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COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS FOR THE
COUPLED KLEIN-GORDON-SCHR ÖDINGER EQUATIONS ∗

AHMAD GOLBABAI † AND ALI SAFDARI-VAIGHANI ‡

Abstract. This paper presents radial basis function (RBF) collocation methods for the coupled Klein-Gordon-
Schr̈odinger equations. Unlike traditional mesh oriented methods, RBF collocation methods require only a scattered
set of nodes in the domain where the solution is approximated. For the RBF collocation method in finite difference
mode (RBF-FD), weights for the finite difference formula are obtained by solving local RBF interpolation problems
set up around each node in the computational domain. We show that the RBF-FD method has good accuracy and a
sparse coefficient matrix, as compared to the global form of theRBF collocation method and other methods.
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1. Introduction. Nonlinear phenomena play a crucial role in a variety of scientific
fields, especially in fluid mechanics, solid state physics, particle physics, plasma waves and
chemical physics. In this paper, we consider the coupled Klein-Gordon-Schr̈odinger (KGS)
equations

(1.1)
ivt + vxx + vu = 0,

utt − uxx + u− |v|2 = 0,

with (x, t) ∈ Ω× (0, T ] and initial conditions

u(x, 0) = u0(x), ut(x, 0) = ut0(x), v(x, 0) = v0(x), x ∈ Ω,

and zero boundary conditions

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

whereΩ is a bounded domain inR and∂Ω is the smooth boundary ofΩ. The equations (1.1)
describe the dynamics of a conserved complex nucleon fieldv, interacting with a neutral real
scalar meson fieldu. The KGS equations can be considered a generalization of theclassical
model of Yukawa interaction [8], which goes back to 1935. For more physical details we
refer the reader to Yukawa [22].

This problem has been the subject of research for many years and has motivated a series
of papers in physics and mathematics. The well-posedness ofthe Klein-Gordon-Schr̈odinger
equations has been studied by many authors such as Bachelot [1], Hayashi and Von Wahl [12],
Fukuda and Tsutsumi [9]. Guo and Miao [11] studied the asymptotic behavior of the solution
for these equations. In [19], the authors discussed the initial boundary value problemof
Klein-Gordon-Schr̈odinger equations. Numerical methods such as the homotopy analysis
method [14], the conservative spectral method [21], and the Crank-Nicolson method with
time-splitting spectral discretization [2] have been used to solve this problem.

In the last decade, collocation methods based on Radial Basis Functions (RBF) be-
came important for obtaining the numerical solution of various ordinary differential equations
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(ODEs) and partial differential equations (PDEs) [4, 7, 10, 16, 20]. These methods are de-
signed to overcome the limitations of methods based on pseudospectral (PS) and mesh-based
methods, such as the finite difference method (FDM) and the finite element method (FEM).
The RBF-based collocation methods have the advantage of notrequiring a mesh, so that the
approximate solution is represented entirely in relation to scattered node/data points. Such
methods can be easily extended to higher dimensions.

In this work, we investigate accurate methods based on global and local RBF collocation
schemes, to study the dynamics of the equations (1.1). In the local form of the RBF collo-
cation schemes, the spatial derivatives for each node can beapproximated by local stencils.
This allows us to have flexibility in choosing these stencils[18]. The key points in design-
ing our new numerical methods consist of discretizing spatial derivatives by global and local
RBF interpolants at scattered points, and solving the resulting system of ordinary differential
equations.

The layout of the paper is the following. In Section2, the properties of RBFs and their
application to solving interpolation problems are discussed. Section3 deals with RBF col-
location methods for the KGS equations. The results of numerical experiments and data
comparison are presented in Section4. In Section5 we give some final remarks.

2. Radial basis function approximation. GivenN +2 distinct pointsx0, . . . , xN+1 in
R

d, and the corresponding function valuesu(x0), . . . , u(xN+1), the standard RBF interpola-
tion problem is to find an interpolant of the form

s(x) =

N+1
∑

j=0

λjφ(‖x− xj‖),

where‖ · ‖ is the Euclidean norm,λj ∈ R, for j = 0, . . . , N + 1, andφ is the real-valued in-
verse multiquadric function, defined byφ(r) = 1/

√
c2r2 + 1. The coefficientsλ0, . . . , λN+1

are determined by imposing the interpolation conditionss(xj) = u(xj), j = 0, . . . , N + 1,
which lead to a symmetric system of linear equations

(2.1) Aλ = u,

where

Aij = φ(‖xi − xj‖), i, j = 0, . . . , N + 1,

u = [u(x0), . . . , u(xN+1)]
T ,

λ = [λ0, . . . , λN+1]
T .

Micchelli [15] proved that the inverse multiquadric (IMQ) radial basis function is positive
definite, so the coefficient matrix in (2.1) is invertible.

The Lagrangian form of RBF, based on cardinal basis functions, gives an alternative
formulation which has the advantage of allowing easy evaluation of linear spatial differential
operators [5]. In order to obtain the cardinal basis functionsψj(x), j = 0, . . . , N + 1, with
the property

ψj(xi) =

{

1, if xi = xj ,

0, if xi 6= xj ,

we consider the linear system

AΨ(x) = φ̄(x),
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whereΨ(x) = [ψ0(x), . . . , ψN+1(x)]
T , φ̄(x) = [φ(‖x − x0‖), . . . , φ(‖x − xN+1‖)]T , and

the coefficient matrixA is as above.
Therefore, the RBF interpolation can alternatively be written in Lagrange form as

s(x) =

N+1
∑

j=0

ψj(x)u(xj).

Moreover, for a linear operatorL, we have

(2.2) Ls(x) =
N+1
∑

j=0

Lψj(x)u(xj).

Then, fori = 0, . . . , N + 1, the undetermined coefficient vectors

LΨ(xi) = [Lψ0(xi), . . . ,LψN+1(xi)]
T

are computed by solving the linear system

ALΨ(xi) = Lφ̄i,

whereLφ̄i denotes the evaluation at the pointxi of the column vector

Lφ̄(x) = [Lφ(‖x− x0‖), . . . ,Lφ(‖x− xN+1‖)]T .

3. RBF-based collocation methods.

3.1. The RBF collocation method in global mode (RBF-G).In the Lagrangian form
of the global RBF interpolation method for a time-dependentproblem, the solutionu(x, t) is
approximated by

(3.1) su(x, t) =

N+1
∑

j=0

ψj(x)uj(t),

whereuj(t) ≈ u(xj , t), for t > 0, anduj(0) = u(xj , 0). The centers of the RBFs used in
equation (3.1) consist of the setX = XΩ

⋃

X∂Ω, whereXΩ = {xj ∈ Ω, j = 1, . . . , N},
X∂Ω = {xj ∈ ∂Ω, j = 0, N + 1}. For simplicity, we let the setX coincide with the set of
collocation points.

Note that the zero boundary conditions at∂Ω are satisfied if the approximation for-
mula (3.1) is a linear combination ofψ1, . . . , ψN , and takes the form

(3.2) su(x, t) =
N
∑

j=1

ψj(x)uj(t).

If we write ut = w, equations (1.1) can be rewritten as follows

(3.3)

ivt + vxx + vu = 0,

wt − uxx + u− |v|2 = 0,

ut − w = 0,

with initial conditions

u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), x ∈ Ω.
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Discretizing the spatial variable at the node points, and substituting (3.2) in the PDEs (3.3),
leads to the system of ODEs

(3.4)

iv′k(t) = −
N
∑

j=1

d2ψj

dx2
(xk)vj(t)− vk(t)uk(t),

w′
k(t) =

N
∑

j=1

d2ψj

dx2
(xk)uj(t)− uk(t) + vk(t)vk(t),

u′k(t) = wk(t), k = 1, . . . , N,

wherev(t) is the complex conjugate ofv(t). The matrix form of (3.4) is

(3.5)

iV ′(t) = −ΨxxV (t)− V (t) ∗ U(t),

W ′(t) = ΨxxU(t)− U(t) + V (t) ∗ V (t),

U ′(t) =W (t),

whereΨxx = [d
2Ψ
d2x

(x1), . . . ,
d2Ψ
d2x

(xN )]T , V (t) = [v1(t), . . . , vN (t)]T , W (t) = [w1(t), . . .,
wN (t)]T , U(t) = [u1(t), . . . , uN (t)]T . Note that the symbol “∗” represents element-wise
multiplication.

Now write V (t) = Vr(t) + iVi(t), where ther andi indices indicate the real part and
imaginary part of complex vector, respectively. By using this notation, (3.5) can be written as








V ′
r (t)
V ′
i (t)

W ′(t)
U ′(t)









=









0 −Ψxx 0 0
Ψxx 0 0 0
0 0 0 Ψxx − I
0 0 I 0

















Vr(t)
Vi(t)
W (t)
U(t)









+









−Vi(t) ∗ U(t)
Vr(t) ∗ U(t)

Vr(t) ∗ Vr(t) + Vi(t) ∗ Vi(t)
0









.

This system of ODE can be solved by standard ODE solvers such as the solversode23 and
ode15s in MATLAB. An alternative scheme for solving the system of ODE is to use the time
stepping technique. We can use the forward Euler time-stepping method for approximating
the time derivative. Letδt = T/M , and definetn = n δt, n = 0, . . . ,M . If we assume that
Un, V n

r , V n
i andWn are approximations ofU(tn), Vr(tn), Vi(tn) andW (tn), we get









V n+1
r

V n+1
i

Wn+1

Un+1









=









I −δtΨxx 0 0
δtΨxx I 0 0

0 0 I δt(Ψxx − I)
0 0 δt I I

















V n
r

V n
i

Wn

Un









+δt









−V n
i ∗ Un

V n
r ∗ Un

V n
r ∗ V n

r + V n
i ∗ V n

i

0









,

whereI is theN ×N identity matrix.

3.2. The RBF collocation method in finite difference mode (RBF-FD). The finite
difference method consists of approximating the derivative of a functionu at a given point
based on a linear combination of the value ofu at some surrounding node points. The FD
formula approximates the action of the linear operatorL in x = xk (1 ≤ k ≤ N) as follows

Lu(xk) ≈
N
∑

j=1

ω̃(k,j)u(xj),



ETNA
Kent State University 

http://etna.math.kent.edu

26 A. GOLBABAI AND A. SAFDARI-VAIGHANI

whereω̃(k,.), k = 1 . . . , N , are called the FD weights at node pointsxk. They are usually
computed using polynomial interpolation [6].

In the RBF-FD approach, the weights of the FD formulas are obtained using the RBF
interpolation technique. This method allows us to determine the derivative approximation for
each node point in a local support region. Let the supportingregion for each interior nodexk
be identified by choosingMk nodes that are defined as

support(xk) = {xj ∈ Ω | 0 ≤ ‖xj − xk‖ ≤ R}, k = 1, . . . , N,

whereR is the size of the local support andMk is the total number of interior and boundary
nodes which lie in the supporting region of the nodexk.

To derive the RBF weightsω(k,.) for each nodexk, k = 1 . . . , N , we approximate the
spatial linear operatorL using (2.2) in the supporting region ofxk, i.e.,

Lu(xk) ≈
Mk
∑

j=1

ω(k,j)u(xj),

whereω(k,j) = Lψj(xk).
Discretizing the spatial variable in the governing equations (3.3) and approximating the

RBF weights forL = ∂
∂x2 leads to a system of ODEs

(3.6)

v′k(t) = −
Mk
∑

j=1

ω(k,j)vj(t)− vk(t)uk(t),

w′
k(t) =

Mk
∑

j=1

ω(k,j)uj(t)− uk(t) + vk(t)vk(t),

u′k(t) = wk(t), k = 1, . . . , N.

The system of ODEs (3.6) can be rewritten in matrix form









V ′
r (t)
V ′
i (t)

W ′(t)
U ′(t)









=









0 −Φ̃xx 0 0

Φ̃xx 0 0 0

0 0 0 Φ̃xx − I
0 0 I 0

















Vr(t)
Vi(t)
W (t)
U(t)









+









−Vi(t) ∗ U(t)
Vr(t) ∗ U(t)

Vr(t) ∗ Vr(t) + Vi(t) ∗ Vi(t)
0









,

where the sparse matrix̃Φxx = [ωT
(1,.), . . . , ω

T
(N,.)]

T contains the RBF weights. The sparsity

of Φ̃xx is dependent on the distribution of points and the size of thelocal supportR. Figure3.1
shows the sparsity pattern ofΦ̃xx for different sizes of the local support.

The resulting system of ODEs can be solved by using an available ODE solver such as
MATLAB’s ode23, or by a time stepping technique.

4. Numerical results. In this section, we present some numerical results to demonstrate
the validity and effectiveness of the proposed methods. Theaccuracy is measured by the root
mean square (RMS) error and by theL∞ error

RMS=
[ 1

N

N
∑

j=1

(

uexact(xj , t)− uapp(xj , t)
)2] 1

2

,

L∞ = ‖uexact(x, t)− uapp(x, t)‖∞ = max
1≤j≤N

|uexact(xj , t)− uapp(xj , t)|.



ETNA
Kent State University 

http://etna.math.kent.edu

COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS 27

0 20 40 60

0

10

20

30

40

50

60

70

nz = 655

R = 4h

0 20 40 60

0

10

20

30

40

50

60

70

nz = 933

R = 6h

0 20 40 60

0

10

20

30

40

50

60

70

nz = 1203

R = 8h

FIGURE 3.1. Sparsity pattern of matrix̃Φxx for equidistant points with differentR.

The exact solution to equations (1.1) was derived in [13]:

vr(x, t) = 3β sech2(βx+ αt) cos(γx+ (4β2 − γ2)t),

vi(x, t) = 3β sech2(βx+ αt) sin(γx+ (4β2 − γ2)t),

u(x, t) = 6β2 sech2(βx+ αt), x ∈ Ω, t ≥ 0,

whereα =
√

4β2 − 1, γ = − α
2β , for β ≥ 1/2. Numerical experiments are carried out with

parametersR = 6h, β = 1, andΩ = [−10, 10]. In our experiments, we use an equidistant
points discretizationxk = −10 + kh, 0 ≤ k ≤ N + 1, h = 20/(N + 1), and Halton points
discretization.
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FIGURE 4.1. Absolute error of the RBF-FD method withc = 0.5 andh = 0.2, at t = 1.

Figures4.1 and4.2 show the absolute error ofu and |v|, for the presented methods, at
t = 1. If the shape parameter is chosen in a data-dependent way, i.e., if c is proportional ofh,
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FIGURE 4.2. Absolute error of the RBF-G method withc = 0.5 andh = 0.2, at t = 1.
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FIGURE 4.3. From left to right, theL∞ error of the RBF-FD and RBF-G methods as a function ofh, with
c = 1.5, at t = 1.

the convergence rate cannot be shown, but this regime is of practical interest [3]. The RMS
error andL∞ error of the approximated solutions, for our proposed methods with equidistant
points, are reported in Table4.1. The numerical results of the Crank-Nicolson method with
time-splitting spectral discretization (CN-TSSP) [2], for a time step2×10−3, are presented in
the last column of Table4.1. It can be seen that the numerical results obtained by the RBF-FD
method are in good agreement with the exact solution, in contrast to the CN-TSSP method
and the RBF-G method. Table4.2 shows the accuracy of our proposed methods using the
Halton distribution points. Note that in Table4.1and Table4.2we consider a data-dependent
shape parameter. For a fixed shape parameter, the error goes to zero as the data points become
denser. The error behavior and convergence rate are investigated for a fixed value of the shape
parameterc [17] in Figure4.3, where the error is displayed a function ofh. Forc = 1.5, the
condition numbers of the coefficient matrices does not exceed 1010 when0.05 ≤ h ≤ 0.2.

Figure4.4displays theL∞ error of the RBF-FD method and RBF-G method for different
values of time. We can see that the error observed in the RBF-Gmethod increases more than
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TABLE 4.1
Error comparison of the approximated solutions for equidistant points withh = 0.1, c = 0.9, andh = 0.2,

c = 0.5, at t = 1.

RBF-G RBF-FD CN-TSSP
h RMS L∞ RMS L∞ RMS L∞

|v| 0.2 8.83e-4 2.00e-3 1.48e-6 5.04e-6 1.66e-5 4.77e-5
0.1 6.61e-4 1.06e-3 1.06e-6 4.54e-6 1.50e-5 4.77e-5

u 0.2 5.48e-4 3.73e-3 3.32e-6 9.02e-6 2.65e-5 7.18e-5
0.1 3.18e-4 2.19e-3 1.64e-6 7.74e-6 2.52e-5 7.18e-5

TABLE 4.2
Accuracy of the presented methods for100 and200 Halton points corresponding toc = 0.5 andc = 1, at t = 1.

RBF-G RBF-FD
Number of points RMS L∞ RMS L∞

|v| 100 1.25e-3 4.45e-3 3.77e-6 7.78e-6
200 1.00e-3 4.30e-3 3.30e-6 7.37e-6

u 100 8.16e-4 4.85e-3 7.55e-6 3.96e-5
200 6.97e-4 3.77e-3 6.98e-6 2.41e-5

when using the RBF-FD method. In Figure4.5, theL∞ errors are shown for a different size
of the local support.
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FIGURE 4.4.L∞ error as a function of time foru and|v|, withh = 0.2 andc = 0.5.

5. Conclusion. In this paper, the collocation methods based on the RBF-G andRBF-FD
methods for the coupled Klein-Gordon-Schrödinger equations are presented. It is shown that
these methods require only a scattered set of nodes in the domain instead of a mesh, which
is the case for traditional methods such as FEM or FDM. Experimental results show that the
proposed methods for the numerical solution of the KGS equations are very accurate. Also,
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FIGURE 4.5.L∞ error as a function ofR = nh, withh = 0.2 andc = 0.5, at t = 1.

it is shown that the coefficient matrix of the RBF-FD method issparse, and that this method
has a good accuracy, as compared to the RBF-G and CN-TSSP methods.
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Anal. Non Lińeaire, 1 (1984), pp. 453–478.

[2] W. BAO AND L. YANG, Efficient and accurate numerical methods for the Klein-Gordon-Schr̈odinger equa-
tions, J. Comput. Phys., 225 (2007), pp. 1863–1893.

[3] J. P. BOYD, Error saturation in Gaussian radial basis function on a finite interval, J. Comput. Appl. Math.,
234 (2010), pp. 1435–1441.

[4] P. CHINCHAPATNAM , Radial basis function based meshless methods for fluid flow problems, Ph.D. thesis,
School of Engineering Sciences, University of Southampton,2006.

[5] G. E. FASSHAUER, Meshless methods, in Handbook of Theoretical and Computational Nanotechnology, M. Ri-
eth and W. Schommers, eds., American Scientific Publishers, 2005, pp. 24–26.

[6] B. FORNBERG, Calculation of weights in finite difference formulas, SIAM Rev., 40 (1998), pp. 685–691.
[7] C. FRANKE AND R. SCHABACK, Solving partial differential equations by collocation using radial basis func-

tions, Appl. Math. Comput., 93 (1998), pp. 73–82.
[8] I. FUKUDA AND M. TSUTSUMI, On coupled Klein-Gordon-Schrödinger equations II, J. Math. Anal. Appl., 66

(1978), pp. 358–378.
[9] I. FUKUDA AND M. TSUTSUMI, On coupled Klein-Gordon-Schrödinger equations III, Math. Japon., 24

(1979), pp. 307–321.
[10] A. GOLBABAI AND A. SAFDARI-VAIGHANI , A meshless method for numerical solution of the coupled

Schr̈odinger-KdV equations, Computing, 92 (2011), pp. 225–242.
[11] B. L. GUO AND C. X. MIAO, Asymptotic behavior of coupled Klein-Gordon-Schrödinger equations, Sci.

China Ser. A., 25 (1995), pp. 705–714.
[12] N. HAYASHI AND W. VON WAHL , On the global strong solutions of coupled Klein-Gordon-Schrödinger

equations, J. Math. Soc. Japan, 39 (1987), pp. 489–497.
[13] F. T. HIOE, Periodic solitary waves for two coupled nonlinear Klein-Gordon and Schr̈odinger equations, J.

Phys. A, 36 (2003), pp. 7307–7330.
[14] W. JIA , L. BIAO , AND Y. WANG-CHUAN, Approximate solution for the Klein-Gordon-Schrödinger equation

by the homotopy analysis method, Chinese Phys. B, 19 (2010), 30401 (7 pages).
[15] C. A. MICCHELLI, Interpolation of scatterded data: distance matrix and conditionally positive definite func-

tions, Const. Approx., 2 (1986), pp. 11–22.



ETNA
Kent State University 

http://etna.math.kent.edu

COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS 31

[16] H. POWER AND V. BARRACO, A comparison analysis between unsymmetric and symmetric radial basis func-
tion collocation methods for the numerical solution of partial differential equations, Comput. Math. Appl.,
43 (2002), pp. 551–583.

[17] R. SCHABACK AND H. WENDLAND, Kernel techniques: From machine learning to meshless methods, Acta
Numer., 15 (2006), pp. 543–639.

[18] C. SHU, H. DING, AND K. S. YEO, Local radial basis function-based differential quadrature method and
its application to solve two-dimensional incompressible Navier-Stokes equations, Comput. Methods Appl.
Mech. Engrg., 192 (2003), pp. 941–954.

[19] M. L. WANG AND Y. B. ZHOU, The periodic wave solutions for the Klein-Gordon-Schrödinger equations,
Phys. Lett. A., 318 (2003), pp. 84–92.

[20] G. B. WRIGHT AND B. FORNBERG, Scattered node compact finite difference-type formulas generated from
radial basis functions, J. Comput. Phys., 212 (2006), pp. 99–123.

[21] X. M. X IANG, Spectral method for solving the system of equations of Schrödinger-Klein-Gordon field, J.
Comput. Appl. Math., 21 (1988), pp. 161–171.

[22] H. YUKAWA , On the interaction of elementary particles I, Proc. Phys. Math. Soc. Japan, 17 (1935), pp. 48–57.


