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COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS FOR THE
COUPLED KLEIN-GORDON-SCHR ODINGER EQUATIONS *

AHMAD GOLBABAI T AND ALI SAFDARI-VAIGHANI #

Abstract. This paper presents radial basis function (RBF) collocatiethods for the coupled Klein-Gordon-
Schibdinger equations. Unlike traditional mesh oriented methB&s- collocation methods require only a scattered
set of nodes in the domain where the solution is approximatedthie RBF collocation method in finite difference
mode (RBF-FD), weights for the finite difference formula aréagied by solving local RBF interpolation problems
set up around each node in the computational domain. We shothth®BF-FD method has good accuracy and a
sparse coefficient matrix, as compared to the global form oREBE collocation method and other methods.

Key words. Collocation methods, coupled Klein-Gordon-Satiinger equations, radial basis functions (RBF).

AMS subject classifications.65N06, 65N40, 65D25, 35Q51.

1. Introduction. Nonlinear phenomena play a crucial role in a variety of ddfien
fields, especially in fluid mechanics, solid state physiestigde physics, plasma waves and
chemical physics. In this paper, we consider the couplethkKBordon-Schiadinger (KGS)
equations

W + Vgp +vu =0,
(1.1) 5
utt_umw+u_|vl :07

with (z,t) € ©Q x (0, 7] and initial conditions
u(z,0) = uo(x), w(z,0)=wup(z), v(z,0)=v9(z), xeQ,
and zero boundary conditions
u(z,t) =v(x,t) =0, (x,t) € 90 x (0,T],

wheref? is a bounded domain iR andof? is the smooth boundary éf. The equationsi(.1)
describe the dynamics of a conserved complex nucleonifjeéideracting with a neutral real
scalar meson field. The KGS equations can be considered a generalization efdksical
model of Yukawa interactiong], which goes back to 1935. For more physical details we
refer the reader to YukawaP)].

This problem has been the subject of research for many yadrksas motivated a series
of papers in physics and mathematics. The well-posednéhbe #flein-Gordon-Sclidinger
equations has been studied by many authors such as Bacljeldayashi and Von WahliZ],
Fukuda and Tsutsum®]. Guo and Miao 11] studied the asymptotic behavior of the solution
for these equations. Inlf], the authors discussed the initial boundary value probdém
Klein-Gordon-Schidinger equations. Numerical methods such as the homotoalysis
method [L4], the conservative spectral methaell], and the Crank-Nicolson method with
time-splitting spectral discretizatio@][have been used to solve this problem.

In the last decade, collocation methods based on Radiak Basgictions (RBF) be-
came important for obtaining the numerical solution of as ordinary differential equations
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(ODEs) and partial differential equations (PDE$) T, 10, 16, 20]. These methods are de-
signed to overcome the limitations of methods based on jpspedtral (PS) and mesh-based
methods, such as the finite difference method (FDM) and tlite #slement method (FEM).
The RBF-based collocation methods have the advantage ofgoiring a mesh, so that the
approximate solution is represented entirely in relatmsdattered node/data points. Such
methods can be easily extended to higher dimensions.

In this work, we investigate accurate methods based on bgoiatblocal RBF collocation
schemes, to study the dynamics of the equatidny.(In the local form of the RBF collo-
cation schemes, the spatial derivatives for each node cappr®ximated by local stencils.
This allows us to have flexibility in choosing these stenfllg]. The key points in design-
ing our new numerical methods consist of discretizing spdgrivatives by global and local
RBF interpolants at scattered points, and solving the tiegusystem of ordinary differential
equations.

The layout of the paper is the following. In Sectignthe properties of RBFs and their
application to solving interpolation problems are diseassSectior8 deals with RBF col-
location methods for the KGS equations. The results of nigalkeexperiments and data
comparison are presented in Sectibrin Section5 we give some final remarks.

2. Radial basis function approximation. Given N + 2 distinct pointszg, ..., 241 in
R4, and the corresponding function values:), . .., u(zy41), the standard RBF interpola-
tion problem is to find an interpolant of the form

N+1

s(x) =D Nollle — ),
j=0

where|| - || is the Euclidean normy; € R, forj = 0,..., N + 1, and¢ is the real-valued in-
verse multiquadric function, defined Byr) = 1/v/¢?r? + 1. The coefficients\y, ..., An 41
are determined by imposing the interpolation conditiefs;) = u(x;), 7 =0,..., N + 1,
which lead to a symmetric system of linear equations

(2.1) AN = u,
where
AZJ:qS(H:El_xJH)’ ZaJ:037N+]—7

w=[u(zo), ..., ulxni1)]",

A=[Xo,. .., Anvaa]T.
Micchelli [15] proved that the inverse multiquadric (IMQ) radial basisdtion is positive
definite, so the coefficient matrix ir2 (1) is invertible.

The Lagrangian form of RBF, based on cardinal basis funstigives an alternative

formulation which has the advantage of allowing easy evalnaf linear spatial differential

operators§]. In order to obtain the cardinal basis functiopgz), j = 0,..., N + 1, with
the property

1, if Ti = Ty,

vile:) = {07 it 2, # a;,

we consider the linear system
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whereW (z) = [¢o(2), ..., ¥n1(2)]", ¢(z) = [p(lz — 2ol)), - .., ¢(lz — 2n1])]", and
the coefficient matrix4 is as above.

Therefore, the RBF interpolation can alternatively betentin Lagrange form as

N+1

s(x) = Y Wi(@ulz)).

j=0
Moreover, for a linear operatat, we have

N+1

(2.2) Ls(z) =Y Lj(z)ul;).
j=0

Then, fori = 0,..., N + 1, the undetermined coefficient vectors
LU(2;) = [LPo(2s), ..., LNt (23)]"
are computed by solving the linear system
ALY (x;) = Loy,
whereL$; denotes the evaluation at the paintof the column vector

Lo(x) = [Lo(|lz — zoll), - .-, Lo(|lz — zn )]
3. RBF-based collocation methods.

3.1. The RBF collocation method in global mode (RBF-G).In the Lagrangian form
of the global RBF interpolation method for a time-depengenblem, the solutiom(x, t) is
approximated by

N+1

(3.1) sulz,t) = Z i(x)u,(t),

J=0

wherew; (t) ~ u(z;,t), fort > 0, andu;(0) = u(z;,0). The centers of the RBFs used in
equation 8.1) consist of the sett = Xq |J Xpq, WhereXg = {z; € Q, j =1,...,N},
Xoa = {z; € 09, j = 0,N + 1}. For simplicity, we let the set coincide with the set of
collocation points.

Note that the zero boundary conditions@® are satisfied if the approximation for-

mula 3.1) is a linear combination af1, ..., ¥y, and takes the form
N
(3.2) sul,t) =D hj(a)u;(t).
j=1

If we write u; = w, equations1.1) can be rewritten as follows

Wt + Vg +vu =0,
(3.3) Wg — Ugg + U — ‘v‘2 =0,

up —w =0,
with initial conditions

w(z,0) = uo(z), w(z,0)=we(x), v(z,0)=uvy(x), z€.
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Discretizing the spatial variable at the node points, armbtuting 3.2) in the PDEs 8.3),
leads to the system of ODEs

N
Z'Uk E

2

(xr)v; (1) — v () ug(t),
7j=1
(3.4) N
= Cil;éj xk uJ — uk( ) + vk(t)vk(t),
J=1

w)(t) = wi(t), k=1,...,N,
whereu(t) is the complex conjugate af(t). The matrix form of 8.4) is
iV’ ( )= _\I/xxv(t) — V(1) * U(t)7
(3.5) W'(t) = U, U(t) — U(t) + V(1) * V (1),
U'(t) = W),
whereV,, = [fj;‘;’ (3:1),...,‘222‘5 (x)]T, V(t) = [v1(t),...,on(®)]T, W(t) = [w(t),...,
wn ()T, U(t) = [ui(t),...,un(t)]T. Note that the symbol & represents element-wise
multiplication.

Now write V() = V,.(t) + iV;(t), where ther and: indices indicate the real part and
imaginary part of complex vector, respectively. By usinig tiotation, 8.5) can be written as

V(1) 0 —Wu O 0 Vi (1) =Vi(t) = U(t)

V| _|e. o o o ||V V() + U(t)
W T Lo 0 0 U —1| (WO T V)« Vi) + Vilt)  Vi(t)
U'(t) 0 o I 0 U(t) 0

This system of ODE can be solved by standard ODE solvers suttiessolver®de23 and
odel5s in MATLAB. An alternative scheme for solving the system of B3 to use the time
stepping technique. We can use the forward Euler time-sigppethod for approximating
the time derivative. Left = T/M, and defing” = ndt,n = 0,..., M. If we assume that
u", v.r, V' andW™ are approximations dv (¢"), V,.(¢"), V;(¢t™) andW (¢), we get

yntt I —6tU,, O 0 v
V"+1 |6t T, I 0 0 v
wrtt| = | o 0 I 6t(U,, —I)| [W"
Un+l 0 0 ot1 I un
7‘/1_71 * Un
Vrn * U’I’L
0

where/ is the N x N identity matrix.

3.2. The RBF collocation method in finite difference mode (RB-FD). The finite
difference method consists of approximating the derieati¥ a functionu at a given point
based on a linear combination of the valueucét some surrounding node points. The FD
formula approximates the action of the linear operatan = = z;, (1 < k < N) as follows

N
j=1
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wherew;, ), k = 1..., N, are called the FD weights at node points They are usually
computed using polynomial interpolatio]

In the RBF-FD approach, the weights of the FD formulas araiobt using the RBF
interpolation technique. This method allows us to deteentiire derivative approximation for
each node point in a local support region. Let the supporgggn for each interior node,
be identified by choosing/;. nodes that are defined as

support(zy) = {z; € Q|0 < |jz; —xx|]| <R}, k=1,...,N,

whereR is the size of the local support afd;, is the total number of interior and boundary
nodes which lie in the supporting region of the nage

To derive the RBF weights;, ) for each nodery, £ = 1..., N, we approximate the
spatial linear operatof using @.2) in the supporting region ofy, i.e.,

M,

)R Wi u(;),
j=1

wherew;, jy = Ly (xy).
Discretizing the spatial variable in the governing equai@.3) and approximating the
RBF weights forC = -2; leads to a system of ODEs

(3.6) M,
Zw(;w w;(t) — up(t) + vk (t)vr(t),

up,(t) = wk(t), k=1,...,N.

The system of ODES3(6) can be rewritten in matrix form

Vi(#) 0 b, 0 0 Vi (t) —Vi(t) = U(t)

VIt)| _ [®ze O O 0 Vi) | Vi (1)« U(t)

w'@)| | o 0 0 @y —1I| |W() Ve (t) * Ve(t) + Vi(t) « Vi(t) | 7
U'(t) 0 0 I 0 U(t) 0

where the sparse matrik,, = [W(TL_), . 7w(TN .)]T contains the RBF weights. The sparsity

of @, is dependent on the distribution of points and the size oftitel supporiR. Figure3.1
shows the sparsity pattern @f,,, for different sizes of the local support.

The resulting system of ODEs can be solved by using an alai@bE solver such as
MATLAB’s ode23, or by a time stepping technique.

4. Numerical results. In this section, we present some numerical results to detraias
the validity and effectiveness of the proposed methods.aEkaracy is measured by the root
mean square (RMS) error and by thg, error

1 & 23
RMS = [NZ (Uexacl<$j7t) _“app(xjvt)) } )

Jj=1

Loo = ||uexac(,t) — tapp(, t)||oc = lr<nax [uexac{ ;) — tapp(;,t)|.



ETNA
Kent State University
http://etna.math.kent.edu

COLLOCATION METHODS BASED ON RADIAL BASIS FUNCTIONS 27
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FIGURE 3.1. Sparsity pattern of matri® .., for equidistant points with differerf.

The exact solution to equations.{) was derived in13]:

v, (x,t) = 3Bsech?(Bx + at) cos(yx + (467 — 4)t),
vi(z,t) = 3Bsech®(Bz + at) sin(yz + (487 — ¥2)t),
u(z,t) = 6452 sechz(ﬁx +at), xe, t>0,

wherea = /482 — 1,7 = —%, for 8 > 1/2. Numerical experiments are carried out with
parameters® = 6h, 8 = 1, andQ = [—10, 10]. In our experiments, we use an equidistant
points discretization, = —10 + kh,0 < k < N + 1, h = 20/(N + 1), and Halton points
discretization.
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FIGURE 4.1. Absolute error of the RBF-FD method with= 0.5 andh = 0.2, att = 1.

Figures4.1 and4.2 show the absolute error af and|v|, for the presented methods, at
t = 1. If the shape parameter is chosen in a data-dependent ayf, ¢.is proportional of:,
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FIGURE 4.2. Absolute error of the RBF-G method with= 0.5 andh = 0.2, att = 1.
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FIGURE 4.3. From left to right, theL, error of the RBF-FD and RBF-G methods as a functiorhpfvith
c=1.5,att = 1.

the convergence rate cannot be shown, but this regime isacfipal interest3]. The RMS
error andL ., error of the approximated solutions, for our proposed nagivaith equidistant
points, are reported in Tablel The numerical results of the Crank-Nicolson method with
time-splitting spectral discretization (CN-TSSR), ffor a time stef® x 103, are presented in
the last column of Tablé.1 It can be seen that the numerical results obtained by the RBF
method are in good agreement with the exact solution, inrashto the CN-TSSP method
and the RBF-G method. Tabte2 shows the accuracy of our proposed methods using the
Halton distribution points. Note that in Tabdel and Tablet.2we consider a data-dependent
shape parameter. For a fixed shape parameter, the erroiogmae as the data points become
denser. The error behavior and convergence rate are igatesdifor a fixed value of the shape
parameter: [17] in Figure4.3, where the error is displayed a function/ofForc = 1.5, the
condition numbers of the coefficient matrices does not exte& when0.05 < h < 0.2.
Figure4.4displays the., error of the RBF-FD method and RBF-G method for different
values of time. We can see that the error observed in the RBtetBod increases more than
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TABLE 4.1
Error comparison of the approximated solutions for equtlis points withh, = 0.1, ¢ = 0.9, andh = 0.2,
c=0.5,att = 1.

RBF-G RBF-FD CN-TSSP
h RMS Lo RMS Lo RMS Lo
[v] 0.2 8.83e-4 2.00e-3 1.48e-6 5.04e-6 1.66e-5 4.77e-5
0.1 6.6le-4 1.06e-3 1.06e-6 4.54e-6 1.50e-5 4.77e-5
uw 0.2 5.48e-4 3.73e-3 3.32e-6 9.02e-6 2.65e-5 7.18e-5
0.1 3.18e-4 2.19e-3 1.64e-6 7.74e-6 2.52e-5 7.18e-5

TABLE 4.2
Accuracy of the presented methods f60 and 200 Halton points corresponding toe= 0.5 andc = 1, att = 1.

RBF-G RBF-FD
Number of points RMS L. RMS L
lv| 100 1.25e-3 4.45e-3 3.77e-6 7.78e-6
200 1.00e-3 4.30e-3 3.30e-6 7.37e-6
u 100 8.16e-4 4.85e-3 7.55e-6 3.96e-5
200 6.97e-4 3.77e-3 6.98e-6 2.4l1e-5

when using the RBF-FD method. In Figuies, the L, errors are shown for a different size
of the local support.
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FIGURE 4.4. L error as a function of time for and|v|, withh = 0.2 andc = 0.5.

5. Conclusion. In this paper, the collocation methods based on the RBF-GR&teFD
methods for the coupled Klein-Gordon-Sotinger equations are presented. It is shown that
these methods require only a scattered set of nodes in thaidanstead of a mesh, which
is the case for traditional methods such as FEM or FDM. Expental results show that the
proposed methods for the numerical solution of the KGS égjusiare very accurate. Also,
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FIGURE 4.5. L~ error as a function ofR = nh, withh = 0.2 andc = 0.5, att = 1.

it is shown that the coefficient matrix of the RBF-FD methodpsirse, and that this method
has a good accuracy, as compared to the RBF-G and CN-TSSBdreth
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