are bounded by‖ζ‖H2(D∗), the

seminorm|vζ,D∗
|H2(D∗) is bounded by a multiple of‖ζ‖H2(D∗). Moreover,vζ,D∗

= ζ
if ζ ∈ P1(D∗), and the seminorm|vζ,D∗

|H2(D∗) is invariant under addition of linear polyno-
mials. Therefore the estimate (A.10) follows from the Bramble-Hilbert Lemma and scaling.

Secondly it follows from the definitions ofvζ andvζ,D∗
and (A.7)–(A.8) that

‖vζ − vζ,D∗
‖2

L2(D∗) .(diam D∗)
4

∑

p∈D∗

|∇vζ(p) −∇vζ,D∗
(p)|2

+ (diam D∗)
6

∑

p∈D∗

∣

∣

∣

∣

∂2vζ

∂x1∂x2
(p) −

∂2vζ,D∗

∂x1∂x2
(p)

∣

∣

∣

∣

2

.(diam D∗)
4|ζ|2H2(S(D∗)),

(A.11)

whereS(D∗) is the union of allD ∈ Th,j that share at least one common vertex withD∗.
Combining (A.9)–(A.11), we have

(A.12) |vζ |
2
H2(D∗) . |ζ|2H2(S(D∗)).

The estimate (A.6) is obtained by summing up (A.12) over allD∗ ∈ Th,j .
Proof of Lemma3.5. Let v ∈ Vh(Γ) be arbitrary,vj = v

∣

∣

Ωj
∈Vh,j andwj = Ejvj ∈ Ṽh,j .

It follows from (3.3), LemmaA.1, and Lemma3.4that

|D1vj |H1/2(∂Ωj) + |D2vj |H1/2(∂Ωj) = |∇wj |H1/2(∂Ωj)

. |wj |H2(Ωj) ≈ |||vj |||H2(Ωj ,Th,j).
(A.13)

Combining (A.13), (3.1), and (1.4), we find

∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

(

|D1vj |
2
H1/2(∂Ωj)

+ |D2vj |
2
H1/2(∂Ωj)

)

.
∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

|||v|||2H2(Ωj ,Th,j)

= |v|2H2(Ω,Th) ≈ Ah(v, v).

(A.14)

On the other hand, it follows from LemmaA.1 that there exist functionsζj ∈ H2(Ωj)
for 1 ≤ j ≤ J such that

ζj

∣

∣

∂Ωj
= wj

∣

∣

∂Ωj
and ∇ζj

∣

∣

∂Ωj
= ∇wj

∣

∣

∂Ωj
,(A.15)

|ζj |H2(Ωj) . |∇wj |H1/2(∂Ωj).(A.16)
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Let vζj
∈ Vh,j be aQ4 Bogner-Fox-Schmit quasi-interpolant ofζj . In view of (A.15)

and RemarkA.2, we have

(A.17) vζj

∣

∣

∂Ωj
= ζj

∣

∣

∂Ωj
= Ejvj

∣

∣

∂Ωj
and ∇vζj

∣

∣

∂Ωj
= ∇ζj

∣

∣

∂Ωj
= ∇(Ejvj)

∣

∣

∂Ωj
.

Let zj = Fjvζj
∈ Vh,j . It follows from the definition ofFj , Lemma3.3, LemmaA.4, (A.16),

and (A.17) that

zj

∣

∣

∂Ωj
= vj

∣

∣

∂Ωj
and ∇zj

∣

∣

∂Ωj
= ∇vj

∣

∣

∂Ωj
,(A.18)

|||zj |||H2(Ωj ,Th,j) . |vζj
|H2(Ωj) . |ζj |H2(Ωj) . |∇wj |H1/2(∂Ωj).(A.19)

Now we takez ∈ Vh such thatz
∣

∣

Ωj
= zj . It follows from (A.18) thatz = v up to first

order onΓ. Therefore we can apply Lemma2.4, (1.4), (3.1), (A.18), (A.19), and (3.3) to
obtain

Ah(v, v) ≤ Ah(z, z) ≈ |z|2H2(Ω,Th)

=
∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂z
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

|||zj |||
2
H2(Ωj ,Th,j)

.
∑

e∈Eh
e⊂Γ

1

|e|

∥

∥

[[

∂v
∂n

]]∥

∥

2

L2(e)
+

J
∑

j=1

(

|D1vj |
2
H1/2(∂Ωj)

+ |D2vj |
2
H1/2(∂Ωj)

)

.

(A.20)

The equivalence (3.4) follows from (A.14) and (A.20).
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[34] I. M OZOLEVSKI AND E. SÜLI , A priori error analysis for thehp-version of the discontinuous Galerkin finite
element method for the biharmonic equation, Comput. Methods Appl. Math., 3 (2003), pp. 596–607.

[35] S. NEPOMNYASCHIKH, On the application of the bordering method to the mixed boundary value problem for

elliptic equations and on mesh norms inW
1/2

2
(S), Soviet J. Numer. Anal. Math. Modelling, 4 (1989),

pp. 493–506.
[36] B. SMITH , P. BJØRSTAD, AND W. GROPP, Domain Decomposition, Cambridge University Press, Cambridge,

1996.
[37] A. TOSELLI AND O. WIDLUND , Domain Decomposition Methods - Algorithms and Theory, Springer,

New York, 2005.
[38] G. WELLS, K. GARIKIPATI , AND L. M OLARI, A discontinuous Galerkin formulation for a strain gradient-

dependent damage model, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 3633–3645.
[39] G. WELLS, E. KUHL , AND K. GARIKIPATI , A discontinuous Galerkin method for the Cahn-Hilliard equa-

tion, J. Comput. Phys., 218 (2006), pp. 860–877.
[40] J. XU, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581–

613.
[41] X. ZHANG, Studies in Domain Decomposition: Multilevel Methods and the Biharmonic Dirichlet Problem,

PhD Thesis, Department of Computer Science, Courant Institute, New York, 1991.


