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Abstract. We describe a boundary integral equation that solves the exterior Neumann problem for the Helmholtz
equation in three dimensions. The unique solution is found by approximating a Fredholm integral equation of the
second kind with the boundary element collocation method. We prove superconvergence at the collocation points,
distinguishing the cases of even and odd interpolation. Numerical examples demonstrate the performance of the
method solving the integral equation and confirm the superconvergence.
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1. Introduction. Many applications in physics deal with the Helmholtz equation in
three dimensions. One specific example is the exterior Neumann problem. There are dif-
ferent approaches to solve this partial differential equation. Two commonly used approaches
are finite differences and finite elements. However, the given domain is of infinite extent
and the Sommerfeld radiation condition has to be satisfied. One can avoid these problems
using a boundary integral equation. In addition, the dimensionality is reduced by one. The
integral equation approach is the most widely used method to solve the Helmholtz equation.
However, a boundary integral equation based on Green’s representation theorem or based on
a layer approach will lack uniqueness for certain wave numbers.

Fortunately, there exist different variations and modifications of the boundary integral
equation to overcome this problem. The combined Helmholtz integral equation formula-
tion (CHIEF) due to Schenck [36] overdetermines the integral equation with the interior
Helmholtz integral formulation by choosing strategically as few interior points as possible.
For numerical results and CHIEF point selection refer to Seybert et al. [39], and Seybert and
Rengarajan [40], respectively. However, in general the choice of those interior points is not
clear.

Another boundary integral equation formulation is due to Burton and Miller [10, 11, 12].
They cleverly combine the Helmholtz representation formula with its normal derivative and
give an idea for the existence and uniqueness proof. A complete proof with appropriate space
settings is given by Lin [24]. However, one of the integral operators is hypersingular and
usually Hölder spaces have to be considered, which complicates the analysis of the boundary
element collocation method. The first attempt to solve the boundary integral equation numer-
ically has been made by Burton [11] in 1976. He used the Maue and Mitzner transformation
to deal with the hypersingular operator. It also can be removed by regularization which re-
sults in a product of two surface integrals, where the kernels are now weakly singular. Amini
and Wilton [1] presented numerical results for a sphere and an ellipsoid in 1984 and Liu and
Rizzo [28] illustrated numerical results for a sphere in 1992.�
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Jones [20] and Ursell [37, 38] introduced the theory of modifying the fundamental solu-
tion. They added radiating spherical wave functions to the fundamental solution to ensure the
unique solvability of the boundary integral equation. Various articles derived coefficients of
these added terms to ensure different criteria for a perturbation of a sphere. Two of them are
due to Kleinman and Roach [23] and Kleinman and Kress [22], respectively. However, the
choice of the coefficients for general surfaces is still in question. For some numerical results
we refer to the article by Lin and Warnapala-Yehiya [27].

Numerical results for the � -matrix method developed by Waterman in 1969 [44] have
been given by Tobocman [42]. However, this method has some numerical difficulties; see [42]
for a discussion. Numerical results for prolate spheroids are presented in [43]. Related work
is given by Martin [29].

The boundary integral equation derived in 1965 by Panich [34] uses a combination of
a single-double layer including a regularization technique. His formulation also results in a
product of two surface integrals, and Hölder spaces have to be considered; see also Silva,
Power and Wrobel [41] for the smoothness requirements. Panich did not get the desired
attention, since his article is written in Russian.

An extension of Panich’s method is known as the “modified acoustic single-double layer
approach”, which we call the “modified Panich method” (MPM). This method has been stated
in [15] and [35]. No analysis and numerical results have yet been reported for this extension.
The major advantage of the MPM is that we can use the space of continuous functions; that
is, this approach does not require any Hölder space settings, which would be more restrictive.

For the MPM we use a boundary element collocation method, since superconvergence is
observed at the collocation nodes. Atkinson and Chien [5] prove superconvergence at the col-
location points for a boundary integral equation solving the Laplace equation using quadratic
interpolation. Chien and Lin [13] extend their idea and prove superconvergence at the collo-
cation points for a boundary integral equation for all wave numbers that solves the exterior
Dirichlet problem for the Helmholtz equation using quadratic interpolation. They also prove
superconvergence for a boundary integral equation based on Green’s formula that solves the
exterior Neumann problem for the Helmholtz equation using quadratic interpolation. How-
ever, their integral equation will break down for certain wave numbers.

Based on these results, we first prove superconvergence at the collocation points for an in-
tegral equation based on a single layer formulation that solves the exterior Neumann problem
for the Helmholtz equation, distinguishing the cases of even and odd interpolation. Although,
we are able to prove superconvergence, this integral equation breaks down if the wave number
is an interior Dirichlet eigenvalue. Unlike Atkinson and Chien [5] and Chien and Lin [13], we
use interior collocation nodes as in Atkinson and Chandler [4]. As a byproduct, we also obtain
superconvergence of an integral equation based on a single layer formulation that solves the
exterior Neumann problem for the Laplace equation by choosing the wave number to be zero.
Finally, we conjecture superconvergence at the collocation points for the MPM (note that we
prove convergence for the MPM in Corollary 3.2) that solves the exterior Neumann problem
for the Helmholtz equation which we can confirm with numerical results distinguishing the
cases of even and odd interpolation. Note that we are able to prove superconvergence under
a strong condition. This condition is needed in our proof due to the nature of the composition
of three integral operators, which is needed to regularize the normal derivative of the double
layer — a hypersingular integral operator. We are not able to remove that condition, but we
give an observation in the paragraph after Theorem 4.13 as to why the condition might hold.
Our proofs are based on ideas of Atkinson and Chandler [4] and Micula [31] who proved
superconvergence for the radiosity equation, whose kernel has only a bounded singularity.
In addition, Micula also proved superconvergence for the exterior Neumann problem solving
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the Laplace equation using only constant interpolation; see also [32].
Note that there exist other methods, such as spectral methods, to solve the Helmholtz

equation. We mention here the work of Graham and Sloan [19].
Finally note that this overview is by far not complete. Some of the most recent results

are given by Antoine and Darbas [2] for example, who use an alternative integral equation
for smooth surfaces which can be viewed as a generalization of the usual Burton and Miller
approach.

Our new approach is limited to smooth surfaces, but we would like to emphasize that,
surprisingly, our approach still works for a cube (a polyhedral domain) using constant inter-
polation. However, there are some more recent publications dealing with uniquely solvable
integral equations for the exterior Dirichlet and Neumann problem for Lipschitz boundaries
in appropriate Sobolev spaces given by Buffa, Hiptmair and Sauter in [8, 9] and some theo-
retical results by Betcke et al. in [7]. Further results are presented by Engleder and Steinbach
in [17, 18] and by Meury in [30].

The outline of this article is as follows. Section 2 gives the problem formulation of the
exterior Neumann problem for solving Helmholtz’s equation. The integral equation based
on the MPM is reviewed as well as an existence and uniqueness result. Section 3 explains
the boundary element collocation method and we give a convergence and error analysis; that
is, we review the consistency, stability and convergence order of the boundary element col-
location method. In the next section we first prove superconvergence for an integral equa-
tion based on a single layer formulation that solves the exterior Neumann problem for the
Helmholtz equation. Although we are able to prove superconvergence, the integral equation
breaks down if the wave number is an interior Dirichlet eigenvalue. In addition, we are able
to prove superconvergence for the integral equation based on a single layer formulation that
solves the exterior Neumann problem for the Laplace equation. Then we prove superconver-
gence at the collocation points distinguishing the cases of even and odd interpolation under
a strong condition. In Section 5 numerical results for several smooth surfaces are presented
which are in agreement with the theoretical results. A short summary concludes this article.

2. The exterior Neumann problem for solving Helmholtz’s equation. Let � be a
bounded open region in ��� . The boundary of � is denoted by 	 and is assumed to consist of
a finite number of disjoint, closed, bounded surfaces belonging to class 
�� , and we assume
that the complement � � \ � is connected; see [14, p. 32].

The mathematical formulation of the exterior Neumann problem consists of finding a
complex-valued solution ����
������ � \ ������
������ � \ ��� solving the Helmholtz equation� ���� !�#"%$ � �&�� '�)(+*-,  .�/� � \ ��, 0213$�45*
with the Neumann boundary condition6 �6 7 �98:�;(+<���8=�>, 8?��	),
where < is a given continuous function on the surface 	 and ���98=� satisfies the Sommerfeld
radiation condition @BA 1CEDGFIH J

6 �6 HLK A $-�=M3(+*-,
where H (ON 8�N and the limit holds uniformly in all directions 8:P-N 8&N . First, define the acoustic
single layer integral operatorQ=RTS U=V �98=�W(+XZY\[ R �98],_^-� U ��^`�;aTbZ�9^-�c, 8?��� � \ 	;,
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and the acoustic double layer integral operatordeRfS U=V �98:�g(hX Y 66 7ji [ R ��8#,_^-� U �9^-��aTbZ�9^-�>, 8���� � \ 	;,
where [ R �98#,k^-�l(nm>o`p#� A $ H �EPrq�s H with H (tN 8 K ^�N for 8 , ^��L� � , 8vu(w^ is the fundamental
solution of the Helmholtz equation, and

U �O
x��	]� . Next, define the acoustic single and
double layer integral operators acting on the boundaryyWR-S U=V ��8=�W(hXZY\[ R �98],_^-� U ��^`�)aTbZ�9^-�c, 8?��	),z R S U=V ��8=�W( X Y 66 7 i [ R �98#,k^-� U �9^-�;aTbZ�9^-�c, 8L�/	;{
Both operators are compact from 
x��	]� to 
�|~} �=��	]� . In fact, the first operator is compact from
 |~} � ��	]� to 
 ��} � ��	]� . Their normal derivatives are defined, respectively, byzw�R S U=V ��8=�;(wXZY 66 7�� [ R �98],_^-� U ��^`�;aTbZ�9^-�c, 8���	),��RTS U=V ��8=�;( 66 7�� XZY 66 7�i [ R �98#,k^-� U �9^-��afb���^-�c, 8���	;{
The first operator is compact from 
x��	&� to 
 |~} � ��	]� , whereas the second operator is bounded
from 
G�c} �=��	&� to 
!|~} �=��	]� ; see [45] or for more general 
���} � , ��4%* , see [26].

The problem at hand can be solved with the aid of integral equations. We use the “mod-
ified Panich method” (MPM) to derive an integral equation that solves the problem at hand.
This approach has been stated in [15] and is an extension of Panich’s method [34].

We can write �&�� '� as a combination of a single and double layer combination in the
form ���� !�)(�� QfR " A�� deRZQ �|W� S U=V �� '�>,  n�/� �-� ��{(2.1)

Take the normal derivative of (2.1); let  h��8���	 and use the jump relations to obtainJ K���`� " zw�R " A�� ��R�y �| M S U=V �98=�g(+<���8=�c,(2.2)

which has to be solved for the unknown density function
U �98=� on the surface 	 . The parameter� ��� ,

� u(�* such that
�W� m]$34t* ensures uniqueness for every wave number satisfying0213$t4�* . The existence and uniqueness proof is given in [15]. Note that the operatorz �R " A�� ��R�y �| is compact from 
x��	&� to 
x��	]� . In fact, it is also compact from

y F ��	]� to
x��	&� ; see [6] for the details.
To remove the hypersingularity of the operator

�xR
, we use the identity (see [15, p. 43])� | y | (t� z �|\� � K �q � ( J z �| K ��`� M J z �| " ��-� M

and therefore rewrite the Fredholm integral equation of the second kind (2.2) in the formJ K���`� " zw�R " A��L� � ��R K � | � y �| " J zw�| KO�� M J zw�| " �� M y |c� M S U=V �98:�g(�<���8=�>,
(2.3)



ETNA
Kent State University 

http://etna.math.kent.edu

THE EXTERIOR NEUMANN PROBLEM 117

where the kernels of the operators
y | , z �R and

� R K � | contain only weak singularities for
which numerical approximations can be constructed. Finally, solve�&�� '�)( � Q R " AB� d R Q �| � S U=V �� !�c,
to obtain ���� !� for any point  in the exterior domain.

REMARK 2.1. Panich [34] seeks a solution in the form���� '�)(�� Q=R " A�� dIR�Q | � S U=V �� '�c,  n��� � � ��,
where the density is found by solving the Fredholm integral equation of the second kindJ K��� � " z �R " AB� � R y | M S U=V �98:�;(h<��98=�>{
However, we need

U �?
�|�} �=��	&� , which would be more restrictive.

3. The boundary element collocation method. The boundary element method is dis-
cussed extensively in [4]. We briefly summarize the important parts.

Assume that 	 is a connected smooth surface of class 
�� ; that is, 	 can be written as	L(+	 ���e�~����� 	] �,(3.1)

where each 	¢¡ is divided into a triangular mesh and the collection of those is denoted by£`¤ (¦¥ �x§ N ��¨3©�¨%ª�« {(3.2)

Let the unit simplex in the b~¬ -plane be defined byU (w¥Z�b�,_¬_�®N�* ¨ b�,_¬c,EbW"¯¬ ¨+��« {For a given constant ° , with *x±%°²± � Pj³ , let

��b�´k,_¬¡��)( J�µ "+� H K ³ µ �¶°H ,�· "+� H K ³ · �¶°H M¯, * ¨ µ , · , µ " · ¨ H(3.3)

be the uniform grid inside
U

with < C (¸� H " � ��� H " � �EP � nodes. We use interior points to
avoid the problem of defining the normal 7�� at the collocation points which are common to
more than one face

�x§
; see [4, p. 280]. The ordering of this grid is denoted by the nodes¥�¹ � ,�{~{�{>,E¹~º_» « . The interior nodes for constant, linear and quadratic interpolation are illus-

trated in Figure 3.1 and we explain later why we choose such ° ’s.
For each

� §
, we assume there is a map¼ §²½ U ��¾��K�K-KTK �¿EÀ�Á�¿ �x§ ,(3.4)

which is used for interpolation and integration on
� §

. Define the node points of
� §

byÂ § } ¡ ( ¼ § ��¹ ¡ �>, · ( � ,�{�{~{>,E< C {To obtain a triangulation (3.2) and the mapping (3.4), we use a parametric representation for
each region 	 ¡ of (3.1). Assume that for each 	 ¡ , there is a mapÃ ¡ ½)Ä ¡ �c¾¢�K�KTK-K �¿EÀ�Á�¿ 	:¡�, · ( � ,~{�{~{>,>Å-,(3.5)
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FIG. 3.1. Interior node points for constant, linear and quadratic interpolation: constant interpolation nodes
within the unit simplex with ÆvÇÉÈkÊ�Ë (left); linear interpolation nodes within the unit simplex with ÆvÇÌÈkÊ�Í
(middle); quadratic interpolation nodes within the unit simplex with ÆGÇeÈkÊ~È_Î (right).

where
Ä ¡ is a polygonal region in the plane and

Ã ¡ is sufficiently smooth. That means,
a triangulation of

Ä ¡ is mapped onto a triangulation 	�¡ . Let Ï�x§ } ¡ be an element of the
triangulation of

Ä ¡ with vertices ÏÂ �c} § , ÏÂ ��} § and ÏÂ � } § . Then the map (3.4) is given by¼ § ��b�,_¬_�g( Ã ¡ �_� � K b K ¬_� ÏÂ ��} § "²¬ ÏÂ �>} § "%b ÏÂ � } § �g( Ã ¡ �9Ð § ��b�,k¬_�_�c, �b�,k¬_�W� U ,(3.6)

with the obvious definition of the map Ð § . We collect all triangles of
Ä ¡ for all · together and

denote the triangulation of the parametrization plane byÏ£ ¤ (¦¥gÏ� § N �Ñ¨5©�¨%ª�«(3.7)

and the mesh size by ÏÒ ¤ (Ó1ÕÔjo�cÖ § Ö ¤ a A Ôj1��TÏ� § �)×Ó1ÕÔ�o�cÖ § Ö ¤)Ø § ,(3.8)

which satisfies ÏÒ ¤ �Ù* as ª �ÙÚ .
Most smooth surfaces can be decomposed as in (3.1). In the sequel we consider con-

forming triangulations satisfying T3; see [3, p. 188]. That is, if two triangles in Ï£ have a
nonempty intersection, then that intersection consists of either (i) a single vertex, or (ii) all of
a common edge. Note that T1 and T2 are automatically satisfied, since our surface is assumed
to be smooth. The refinement of Ï� § �ÛÏ£ ¤ is done by connecting the midpoints of the three
sides of Ï� § yielding four new triangles. Thus, T3 is automatically satisfied and this also leads
to symmetry in the triangulation and cancelation of errors occurs; see [3, p. 173].

For interpolation of degree H on
U

, let �v( � K b K ¬ and the corresponding Lagrange
basis functions of degree H on

U
are obtained by the usual condition��´k��¹�´Ü�)( � , ÔjÝfa ��´_��¹�¡r�)(+*-, AßÞ µ u( · {(3.9)

In Table 3.1 we state the nodes and Lagrange basis functions over
U

for constant, linear and
quadratic interpolation.

The interpolation operator is given byà ¤ �&��^`�)( à ¤ �&� ¼ § �b�,k¬_�_�;( º_»á¡kâ � �&� ¼ § ��¹�¡��k�¶�B¡���b�,k¬_�c, ��b�,_¬_�W� U , © ( � ,�{�{~{>, ª ,
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TABLE 3.1
Nodes and Lagrange basis functions over ã for constant, linear and quadratic interpolation.

Constant Linear Quadraticä å_æ çèæ¶éëê>ì�í�î åkæ çèæ¶éëê>ì�í�î å_æ çèæÜé�êcì�í�î
1

é Æ ì Æ î È é Æ ì Æ î ï�ð�ñò ð�óÜñ é Æ ì Æ î ïjðZñò ð`óÜñ/ôkõ ï�ð�ñò ð�óÜñ�ö È¶÷
2

é Æ ì È ö�õ Æ î ø ð�ñò ð�óÜñ é Æ ì È ö�õ Æ î ø ðZñò ð`óÜñ ô õ ø ð�ñò ð�óÜñ ö È ÷
3

é È ö�õ Æ ì Æ î ù ðZñò ð�óÜñ é È ö�õ Æ ì Æ î ù ð�ñò ð`óÜñ ô õ ù ðZñò ð�óÜñ ö È ÷
4 ú�Æ ì ò ðZñû5ü ý ø ð�ñò ð�óÜñ ï�ð�ñò ð�óÜñ
5 ú ò ð�ñû ì ò ð�ñûþü ý ù ðZñò ð�óÜñ ø ð�ñò ð�óÜñ
6 ú ò ð�ñû ì Æ ü ý ù ðZñò ð�óÜñ ï�ð�ñò ð�óÜñ

where ^�( ¼ § �b�,_¬_� . The interpolation polynomial of degree H is denoted by � ¤ . Note thatà ¤
defines a family of bounded projections on

y F ��	&� with the pointwise convergenceà ¤ �ÿ� � Ô � ª �ÙÚ�, �L� � ¤ ,(3.10)

since ÏÒ ¤ ��* . Here
� ¤

denotes a finite dimensional subspace of
y F

.
Recall that we have to solve a Fredholm integral equation of the second kind� ���98:� K X Y�� ��8#,_^-�¶�&��^`�&aTbZ��^`�g(�<��98:�c, 8���	){(3.11)

Using the map (3.6), equation (3.11) is equivalent to� ���98:� K ¤á§ â � X�� � �98#, ¼ § ��b�,_¬_�k�2��� ¼ § ��b�,_¬_�k� ���� J
6 ¼ §6 b 	 6 ¼ §6 ¬ M²��b�,k¬_� ���� a U (�<���8=�>, 8���	;{

Define the collocation nodes by¥ Â § } ¡ « (n¥ ¼ § ��¹ ¡ �c, © ( � ,�{~{�{>, ª , · ( � ,�{~{�{>,�< C « {(3.12)

Collectively, we refer to the collocation nodes ¥ Â § } ¡ « by ¥ Â ´ « , where
µ ( � ,�{�{~{>, ª < C . Then

substitute the approximated solution � ¤ in (3.11) and force the residual

H ¤ �98=�g( � � ¤ ��8=� K X Y
� �98#,k^-�2� ¤ �9^-��aTbZ�9^-� K <��98:�c, 8?�/	;,
to be zero at the collocation nodes. Thus, we have to solve the linear system of size ª < C 	 ª < Cgiven by� � ¤ � Â ´� K ¤á§ â �

º »á¡kâ � � ¤ � Â § } ¡r�	 X � � � Â ´ , ¼ § ��b�,_¬_�k�¶� ¡ ��b�,k¬_� ���� J 6 ¼ §6 b 	 6 ¼ §6 ¬ M ��b�,k¬_� ���� a U (+<�� Â ´ �>,
where

µ ( � ,~{�{~{>, ª < C .This can be written abstractly in the following form. To solve the Fredholm integral
equation of the second kind � � � K � �¶�/(+<=,(3.13)
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we approximate it by solvingà ¤ � � � K � �2� ¤ ( à ¤ <=, � ¤ � � ¤ {(3.14)

This will lead to equivalent linear systems. We reformulate (3.14) in the equivalent form� � � K à ¤ � �2� ¤ ( à ¤ <=, � ¤ � � ¤ ,(3.15)

where � ¤ is the solution of (3.14). Note that the iterated collocation solution Ï� ¤ ( �� S <x" � � ¤ Vsatisfies � K Ï� ¤ (.� � � K � à ¤ � ¾¢� � � � K à ¤ ���(3.16)

and à ¤ Ï� ¤ (3� ¤ � � ¤ � Â ´Ü�;( Ï� ¤ � Â ´Ü�c,(3.17)

where the collocation nodes Â ´ are given in (3.12); see [3, Eq. 3.4.101 on p. 78, Eq. 3.4.81
on p. 72 and p. 82] for details.

Note that we have consistency. That is, we have � K à ¤ �  ��* Ô � ª �ÙÚ�,(3.18)

since
� ½ y F ��	&� � 
x��	&� is compact and since (3.10) holds. With (3.18) we can prove

stability and convergence. That is, for all sufficiently large ª 4 � the operator � � K à ¤ � ��¾¢�exists as a bounded operator from
y F ��	&� to 
x��	]� . Moreover, it is uniformly bounded��� p¤����  � � K à ¤ � � ¾¢�  ±3Ú�{(3.19)

For the solution of (3.15) and (3.13) we have� K � ¤ ( � � � K à ¤ � � ¾¢� �9� K à ¤ �:�>{(3.20)

Now, we can establish the following result which is an easy extension of [3, Theo-
rem 9.2.1].

THEOREM 3.1. Let 	 be a smooth surface. Further assume that 	 is parametrized as
in (3.1) and (3.4), where each

Ã ¡Ñ��
 C�� � . Let
�

be a compact integral operator from
y F ��	&�

to 
x��	&� and assume the equation (3.13) is uniquely solvable for all functions <��.
x��	&� .
Let

à ¤
be the interpolation operator of degree H and consider the approximate solution of� � � K � ���/(�< by means of the collocation approximation (3.15). Then we obtain

Stability: The inverse operators � � � K à ¤ � � ¾¢� exist and are uniformly bounded for all
sufficiently large ª 4 � .

Convergence: The approximation � ¤ has error� K � ¤ ( � � � � K à ¤ � � ¾¢� � � K à ¤ ���(3.21)

and therefore � ¤ ��� as ª �ÙÚ .
Convergence order: Assume ���?
 C�� ����	]� . Then � K � ¤  F ¨ � ÏÒ�C�� �¤ , ª 4 � ,(3.22)

where ÏÒ ¤ is the mesh size of the parametrization domain given by (3.8).
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Proof. Consider
à ¤

as a projection operator from
y F ��	]� into itself. By (3.10) and the

assumption that ÏÒ ¤ ��* , we haveà ¤ �ÿ��� Ô � ª �ÙÚ
for all �?��
x��	]� . Since

�
is compact from

ylF ��	&� to 
x��	]� , we have � K à ¤ �  � * Ô � ª � Ú�{
The existence and stability of � � K à ¤ � �c¾¢� is based on (3.19), and the error formula (3.21)
is simply (3.20). The formula (3.22) is a consequence of [3, p. 165].

As a consequence we directly have the following corollary.
COROLLARY 3.2. Let the parametrization function

Ã ¡ ��
 C�� � and
U ��
 C�� �j��	]� . Then

we have 1ÕÔ�o��Ö ´ Ö º » ¤ N U � Â ´ � K U ¤ � Â ´ �~N ¨ � ÏÒ�C�� �¤
for the integral equation (2.3) obtained through the MPM.

Next, we will show that we can derive a better result; that is, superconvergence at the
collocation nodes.

4. Superconvergence of the boundary element collocation method. Here we show
that we can improve the result (3.22), distinguishing the cases of even and odd interpolation.

We confine ourselves to triangles in the parametrization plane and then use the map
Ã ¡ .

Therefore, let ���5��� be an arbitrary triangle with vertices ¥ ÏÂ � , ÏÂ � , ÏÂ � « . If <L��
x���T� , then��� <��98],_^-�)( º »á ´Bâ � <�� ¼ � ��¹ ´ �_�_� ´ �b�,_¬_�c, �98],_^-�;( ¼ � ��b�,_¬_�>,
is a polynomial of degree H in the parametrization variables b and ¬ that interpolates < at the
nodes ¥ ¼ � ��¹ � �>,�{�{~{�, ¼ � ��¹~º_»�� « , where ¹�´ and ��´ are given in (3.3) and (3.9) and¼ � ��b�,k¬_�;(¦� � K b K ¬_� ÏÂ � "²¬ ÏÂ � "vb ÏÂ � , �b�,k¬_�l� U ,(4.1)

which corresponds to the map Ð § given in (3.6) by suppressing the index © . We will write
explicitly

�����
and ¼ ��� if necessary. The operator norm is given by � �  ( 1ÕÔjo�! } "�#%$ � º »á¡kâ � N �B¡��b�,k¬_��Nß{(4.2)

The integration formula over � given byX � <���8#,k^`��a&�('hX � ��� <��98],_^-��a)�(4.3)

has degree of precision of at least H . If H is even, this implies that whenever � � and � � are
triangles for which � � � � � is a parallelogram, then (4.3) has degree of precision H " � ; see
[31, pp. 22–24]. If H is odd, then (4.3) has degree of precision H . Suppose we can find ° (�° |
such that (4.3) has degree of precision H " � , then (4.3) has degree of precision H " � over
a parallelogram. For example using °þ( � P+* for H ( � yields degree of precision two over
a triangle and degree of precision three over a parallelogram; see [4, p. 271]. For further
discussion regarding this matter refer to [31, pp. 58–67].
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For differentiable functions < , we define�� � ´ <��98],_^-� �� (�1ÕÔ�o|~Ö ¡ Ö ´ ����
6 ´ <��98#,k^-�6 8 ¡ 6 ^ ´ ¾ ¡ ���� ÔjÝfa  � ´ <  F ( 1xÔjo� � } i #,$ � �� � ´ <��98],_^-� �� {

In our case the kernel is given by � �.-l,0/G� with points -�(Ù� Ï8#, Ï^-� and /�(Ù��8#,_^-� . For
simplicity we write �21 �98#,k^-� instead of � �3-l,�/G�)( � �3-l,~��8#,_^-�k� .

The following lemma has been used in [31, Proof of Theorem 3.3.16], although it has
not been stated or proved.

LEMMA 4.1. Let � be a planar right triangle. Further, assume that the two sides which
form the right angle have length Ø . Let <L��
 C�� ���.�T� and �21 � y �j���T� . Then���� X � �(1 �98],_^-�>� � K ��� �_<���8#,k^`�)a)� ���� ¨ � Ø C�� � � X � N �(1 N�a)� ��� 1ÕÔjo�54 �� � C�� � < ��76 ,(4.4)

where - P�8� .
Proof. Let 9 C ��8#,k^`� be a Taylor polynomial of < with degree H over � . We have < K 9 C  F ¨ � Ø C�� �  � C�� � <  F , <L��
 C�� � �.�T�c,(4.5)

for a suitable constant � . Then, we use (4.5) to get the estimate (4.4); see [21, Lemma 3.4.22]
for details.

The result of Lemma 4.1 can be extended to general triangles. However, the deriva-
tives of < and �21 will involve the mapping ¼ � . The bound of (4.4) will depend on a term
proportional to some power of : ���T�g( Ø ���T�EP Ø � �.�T�c,
where Ø �.�T� denotes the diameter of � and Ø � ���T� denotes the radius of the circle inscribed in� and tangent to its sides. Our triangulation Ï£`¤ (w¥WÏ��¤ } § « , ª 4 � satisfies��� p¤ � 1ÕÔ�o;< � $ ;=?> � : �-Ï�x§ �W±3ÚA@
that is, it is uniformly bounded in ª and therefore, it prevents the triangles Ï��¤ } § from having
angles which approach 0 as ª �ÙÚ ; see [4, p. 276]. Hence, we have the following corollary.

COROLLARY 4.2. Let � be a planar triangle of diameter Ø , <3�3
 C�� ���.�T� and �21 �y �j���T� . Then ���� X � �(1 �98#,k^-�>� � K ��� �_<���8#,k^`��a&� ����
¨ � � : �B�T�E� Ø C�� � � X � N � 1 N�a&� � � 1xÔjo�C4 �� � C�� � < �� 6 ,(4.6)

where � � : �B�T�E� is some multiple of a power of
: ���T� and - P��� .

Proof. Let � be a planar triangle of diameter Ø with vertices Â � , Â � and Â � and let Ï� be
a planar right triangle with vertices ÏÂ � , ÏÂ � and ÏÂ � . Further, assume that the two sides which

form the right angle have length Ø . The map ¼ ;� ½ Ï� �c¾¢�K�K-KTK �¿EÀ�Á�¿ � is given by

�98],_^-�)( ¼ ;� � Ï8#, Ï^`�)(�ÐED ÏÐ ¾¢� ,
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where ÏÐ ½ U ��¾��K�K-KTK �¿EÀ�Á�¿ Ï� and Ð ½ U ��¾��K�K-K-K �¿kÀ�Á�¿ � are given by� Ï8], Ï^-�)( ÏÐG��b�,_¬_�)(�� � K b K ¬_� ÏÂ � "vb ÏÂ � "²¬ ÏÂ � ,�98],_^-�)(�Ð���b�,_¬_��(�� � K b K ¬_� Â � "vb Â � "²¬ Â � {Thus, using a change of variables, we obtainX � �(1 ��8#,k^`��� � K �F� �_<���8#,_^-��a)�(wX ;� �(1 � ¼ ;� � Ï8#, Ï^`�k�¢� � K �F� �_<�� ¼ ;� � Ï8#, Ï^-�k� ���� J
66 Ï8 ¼ ;� 	

66 Ï^ ¼ ;� M � Ï8#, Ï^`� ���� a Ï�¢{
One can easily check that the Jacobian of this transformation is simply G�HEm~Ô-�.�T�kP+G�HEm~ÔT� Ï�f� ,
since the Jacobian of the maps Ð and ÏÐ are

� � GIHkm�Ô-���T� and
� � G�HEm~Ô`� Ï�f� , respectively. That is,

the Jacobian is a constant. Thus,X ;� �(1 � ¼ ;� � Ï8&, Ï^`�k�¢� � K ��� �k<�� ¼ ;� � Ï8], Ï^��E� ���� J
66 Ï8 ¼ ;� 	

66 Ï^ ¼ ;� M²� Ï8&, Ï^`� ���� a Ï�( GIHkm�ÔT���T�GIHkm�ÔT� Ï�=� X ;� �(1 � ¼ ;� � Ï8#, Ï^-�k�¢� � K �F� �_<�� ¼ ;� � Ï8&, Ï^`�k��a Ï�#,
and hence this case can be reduced to the right triangle case. However, �81 and < , as well as
their derivatives, will depend on the mapping ¼ ;� . In addition, the constant � � : ���T�E� is some
multiple of a power of

: ���T� .
Before we prove the next lemma we need the following assumption.
ASSUMPTION 4.3. Let

µ (�*-, � be an integer and let 	 be a smooth 
 � surface. Let� �3-l,�/G� be the kernel of our integral operator given in the form� �.-l,�/��;(KJ �3-l,�/G�N - K / N ,(4.7)

where J is smooth and bounded. Assume�� � ´L � �.-l,0/G� �� ¨ �N - K / N ´ � � , -�u(M/x,(4.8)

where � denotes a generic constant independent of - and / .
Note that we obtain an additional order in the next theorem. The proof is based on the

Duffy transformation; see [16].
LEMMA 4.4. Let � be a planar triangle of diameter Ø . Let <e�L
 C�� ���.�T� and the kernel� satisfy Assumption 4.3 for

µ (�* . In addition, assume that there is a singularity inside of �
or on the boundary; that is, -¦(A/ inside of � or on the boundary. Then���� X � �21 �98#,k^-�>� � K ��� �_<���8#,_^-��a&� ���� ¨ � � : ���T�E� Ø C�� � � 1ÕÔ�o� 4 �� � C�� � < �� 6 ,(4.9)

where � � : �B�T�E� is some multiple of a power of
: �.�T� .

Proof. We can assume without loss of generality the right triangular case, otherwise
proceed as in Corollary 4.2. Assume that the singularity occurs inside of � , say at - . Connect
the vertices of � with - . We obtain three triangles � � , � � and � � . The singularity occurs at
one of the vertices of each triangle. Without loss of generality we can assume that we deal
with � where the singularity sits at the origin; that is, -.(���*-,E*�� (use a linear transformation
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for each triangle � � , � � and � � ). If - happens to be on the boundary, then we can use the same
procedure except that we deal only with two triangles. If - is on a vertex, then we deal only
with one triangle.

Let 9 C ��8#,k^`� be a Taylor polynomial of < with degree H over � . Using (4.5),
� � 9 C (N9 C

and the notation Ï� ( � K ��� and � ( �(1 , we have

X � � Ï� <�a&� (hX � � Ï� �< K 9 C ��a)�-{(4.10)

Next, define the transformation from � to the unit square O+( S *T, � V 	 S *-, � V by8/(¦� � K Â �¶� Ø , ^Õ(3� Â Ø with Jacobian � Ø � {(4.11)

Note that this is the composition of the map � to
U

given by ��8#,_^-�l(O��b Ø ,_¬ Ø � with JacobianØ � and the Duffy transformation mapping
U

to O given by �b�,_¬_�?( �k� � K Â �2�&,_� Â � with
Jacobian � . Hence,���� X � � 1®�98],_^-�;Ï� <��98],_^-��a)� ����� 4.10 #( ���� X � � �_��*-,E*��c,k8#,k^`�;Ï� ��<���8#,k^`� K 9 C �98],_^-�_�xa)� ����

¨  Ï� P < K 9 C  F X � N � �_��*T,k*Z�c,_8],_^-��N&a)�� 4.5 #¨ � Ø C�� �  � C�� � <  F X � N � �_��*-,k*Z�c,k8#,_^-�~N]a&�� 4.11 #( � Ø C�� �  � C�� � <  F X&Q �� � �_��*T,k*Z�c,~� � K Â �2� Ø ,k� Â Ø �2� Ø � �� a-��a Â� 4.7 #¨ � Ø C�� �  � C�� � <  F X Q �R � � K Â � � � � Ø � "¯� � Â � Ø � � N ��N � Ø a`��a Â( � Ø C�� �  � C�� � <  F X Q �R � � K Â � � " Â � a`��a Â {
It is readily seen that S ���], Â �)( �R � � K Â � � " Â �
is nonsingular together with all its derivatives on O . Therefore S ���], Â �W�?
 F �TO�� , and hence
it is bounded on the compact set O . Thus,

Ø C�� �  � C�� � <  F X)Q �R � � K Â � � " Â � a`� a Â ¨ � Ø C�� �  � C�� � <  F {
This can be done for all triangles � ´ , and thus we obtain the assertion (4.9).

REMARK 4.5. Note that in [4, Theorem 3.7] it is assumed that all integrals over a triangle
containing the singularity are evaluated with an error of Ø�U . A similar assumption is stated in
[31, Theorem 3.3.5].
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4.1. Interpolation of even degree. In this section, we assume that H is even. This
implies whenever � � and � � are triangles for which � �)� � � is a parallelogram, then (4.3) has
degree of precision H " � .The next lemma is a general statement of [31, Lemma 3.3.15].

LEMMA 4.6. Let � � and � � be two planar triangles with diameter Ø such that
Ä (V� � � � �

is a parallelogram. Let <���
 C�� ��� Ä � and let �21 � y ��� Ä � be differentiable with first
derivatives � � �(1 and � i �(1 belonging to

y �j� Ä � . Then���� X)W � 1®��8#,k^`��� � K � � �_<��98],_^-��a)� ����
¨ � � : � Ä �k� Ø C�� � � X W � N �(1 N~" �� � � �21 �� � a)� ��� 1ÕÔjoW 4 �� � C�� � < �� , �� � C�� � < ��76 ,(4.12)

where
: � Ä �)(31ÕÔjo`´Bâ �c} � : �B�~´� , � � : � Ä �_� is some multiple of a power of

: � Ä � , and - P� Ä .
We now consider a symmetric triangulation. We can impose symmetry in the triangula-

tion Ï£ ¤ . We refine a triangle in the parametrization plane by dividing it into four new smaller
triangles by connecting the midpoints of the three sides by straight lines. Hence, the refine-
ment of Ï£`¤ increases by a factor of 4. In addition, most of the triangles can be grouped as
parallelograms. The number of such triangles is X�� ª �g(YX��rÏÒ ¾=�¤ � . The number of remaining
triangles is X��%Z ª �\([X�� ÏÒ ¾��¤ � . The symmetric pairs can be chosen such that the remaining
elements are at a bounded distance from - (independent of ª ); see [3, 5].

We want to apply these results to the individual subintegrals� ��� Â ´ �)(hX = > � � Â ´ ,�/��2���3/G��aTbZ�T/G�(hX ;= > � � Â ´ , Ã ¡ �98],_^-�_�¶�&� Ã ¡ �98#,k^-�_� Nl��� � Ã ¡ 	 � i Ã ¡ �¢��8#,k^`�\ ]_^ `;  � � } i # N�a`8 a`^:,(4.13)

where
µ ( � ,~{�{�{�,E< C ª and which are now defined in the parametrization plane for some ·depending on Â ´ . We define<��98],_^-� ½ (���� Ã ¡��98#,k^-�_��N���� � Ã ¡ 	 � i Ã ¡�����8#,_^-�~Nc,� 1bac�98#,k^-� ½ ( � � Â ´¶, Ã ¡Z��8#,k^`�k�c, with Â ´&( Ã ¡��.-&´�>,(4.14)

which are defined in the parametrization plane.
In the following, by < �I
 § ��	]� we mean < � 
x��	&� and < �I
 § ��	 ¡ � (that is, <(D Ã ¡ �
 § � Ä ¡ � ), · ( � ,~{�{�{�,>Å . Note that in [31, Theorem 3.3.16] the kernel is smoother than ours;

that is, the radiosity equation is considered by Micula, whereas we consider single/double
layer potentials which do not fit in his framework. He obtained a rate of X�� ÏÒ C�� �¤ � . Further-
more, we have removed an additional assumption.

In the sequel, we assume that the conforming triangulation Ï£ ¤ is symmetric and satisfies��� p ¤8c 1ÕÔjo ;< � $ ;= >ed : �-Ï�x§ �W±�Ú .
Now, we are in position to state the following theorem.
THEOREM 4.7. Assume the conditions of Theorem 3.1 with each parametrization func-

tion
Ã ¡ �Ì
 C�� � and �O�O
 C�� ����	]� . Assume that the kernel � satisfies Assumption 4.3.

Then 1ÕÔ�o��Ö ´ Ö º » ¤ N ��� Â ´Ü� K � ¤ � Â ´�~N ¨ � ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �c{(4.15)
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Proof. Using (3.16) and (3.17) we obtain1ÕÔ�o�cÖ ´ Ö º¶» ¤ N �&� Â ´ � K � ¤ � Â ´ ��N�( 1ÕÔ�o�cÖ ´ Ö º¶» ¤ N �&� Â ´ � K Ï� ¤ � Â ´ ��N ¨ �gf 1ÕÔjo�cÖ ´ Ö º_» ¤ N � � � K à ¤ �2��� Â ´ ��Nc,
where �hf ( ��� p ¤)�i�  � � � K � à ¤ � ¾��  ±3Ú ; see also [3, p. 450]. Thus, we will bound

1xÔjo�cÖ ´ Ö º_» ¤ N � � � K à ¤ �2��� Â ´ ��N�( 1ÕÔ�o��Ö ´ Ö º¶» ¤ ���� X =h> � � Â ´ ,0/G�>� � K à ¤ �2���3/���aTbZ�3/G� ����( 1ÕÔ�o��Ö ´ Ö º » ¤ ���� X ;=h> � 1bac�98],_^-�>� � K � � �_<���8#,k^`�)a`8�a`^ ����(4.16)

to prove (4.15), where we used (4.13) and (4.14) in the last step. By assumption, < is 
 C�� �
in the parametrization plane.

For a given collocation point Â ´ , denote by
� �

the curved triangle containing this point
and denote by Ï� � the triangle in the parametrization plane containing the point - ´ � Ï� �
satisfying Â ´ ( Ã ¡ �3- ´ � ; see (4.14). DefineÏ£ �¤ ( Ï£ ¤ K Ï� �
and subdivide Ï£ �¤ into two disjoint classes Ï£ � ��#¤ and Ï£ � ��#¤ such that Ï£ � ��#¤ � Ï£ � ��#¤ ( Ï£ �¤ ,
where Ï£ � ��#¤ denotes the set of triangles making up parallelograms to the maximum extent
possible (actually parallelograms in the parametrization plane) and Ï£ � ��#¤ denotes the set of
the remaining triangles. Hence, Ï£`¤ ( Ï� � � Ï£ � ��#¤ � Ï£ � ��#¤ {
Recall that the number of triangles in Ï£ � ��#¤ is X�� ª ��(jX�� ÏÒ ¾=�¤ � and in Ï£ � ��#¤ is X�� Z ª �ÿ(X�� ÏÒ ¾��¤ � . Moreover, all but a finite number of the triangles in Ï£ � ��#¤ , bounded independently
of ª , will be at a minimum distance kmlO* from -�´ with k independent of ª and

µ
. Hence

the function �21 ac��8#,k^`� is uniformly bounded for the point �98],_^-� being in a triangle in Ï£ � ��#¤ .
Thus, we can split the integral in (4.16) into three parts

X ;= > �(1 a>�98],_^-�>� � K ��� �_<���8#,k^`�)a`8 a`^x(wX ;<on �(1 ac��8#,_^-��� � K �F� �_<��98],_^-��a`8�a-^"þX ;=qpsr.t> �21 a>��8#,_^-��� � K �F� �k<��98],_^-��a`8 a`^Ñ"%X ;=qpvuTt> �21 ac�98],_^-�>� � K �F� �k<��98],_^-��a`8�a`^:{
The bound for the three terms on the right-hand side can be done in the following three steps,
respectively.

1. By Lemma 4.4, the error in evaluating the integral���� X ;<on � 1Pa>��8#,_^-��� � K � � �k<��98],_^-��a`8 a`^ ����
is X�� Ø C�� ��� where Ø is the diameter of Ï� � . Thus, we also have X�� ÏÒ C�� �¤ � by the
definition (3.8).
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2. Next, consider the error from triangles in Ï£ � �w#¤ . By Lemma 4.6 we have���� X ;= pxr3t> � 1ba>�98],_^-�>� � K � � �_<���8#,k^`�)a`8 a`^ ����( ���� X ;= pxr3t> �(1 a>�98],_^-�>� � K ��� �2��� Ã ¡ ��8#,_^-�k��Nß�� � Ã ¡ 	 � i Ã ¡ ���98#,k^-��N�a`8 a-^ ����
¨ áW � $ ;= psr.t>

���� X W � �21 ac�98],_^-�>� � K �F��� �¶�&� Ã ¡ ��8#,_^-�k��N���� � Ã ¡ 	 � i Ã ¡ �¢�98],_^-��N�a)� § ����
¨ áW � $ ;=ypsr.t> � Ø C�� �§ X)W � �kN �(1 a>N�"+N � � �(1 a>N ��NB��� � Ã ¡ 	 � i Ã ¡ �¢�98],_^-��N�a&� §� 3.8 #¨ � ÏÒ�C�� �¤ áW � $ ;= pxr3t> X W � �EN � 1ba>N~"hN � � � 1ba>N ��N���� � Ã ¡ 	 � i Ã ¡��¢��8#,_^-�~N�a)� §
¨ � ÏÒ�C�� �¤ X ;= pxr3t> �kN � 1ba>N~"hN � � � 1Pa>N ��NB��� � Ã ¡ 	 � i Ã ¡��¢�98],_^-��N)a`8 a`^
¨ � ÏÒ C�� �¤ X = pxr3t> �kN � � Â ´¶,0/G��N�"+N � � � � Â ´k,�/G�~N ��afb��T/G�
¨ � ÏÒ�C�� �¤ X = > ¾ <on �kN � � Â ´ ,0/G��N�"hN � � � � Â ´ ,�/G�~N ��aTbZ�T/G�c{

According to Assumption 4.3, the last quantity is bounded by� ÏÒ C�� �¤ X =?> ¾ < n J �N Â ´ K / N " �N Â ´ K / N � M¸aTbZ�3/G�>{(4.17)

A use of a local representation of the surface and polar coordinates shows that the
expression in (4.17) is of order X�� ÏÒ C�� �¤ @ Ý]� ÏÒ ¾¢�¤ �_� ; see Appendix. Therefore, the error
arising from triangles in Ï£ � ��#¤ is X�� ÏÒ C�� �¤ @ Ý]� ÏÒ ¾¢�¤ �_� .

3. Lastly, consider the error over each such triangle in Ï£ � ��#¤ . Applying Corollary 4.2
yields ���� X ;= pvuTt> � 1Pac�98],_^-�>� � K � � �k<��98],_^-��a`8�a`^ ����

¨ á��� $ ;=qpzu%t>
���� X ��� �(1 a��98#,k^-�>� � K �F��� �_<���8#,_^-��a)� § ����

¨ á��� $ ;=qpzu%t> � Ø C�� �§ X ��� N �(1 a>N�a)� § ¨ á��� $ ;=qpvuTt> � Ø C�� �§ Ø � § ,
where the last step follows, since the area of the © -th triangle is X�� Ø �§ � and since�(1 a is uniformly bounded as mentioned above. Therefore, we haveá��� $ ;=ypvuTt> � Ø C�� �§ Ø � § � 3.8 #¨ � ÏÒ�C�� �¤ á��� $ ;={pzu%t> �Ñ¨ � ÏÒ�C�� �¤ ,
since we have X�� ÏÒ ¾¢�¤ � such triangles. Thus, the total error coming from triangles inÏ£ � ��#¤ is X�� ÏÒ C�� �¤ � .
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Combining the errors from the integrals over Ï� � , Ï£ � ��#¤ , and Ï£ � ��#¤ gives the result (4.15).
COROLLARY 4.8. Assume the conditions of Theorem 4.7. ThenN � � � K à ¤ �����.-G�~N ¨ � 1 ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �c,(4.18)

where -.��	 .
Proof. The proof is almost identical to the proof given in Theorem 4.7. For an arbitrary

point - �þ	 with -�( Ã ¡ ��8#,_^-� , denote by Ï£ � |�#¤ the set of triangles in the parametrization
plane that contain the point �98],_^-� . There is only a finite number of such triangles (see [3,
p. 451]), but not more than six triangles. DefineÏ£ �¤ (ÙÏ£`¤ K Ï£ � |0#¤
and subdivide Ï£ ¤ as in the previous proof to obtainÏ£ ¤ ( Ï£ � |�#¤ � Ï£ � ��#¤ � Ï£ � ��#¤ {
By Lemma 4.4, the error in evaluating the integral over Ï£ � |0#¤ is X�� ÏÒ C�� �¤ � . The remaining proof
is the same as the proof of Theorem 4.7.

First we prove superconvergence at the collocation nodes for the integral equationJ K���`� " � � M S U=V �98:�g(�<���8=�>,(4.19)

where
� � ( z �R . This integral equation solves the exterior Neumann problem and is a

special case of (2.3) by choosing
� (¦* . It is based on a single layer formulation, but it will

break down if $ is an eigenvalue of the interior Dirichlet problem; see [12, p. 205].
We now show that Assumption 4.3 is satisfied for the kernel of the operator

� � ( z �R
and

� � ( y | .
LEMMA 4.9. Assumption 4.3 is satisfied for the kernel of the operator

� � and
� � .

Proof. We only prove that Assumption 4.3 is satisfied for the kernel of the operator
� � .

For
� � refer to [21, Lemma 3.4.16]. First rewrite the kernel of the operator

� � as� �3-l,�/G�)( 66 7 1 [ R �.-l,�/��)( J 66 7 1 [ R �.-l,0/G� K
66 7 1 [ | �3-l,�/G�¶Mþ" J 66 7 1 [ | �.-l,0/G�2M( �q�s � 7 1 ,�/ K -G�N - K /�N � | mh} Re~ 1 ¾ L ~ K A $&N - K / N mh} Re~ 1 ¾ L ~ K � �\ ]_^ `� r � 1 } L # " �q�s � 7 1 ,0/ K -G�N - K / N �\ ]_^ `� u � 1 } L # ,

where [ R �.-l,0/G�I( m } Re~ 1 ¾ L ~ P-�9q�s;N - K / N � and 7 1 is the outer normal at - . Note that� � �.-l,�/�� is a smooth function. First we consider,� � �.-l,�/��;( � 7 1 ,�/ K -G�N - K / N � ( �g� �)� 1N - K / N � , - u(M/x{
Clearly, N � � �.-l,0/G��N ¨ N �h� ��� 1\NN - K / N � ¨ �N - K / N , - u(�/x,(4.20)

since N �h� �)� 1 N ¨ � N - K / N ; see [33]. Note that the kernel � � has been studied before in [31].
Next, we claim that N � L � � �3-l,�/G�~N ¨ �N - K /�N � , - u(A/x{
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We mention that we have to show this statement for a given fixed point - only for / in a
neighborhood 	/�8�ÿ�.-�@ Ä � of P with *�±ON - K / N:± Ä , since for /��I	 not belonging to	������3-�@ Ä � we can always use the estimates N - K /�N ¨ kx(ha A Ôj1���	&� , Nß� 7 1 ,0/ K -G�~N ¨ kand �~ 1 ¾ L ~ ¨ �W , because N - K /�NZ4 Ä .

According to the assumptions on the surface, there exists an
Ä lþ* such that 	)�F���3-�@ Ä �

can be projected onto the tangent plane in a one-to-one fashion. Thus, we can assume that the
surface 	 can be represented locally by ��(h<��98#,k^-� with <?�?
G� . Without loss of generality
we let - be the origin of the coordinate system and / be an arbitrary point in 	��8���3-�@ Ä � .
Therefore, we have -¦(���*-,E*-,E*��c, /n(.��8#,k^=,�<��98],_^-�_�>,7 1 (���*-,E*-, � �c, 7 L (.� K < � ��8#,_^-�>, K < i ��8#,_^-�>, � �>,and implicitly we have <���*T,k*Z�)(�< � ��*-,E*���(h< i ��*-,E*��)(+* . Hence

�g� �)� 1 ( �3/ K -G� � 7 1N - K / N ( /N / N � � 1 {
Note that 7 1 ( � 1 is independent of 8 and ^ . Clearly, we have���� /N / N � � � 1 ���� ¨ � , - u(�/x{(4.21)

Now, we have

N - K / N �
66 8 � � ( / � � � 1N / N K ³ J /N /�N � � � 1 M J /N / N � / � M {

The first term is bounded using Taylor expansion about (0,0) to obtain���� / � � � 1N / N ���� ( N < � NR 8 � "v^ � "v< � �98],_^-� ¨ � N 8&N�"+N ^�NR 8 � "¯^ � ¨ � {(4.22)

The first factor of the second term is bounded due to (4.21). The second factor is bounded
since N < � N is bounded and���� /N / N � / � ���� ( ����� 8�"%<��98],_^-�_< � �98],_^-�R 8 � "¯^ � "%< � ��8#,k^`� ����� ¨ N 8&NR 8 � "¯^ � "hN <���8#,k^`�~N N < � ��8#,k^`�~NR 8 � "¯^ � ¨ � {(4.23)

Hence, ���� 66 8 � � ���� ¨ �N - K / N � , -�u(�/x{
Similarly, we can prove ���� 66 ^ � � ���� ¨ �N - K / N � , - u(M/Õ,
and therefore N � L � � N ¨ �N - K / N � , -�u(�/x{
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Lastly, we show that N � L � � �.-l,0/G��N ¨ �N - K / N , - u(�/x{
Clearly, we have

N � � �3-l,�/G�~N�( ���� / � � 1N /�N � � N / N � m } Re~ L ~ K A $Tm } Re~ L ~ K �N /�N � ���� ¨ � , -�u(�/x,(4.24)

because the first factor is bounded by (4.21). Using Taylor series for m�� , one can easily see
that the last factor is bounded, too. Next, consider

N - K / N
66 8 � � ( / � � � 1N / N � | m } Re~ L ~ K A $&N /�N m } Re~ L ~ K � �K ³ �3/ � / � �N / N U �3/ � � 1 � | m } Re~ L ~ K A $&N / N m } Re~ L ~ K � � " / � � 1N / N � $ � �3/ � / � �2m } Rb~ L ~ {

The first term is bounded, since we can write it as/ � � � 1N / N J m } Re~ L ~ K �N / N K A $Tm } Re~ L ~ M
and then use (4.22). The second term can be written as

³ / � / �N / N / � � 1N / N � | m } Re~ L ~ K A $]N / N m } Re~ L ~ K � �
and clearly it is bounded, because of (4.23) and (4.24). The last term is bounded due to (4.21).
Hence, ���� 66 8 � � ���� ¨ �N - K / N , - u(A/x{
Similarly, we can prove ���� 66 ^ � � ���� ¨ �N - K /�N , -�u(M/x,
and therefore N � L � � N ¨ �N - K / N , - u(A/x{
In summary, we haveN � �3-l,�/G�~N ¨ �N - K / N Ô�ÝTa N � L � �3-l,�/G�~N ¨ �N - K / N � , - u(A/x,
and thus proves Assumption 4.3.

Now, we state the following superconvergence theorem for the integral equation (4.19).
THEOREM 4.10. Let the parametrization function

Ã ¡ �e
 C�� � and
U �e
 C�� ����	]� . Then

we have 1ÕÔ�o��Ö ´ Ö º » ¤ N U � Â ´Ü� K U ¤ � Â ´�~N ¨ � 1xÔjo�cÖ ´ Ö º » ¤ N � � � K à ¤ � U � Â ´2�~N ¨ � ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �



ETNA
Kent State University 

http://etna.math.kent.edu

THE EXTERIOR NEUMANN PROBLEM 131

for the integral equation (4.19), where
� ( z �R .

Proof. Since the kernel of
� � satisfies Assumption 4.3 as shown in Lemma 4.9, we have

by Theorem 4.7 1ÕÔ�o��Ö ´ Ö º¶» ¤ N � � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾��¤ �
and thus, we have proved the theorem.

We note that Chien and Lin [13] prove superconvergence at the collocation nodes for an
integral equation based on Green’s formula. They use the vertices and midpoints of a triangle
as collocation nodes for piecewise quadratic polynomials. However, we use interior nodes
and therefore our analysis is different from theirs.

Note also that if we choose $�(+* in (4.19), then the integral equationJ K��� � " zw�| M S U=V �98:�g(h<��98:�c,(4.25)

solves the exterior Neumann problem for the Laplace equation. Thus, we have the following
superconvergence result for the Laplace equation.

COROLLARY 4.11. Assume the conditions of Theorem 4.10. Then we have1ÕÔ�o��Ö ´ Ö º¶» ¤ N U � Â ´ � K U ¤ � Â ´ ��N ¨ � 1ÕÔjo�cÖ ´ Ö º_» ¤ N � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �
for the integral equation (4.25), where

� ( z �| .
Note that the case for constant interpolation with °%( � Pj³ has already been considered

in [31] and agrees with our results.
Finally, we show superconvergence under a strong assumption for the MPM method.

First, denote� � ( z �R , � � ( y | , � � ( z �| z �| y | , � U (�� � R K � | � y | y | {
Then, equation (2.3) can be written asJ K ��`� " � M S U=V �98:�g(+<��98=�>,
where � ( � � " A�� � U " AB� � � K AB� �q � � {(4.26)

For the integral equation obtained from the MPM given byJ K��� � " z �R " AB� � � � R K � | � y �| " J z �| KO�� M J z �| " �� M y |�� M S U=V �98=�W(�<���8=�c,
(4.27)

we have the following conjecture.
CONJECTURE 4.12. Let the parametrization function

Ã ¡ ��
 C�� � and
U �+
 C�� ����	]� .

Then we have1ÕÔ�o��Ö ´ Ö º¶» ¤ N U � Â ´ � K U ¤ � Â ´ ��N ¨ � 1ÕÔjo�cÖ ´ Ö º_» ¤ N � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �
for the integral equation (4.27), where

�
is given by (4.26).
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Note that the theoretical rate in Conjecture 4.12 can be confirmed with several numerical
results. We can prove the conjecture above under the strong assumption that is stated below
in the next theorem.

THEOREM 4.13. Let the parametrization function
Ã ¡ ��
 C�� � and

U �+
 C�� ����	&� . In
addition, assume that there is a constant � such that N � W N ¨ � for all points

Ä
in 	 , where � W

is defined by N y | � � K à ¤ � U � Ä ��N ¨ � W ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ � , which is from Corollary 4.8. Then we
have 1ÕÔ�o��Ö ´ Ö º¶» ¤ N U � Â ´ � K U ¤ � Â ´ �~N ¨ � 1xÔjo�cÖ ´ Ö º_» ¤ N � � � K à ¤ � U � Â ´ �~N ¨ � ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �
for the integral equation (4.27), where

�
is given by (4.26).

Proof. Since the kernel of
� � and

� � satisfy Assumption 4.3 as shown in Lemma 4.9,
we have by Theorem 4.71ÕÔ�o��Ö ´ Ö º » ¤ N � ¡Z� � K à ¤ � U � Â ´Ü�~N ¨ � ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �c, · ( � , � {
We also have 1ÕÔ�o��Ö ´ Ö º¶» ¤ N � � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾��¤ �>,
since we can establish1ÕÔ�o�cÖ ´ Öi� ¤ N � � � � K à ¤ � U � Â ´2��N ¨ 1ÕÔ�o�cÖ ´ Öi� ¤ ���� XZY � 7�� a>, Â ´ K /G�q�s;N Â ´ K / N� ���� X Y � 7 L ,�/ K Ä �q�s;N / K Ä N ���� X Y �q�s;N Ä K Ð�N � U �9Ð!� K à ¤ U �9Ð'�k��aTbZ�9Ð!�

���� aTbZ� Ä � ����3� aTbZ�3/G� ���� {
The integral with respect to Ð can be written in the form���� XZY �q�s;N Ä K Ð�N � U ��Ð'� K à ¤ U ��Ð'�_��afb���Ð'�

���� ¨ � W ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾¢�¤ �>,
where we used Corollary 4.8, i.e., N y | � � K à ¤ � U � Ä ��N ¨ � W ÏÒ C�� �¤ @ Ý#� ÏÒ ¾��¤ � . By assumption, we
have N � W N ¨ � . Thus, we have

1xÔjo��Ö ´ Ö�� ¤ ���� XZY � 7 � ac, Â ´ K /G�q�s;N Â ´ K / N ���� X�Y � 7 L ,0/ K Ä �q�s;N / K Ä N�� | ÏÒ�C�� �¤ @ Ý&��ÏÒ ¾¢�¤ � � aTbZ� Ä � ���� aTbZ�T/G� ����( 1xÔjo��Ö ´ Ö�� ¤ ���� XZY � 7�� ac, Â ´ K /G�q�s;N Â ´ K / N � | ÏÒ C�� �¤ @ Ý#� ÏÒ ¾¢�¤ � � aTbZ�T/G� ����( � | ÏÒ�C�� �¤ @ Ý#� ÏÒ ¾��¤ � � 1ÕÔ�o�cÖ ´ Öi� ¤ ���� X�Y � 7 � ac, Â ´ K /G�q�s;N Â ´ K / N aTbZ�T/G� ����( � | ÏÒ C�� �¤ @ Ý#� ÏÒ ¾��¤ � � {
A similar argument yields the result for

� U .
Note that the assumption on the boundedness of � W for all points

Ä
in 	 seems a little

strong. However, we know that
�

maps from
y F ��	]� into 
x��	&� . That is, for any fixed

U
,� � � K à ¤ � U is a continuous function on 	 and on each triangular element

� §
. Therefore,� � � K à ¤ � U is a bounded function on 	 and on each triangular element

� §
. This seems to

suggest that � W is bounded on 	 .
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4.2. Interpolation of odd degree. We now assume H is odd. Then (4.3) has degree of
precision H . Suppose we can find ° (3° | such that (4.3) has degree of precision H " � . Then
(4.3) has degree of precision H " � over a parallelogram. For example using °.( � P+* forH ( � yields degree of precision two over a triangle and degree of precision three over a
parallelogram.

The following lemma is a general statement of [31, Lemma 3.3.12].
LEMMA 4.14. Let � � and � � be two planar triangles with diameter Ø such that

Ä (� � � � � is a parallelogram. Let <I�L
 C�� � � Ä � and �(1 � y �j� Ä � be twice differentiable with
derivatives of order 1 and 2 belonging to

y �j� Ä � . In addition, assume °I(�° | . Then���� X W��21 �98#,k^-�>� � K ��� �_<���8#,_^-��a&� ����
¨ � � : � Ä �k� Ø C�� ��� X�W �á ´�â | �� � ´ �(1 �� a)�e� � 1ÕÔjoW 4 �� � C�� � < �� , �� � C�� � < �� , �� � C�� � < ��!6 ,(4.28)

where
: � Ä �)(31ÕÔjo ´Bâ �c} � : �B� ´ � , � � : � Ä �_� is some multiple of a power of

: � Ä � , and - P� Ä .
Before we prove the next theorem we need the following assumption.
ASSUMPTION 4.15. Let 	 be a smooth 
 � surface. Let � �3-l,�/G� be the kernel of our

integral operator. Assume�� � �L � �.-l,0/G� �� ¨ �N - K / N � , -tu(�/x,
where � denotes a generic constant independent of - and / .

Note that in [31, Theorem 3.3.14] a rate of X�� ÏÒ C�� �¤ @ Ý]� ÏÒ ¾¢�¤ �_� has been obtained for the
radiosity equation.

Now, we are in position to state the following theorem.
THEOREM 4.16. Assume the conditions of Theorem 3.1 with each parametrization func-

tion
Ã ¡ÿ�5
 C�� � and �þ�þ
 C�� ����	&� . Assume °3(t° | . Moreover, assume that the kernel �

satisfies Assumption 4.3 and 4.15. Then1ÕÔjo�cÖ ´ Ö º » ¤ N ��� Â ´Ü� K � ¤ � Â ´2��N ¨ � ÏÒ�C�� �¤ {(4.29)

Proof. We will bound1xÔjo�cÖ ´ Ö º » ¤ N � � � K à ¤ �2��� Â ´ ��N�( 1ÕÔ�o��Ö ´ Ö º » ¤ ���� X = > � � Â ´ ,0/G�>� � K à ¤ �2���3/���aTbZ�3/G� ����
to prove (4.29). Using the same approaches as done in Theorem 4.7, we have

1. By Lemma 4.4, the error in evaluating the integral over Ï� � is X�� ÏÒ C�� �¤ � .
2. Next, consider the error from triangles in Ï£ � �w#¤ . By Lemma 4.14 and using the same

argument as in item 2 of Theorem 4.7, we have� ÏÒ C�� �¤ X = > ¾ < n ��N � N�" �� � � � �� " �� � � � �� � aTbZ�3/G�>{(4.30)

According to Assumption 4.3 and Assumption 4.15 the quantity (4.30) is bounded
by � ÏÒ C�� �¤ X =?> ¾ < n�� �N Â ´ K / N " �N Â ´ K / N � " �N Â ´ K / N �&� aTbZ�3/G�>{(4.31)
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A use of a local representation of the surface and polar coordinates shows that the ex-
pression in (4.31) is of order X�� ÏÒ C�� �¤ �;� > � . Therefore, the error arising from triangles

in Ï£ � �w#¤ is X�� ÏÒ C�� �¤ � .
3. Lastly, consider the error over each such triangle in Ï£ � ��#¤ . As in Theorem 4.7 item 3,

we apply Lemma 4.2. Thus, the total error coming from triangles in Ï£ � ��#¤ is X�� ÏÒ C�� �¤ � .
Combining the errors from the integrals over Ï� � , Ï£ � ��#¤ , and Ï£ � ��#¤ gives the result (4.29).

COROLLARY 4.17. Assume the conditions of Theorem 4.16. ThenN � � � K à ¤ ���&�3-G��N ¨ � 1 ÏÒ C�� �¤ ,(4.32)

where -.��	 .
Proof. The proof is almost identical to the proof given in Theorem 4.16. The reasoning

is similar to the one given in Corollary 4.8.
First, we will prove superconvergence at the collocation nodes for the integral equationJ K��� � " � � M S U=V �98:�g(�<���8=�>,(4.33)

where
� � ( z �R . This integral equation solves the exterior Neumann problem and is a

special case of (2.3) by choosing
� (¦* . It is based on a single layer formulation, but it will

break down if $ is an eigenvalue of the interior Dirichlet problem; see [12, p. 205].
We now show that Assumption 4.15 is satisfied for the kernels of the operator

� � ( z �R
and

� � ( y | .
LEMMA 4.18. Assumption 4.15 is satisfied for the kernel of the operator

� � and
� � .

Proof. We only prove that Assumption 4.15 is satisfied for the kernel of the operator
� � .

For
� � refer to [21, Lemma 3.4.41]. Recall that we have (see Lemma 4.9)� �3-l,�/G�)( �q�s � 7 1 ,�/ K -G�N - K /�N � | m } Re~ 1 ¾ L ~ K A $&N - K / N m } Re~ 1 ¾ L ~ K � �\ ]_^ `� r � 1 } L # " �q�s � 7 1 ,0/ K -G�N - K / N �\ ]_^ `� u � 1 } L # ,

where [ R �.-l,0/G�;(3m } Re~ 1 ¾ L ~ P-�9q�s;N - K / N � and 7 1 is the outer normal at - . We have to show
that for - u(�/ the absolute value of all second order partial derivatives of � � and � � with
respect to 8 and ^ are bounded by �~ 1 ¾ L ~ u and �~ 1 ¾ L ~ � , respectively. Then, we would obtain

N � �L � N ¨ �N - K / N � , -�u(M/x{
Using a local representation of the surface, we obtain (see Lemma 4.9)66 8 � � ( / � � � 1N / N � K ³ �T/ � � 1 ���3/ � / � �N / N � {
Thus,N - K / N � J

66 8 J
66 8 � � M\M(.�T/ � � � 1� �\ ]_^ `â | "%�3/ �~� � � 1 �\ ]g^ `Ö � K ³ �T/ � / � �N / N\ ]g^ `Ö �+�0� � 4.23 #

�T/ � � � 1 �N / N\ ]_^ `Ö �e�0� � 4.22 # K ³
�3/ � � 1 �N / N �\ ]g^ `Ö �b�0� � 4.21 # �T/ � /

� � �\ ]g^ `Ö �
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K ³ �3/ � � � 1 �N / N\ ]g^ `Ö �b�0� � 4.22 #
�3/ � / � �N / N\ ]_^ `Ö �b�0� � 4.23 # K ³

�3/ � � 1� �N / N\ ]g^ `â |
�3/ � / � �N / N\ ]_^ `Ö �b�0� � 4.23 # " ���

�3/ � / � �N / N\ ]_^ `Ö �+�0� � 4.23 #
�T/ � � 1 �N / N �\ ]_^ `Ö �e�0� � 4.21 #

�T/ � / � �N / N\ ]g^ `Ö �e�0� � 4.23 # {
(4.34)

Thus, we have ���� 66 8 J 66 8 � � M ���� ¨ �N - K / N � , -�u(�/x{
For the remainder of the proof refer to [21, Lemma 3.4.12].

Now, we state the following superconvergence theorem for the integral equation (4.33).
THEOREM 4.19. Let the parametrization function

Ã ¡ �%
 C�� � and
U �%
 C�� � ��	]� . As-

sume °I(�° | . Then we have1xÔjo�cÖ ´ Ö º_» ¤ N U � Â ´ � K U ¤ � Â ´ ��N ¨ � 1ÕÔ�o��Ö ´ Ö º¶» ¤ N � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ�C�� �¤
for the integral equation (4.33), where

� ( z �R .
Proof. Since the kernel of

� � satisfies Assumption 4.3 and Assumption 4.15 as shown in
Lemma 4.9 and 4.18, we have by Theorem 4.161ÕÔ�o�cÖ ´ Ö º_» ¤ N � � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ�C�� �¤
and thus, we have proved the theorem.

Note also that if we choose $�(+* in (4.19), then the integral equationJ K���`� " zw�| M S U=V �98:�g(h<��98:�c,(4.35)

solves the exterior Neumann problem for the Laplace equation. Thus, we have the following
superconvergence result for the Laplace equation.

COROLLARY 4.20. Assume the conditions of Theorem 4.19. Then we have1xÔjo�cÖ ´ Ö º_» ¤ N U � Â ´ � K U ¤ � Â ´ ��N ¨ � 1ÕÔ�o��Ö ´ Ö º¶» ¤ N � � � K à ¤ � U � Â ´ ��N ¨ � ÏÒ C�� �¤
for the integral equation (4.35), where

� ( z �| .
For the integral equation obtained from the MPM given byJ K��� � " zw�R " AB� � � � R K � | � y �| " J zw�| KO�� M J zw�| " �� M y |�� M S U=V �98=�W(�<���8=�c,

(4.36)

we have the following conjecture.
CONJECTURE 4.21. Let the parametrization function

Ã ¡ ��
 C�� � and
U �+
 C�� � ��	]� .

Assume ° (3° | . Then we have1xÔjo�cÖ ´ Ö º » ¤ N U � Â ´� K U ¤ � Â ´Ü��N ¨ � 1ÕÔ�o��Ö ´ Ö º » ¤ N � � � K à ¤ � U � Â ´2��N ¨ � ÏÒ�C�� �¤
for the integral equation (4.36).
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Note that the theoretical rate in Conjecture 4.21 can be confirmed with several numerical
results. We can prove the conjecture above under the strong assumption that is stated in the
next theorem.

THEOREM 4.22. Let the parametrization function
Ã ¡ÿ�v
 C�� � and

U �%
 C�� � ��	&� . As-
sume °¯(h° | . In addition, assume that there is a constant � such that N � W N ¨ � for all pointsÄ

in 	 , where � W is defined by N y | � � K à ¤ � U � Ä �~N ¨ � W ÏÒ C�� �¤ , which is from Corollary 4.17.
Then we have 1ÕÔ�o��Ö ´ Ö º » ¤ N U � Â ´2� K U ¤ � Â ´Ü��N ¨ � 1ÕÔ�o�cÖ ´ Ö º » ¤ N � � � K à ¤ � U � Â ´2��N ¨ � ÏÒ C�� �¤
for the integral equation (4.36).

Proof. The proof is similar to the proof of Theorem 4.13, since Assumption 4.15 is
satisfied for the kernels of the operator

� � and
� � as shown in Lemma 4.18.

5. Numerical result. First, we illustrate the accuracy of the integral equation (2.3) for
constant, linear, and quadratic interpolation. The surface under consideration is the unit
sphere. The true solution (see [25]) is given by

�&��8#,k^=,��Z��( m } R CH � J
� "

A$ H M��f,(5.1)

where H ( R 8 � "¯^ � " � � . The wave number $ equals � . We used
�¢¡ ( � �P£ , � � ¡ (�qand

� ( $=P � . We denote with ª the number of faces of the triangulation and with ª � the
number of node points of the triangulation.

TABLE 5.1
Accuracy for constant interpolation, ¤�ÇLÈ_Î õ ý and ¤)¥gÇLÈ_Î õ ý with wave number ¦\ÇLÈ for a sphere.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) +3.1334D-02 +9.9500D-03 4.6443D-05
( 5.0, 6.0, 7.0) –2.5597D-02 –5.8477D-02 9.1254D-05
( 1.0, 2.0, 3.0) –1.4428D-01 –1.6800D-01 3.5436D-04
( 1.0, 1.0, 1.0) –2.4302D-01 +2.9767D-01 6.3241D-04
( 0.0, 0.0, 2.5) –4.1544D-01 +1.1101D-01 7.9922D-04
( 1.0, 0.5, 0.5) –1.4272D-01 +4.0560D-01 3.8040D-04
( 1.0, 0.2, 0.3) –8.9025D-02 +3.5382D-01 4.1385D-04

TABLE 5.2
Accuracy for linear interpolation, ¤ÑÇ õ_§ Í and ¤)¥;Ç©¨�Í_ª with wave number ¦ ÇeÈ for a sphere.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) +3.1371D-02 +9.9690D-03 4.8251D-06
( 5.0, 6.0, 7.0) –2.5622D-02 –5.8556D-02 9.2227D-06
( 1.0, 2.0, 3.0) –1.4450D-01 –1.6824D-01 2.8937D-05
( 1.0, 1.0, 1.0) –2.4343D-01 +2.9806D-01 6.2783D-05
( 0.0, 0.0, 2.5) –4.1617D-01 +1.1122D-01 4.6545D-05
( 1.0, 0.5, 0.5) –1.4294D-01 +4.0581D-01 8.7465D-05
( 1.0, 0.2, 0.3) –8.9132D-02 +3.5340D-01 2.9184D-05

As we can see in Tables 5.1, 5.2, and 5.3 the closer the point to the boundary the worse
the error. However, using constant interpolation we obtain two to three digits accuracy. With
the linear interpolation we obtain three to four digits accuracy, whereas for the quadratic
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TABLE 5.3
Accuracy for quadratic interpolation, ¤!Ç õ_§ Í and ¤ ¥ Ç?È § ËcÍ with wave number ¦ ÇLÈ for a sphere.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) +3.1375D-02 +9.9712D-03 9.2773D-08
( 5.0, 6.0, 7.0) –2.5623D-02 –5.8565D-02 1.7742D-07
( 1.0, 2.0, 3.0) –1.4451D-01 –1.6827D-01 5.6770D-07
( 1.0, 1.0, 1.0) –2.4347D-01 +2.9811D-01 1.2875D-06
( 0.0, 0.0, 2.5) –4.1621D-01 +1.1121D-01 9.6095D-07
( 1.0, 0.5, 0.5) –1.4297D-01 +4.0589D-01 4.8034D-07
( 1.0, 0.2, 0.3) –8.9143D-02 +3.5342D-01 6.7632D-06

interpolation the accuracy is four to five digits. For points situated further away we get even
five to six digits.

Note that the integral equation (2.3) does not break down for critical wave numbers. The
first zero of the spherical Bessel function of order one is qT{ qb«�³jqZ*P«jq �b¬ « and is such a critical
wave number. A stable solution is obtained with the integral equation (2.3) for

� (n$:P � and
illustrated in Table 5.4. If we choose

� (�* , the uniqueness is not guaranteed which can be
seen in Table 5.5. No digit is calculated correctly.

TABLE 5.4
Accuracy for quadratic interpolation, ¤¸Ç õ_§ Í and ¤&¥ÌÇ È § ËcÍ with critical wave number ¦�Çý� ýg® Ë ý Î ®�ý § ¨ ® and ¯lÇ�¦�Ê õ for a sphere.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) –1.6783D-02 –2.8273D-02 2.6769D-07
( 5.0, 6.0, 7.0) –6.3632D-02 –1.5657D-03 6.2821D-07
( 1.0, 2.0, 3.0) –8.4887D-02 –1.9717D-01 2.3636D-06
( 1.0, 1.0, 1.0) –1.9022D-02 +3.3554D-01 4.2893D-06
( 0.0, 0.0, 2.5) +1.2889D-01 –3.8034D-01 1.7094D-06
( 1.0, 0.5, 0.5) +2.7959D-01 –1.9134D-01 4.2313D-06
( 1.0, 0.2, 0.3) +7.2496D-02 –2.6136D-01 2.0580D-05

TABLE 5.5
Accuracy for quadratic interpolation, ¤¸Ç õ_§ Í and ¤&¥ÌÇ È § ËcÍ with critical wave number ¦�Çý� ýg® Ë ý Î ®�ý § ¨ ® and ¯lÇ/Î for a sphere.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) –7.5714D-02 –9.0756D-02 8.5889D-02
( 5.0, 6.0, 7.0) –2.6487D-01 +3.7716D-02 2.0504D-01
( 1.0, 2.0, 3.0) –2.4736D-01 –9.5641D-01 7.7643D-01
( 1.0, 1.0, 1.0) –1.5694D+00 +7.4617D-01 1.6039D+00
( 0.0, 0.0, 2.5) –1.5952D+00 –4.7979D-01 1.7270D+00
( 1.0, 0.5, 0.5) –7.1122D+01 +4.1024D-02 1.0177D+00
( 1.0, 0.2, 0.3) +2.7680D+00 –4.5044D-02 2.7042D+00

Increasing the wave numbers means that the kernel is more oscillatory and the accuracy
depends crucially on the integration routines. In Table 5.6 we present the accuracy for an
ellipsoid with °x( � { * , ±l( � { � and � ( � { � for the wave number $�( ¬ .Next, we present numerical results to illustrate the superconvergence of the collocation
method for smooth surfaces without surface approximation (see [21, Appendix A]) for the
integral equation (2.3) and compare them with the theoretical results.

Since we do not know the exact density
U

on the surface, we define the estimated order
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TABLE 5.6
Accuracy for quadratic interpolation, ¤�Ç õ_§ Í and ¤ ¥ ÇLÈ § ËcÍ with wave number ¦ Ç�¨ for an ellipsoid.

Approximated solution Absolute
Point real part imag. part error
(10.0,11.0,12.0) –7.2828D-03 +3.2065D-02 4.1804D-05
( 5.0, 6.0, 7.0) –2.4711D-02 –5.8659D-02 9.7101D-05
( 1.0, 2.0, 3.0) +9.8086D-02 +1.9089D-01 2.5669D-04
( 1.0, 1.0, 1.0) +3.1361D-01 –1.1837D-01 8.3860D-04
( 0.0, 0.0, 2.5) +1.0974D-01 –3.8551D-01 4.3519D-04
( 1.0, 0.5, 0.5) –2.4944D-01 +2.2520D-01 5.9115D-04
( 1.0, 0.2, 0.3) +7.4938D-02 +2.5711D-01 1.1569D-03

of convergence (EOC) at the collocation point - ´ by²³ Xµ´'�.-&´Ü�;( @ �P¶ � � �� U¸· �3-]´Ü� K U ·�¹ � �.-&´2� �� P �� U ·�¹ � �.-&´� K U ·�¹ U �.-&´� �� � {
To compare the estimated order of convergence at all the collocation points for different
refinements, we define º³ Xµ´F»'( 1 A Ý´Bâ �c}z¼z¼z¼ } »?½ º¶» ²³ Xµ´'�.- ´ �>,
where ¾ is the number of collocation points of the initial triangulation. Note that this kind of
comparison can only be done for constant interpolation with °�( � P�³ , since the set of col-
location nodes for the initial triangulation is a subset of any refined triangulation. Table 5.7
shows the agreement with the theoretical results for 4 and 8 collocation nodes belonging to
all different refinements.

TABLE 5.7
Constant interpolation with ÆGÇLÈkÊ�Ë for a sphere.¤ ( ¤ ¥ ) ¿ÀÂÁÄÃÂÅ ¤ ( ¤ ¥ ) ¿ÀÂÁÄÃÂÆ

4 (4) 8 (8)
16 (16) 1.25 32 (32) 1.5364 (64) 2.10 128 (128) 1.73256 (256) 1.51 512 (512) 1.681024 (1024) 2048 (2048)

To verify the superconvergence also for linear and quadratic interpolation, we pick some
points in the exterior domain and calculate the rates, since we know the true solution in the
exterior domain.

Let - � ��³-,E³-,k³Z� , - � � � , � ,�*Z� and - � � � *T, ��� , � � � be points in the exterior domain. The true
solution is given by (5.1). Denote the error between the calculated solution � ¤ and the true
solution � at the point - ´ by Ç ¤ �.- ´ � ; that is,Ç ¤ �3-]´Ü�;(.N ���.-&´� K � ¤ �.-&´�~Nc{
Define the estimated order of convergence (EOC) at the point - ´ by³ Xµ´L�3-&´Ü�)( @ �P¶ � ��Ç ¤ �.-&´�fP�Ç U ¤ �3-]´Ü�_�:{
We consider two different smooth surfaces. As a first example we consider an ellipsoid with°�( � { * , ±!( � { � and � ( � { � . The second surface is peanut-shaped. Its surface in spherical
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TABLE 5.8
Constant, linear and quadratic interpolation for an ellipsoid.

Constant interpolation with ÆGÇLÈkÊ�Ë¤ ( ¤e¥ ) È�É é7Ê ò î EOC È?É é!Ê û î EOC È�É é7Ê ó î EOC
4 (4) 7.7155D-02 1.25 5.6560D-02 1.51 2.3263D-02 1.3216 (16) 3.2332D-02 3.42 1.9795D-02 3.33 9.3200D-03 3.2964 (64) 3.0312D-03 1.64 1.9718D-03 1.48 9.5112D-04 1.67256 (256) 9.7283D-04 2.10 7.0460D-04 2.08 2.9977D-04 2.111024 (1024) 2.2671D-04 1.6716D-04 6.9379D-05

Linear interpolation with ÆGÇeÈkÊ�Í¤ ( ¤e¥ ) È�É é7Ê ò î EOC È?É é!Ê û î EOC È�É é7Ê ó î EOC
4 (12) 8.9214D-02 3.15 5.8612D-02 3.22 2.3930D-02 2.9816 (48) 1.0039D-02 2.98 6.2687D-03 2.32 3.0255D-03 2.9164 (192) 1.2702D-03 4.09 1.2597D-03 4.05 4.0138D-04 3.97256 (768) 7.4601D-05 7.6031D-05 2.5589D-05

Quadratic interpolation with ÆGÇeÈkÊ~È_Î¤ ( ¤e¥ ) È�É é7Ê ò î EOC È?É é!Ê û î EOC È�É é7Ê ó î EOC
4 (24) 1.8457D-02 1.67 8.2448D-03 0.87 4.6017D-03 1.4816 (96) 5.7908D-03 5.68 4.4997D-03 5.52 1.6453D-03 5.5264 (384) 1.1266D-04 7.18 9.7819D-05 6.61 3.5941D-05 6.87256 (1536) 7.7467D-07 1.0026D-06 3.0691D-07

TABLE 5.9
Constant, linear and quadratic interpolation for a peanut.

Constant interpolation with ÆGÇLÈkÊ�Ë¤ ( ¤e¥ ) È�É é7Ê ò î EOC È?É é!Ê û î EOC È�É é7Ê ó î EOC
4 (4) 1.8968D-01 3.05 1.2105D-01 3.02 5.0542D-02 2.9816 (16) 2.2830D-02 2.09 1.4970D-02 1.84 6.4053D-03 2.0964 (64) 5.3670D-03 1.54 4.1890D-03 1.77 1.5020D-03 1.59256 (256) 1.8429D-03 2.17 1.2316D-03 2.18 4.9754D-04 2.171024 (1024) 4.0915D-04 2.7237D-04 1.1026D-04

Linear interpolation with ÆGÇeÈkÊ�Í¤ ( ¤ ¥ ) È É é7Ê ò î EOC È É é!Ê û î EOC È É é7Ê ó î EOC
4 (12) 1.5041D-01 3.53 1.0084D-01 3.13 4.1227D-02 3.2716 (48) 1.3041D-02 3.91 1.1493D-02 4.02 4.2706D-03 4.1264 (192) 8.6959D-04 2.80 7.0722D-04 3.00 2.4639D-04 2.77256 (768) 1.2514D-04 8.8471D-05 3.6109D-05

Quadratic interpolation with ÆGÇeÈkÊ~È_Î¤ ( ¤ ¥ ) È É é7Ê ò î EOC È É é!Ê û î EOC È É é7Ê ó î EOC
4 (24) 2.0368D-02 2.38 1.7600D-02 2.44 6.1177D-03 2.3516 (96) 3.9080D-03 3.71 3.2544D-03 3.79 1.2040D-03 3.8064 (384) 2.9870D-04 5.33 2.3553D-04 5.63 8.6645D-05 5.42256 (1536) 7.4099D-06 4.7706D-06 2.0222D-06

coordinates is given through 8h(ÌË � A Ý��3Í:� �h� � � � � , ^þ(ÌË � A Ý]�3Í:� � A Ý&� � � and �v(ÎË �g� � �3Í:� ,where Ë���(Ï« 4 �h� � ���TÍ=�]" � A Ý � �3Í:�EPrq 6 Prq . As a third surface we consider the acorn surface.
Its surface is given by 8�(ÐË � A Ý#�3Í:� �h� � � � � , ^²(ÐË � A Ý��3Í:� � A Ý]� � � and �I(ÐË �g� � �3Í:� , whereËr�\(M«l¥ ��¬ P�q®" � �g� � ��³bÍ:� « P � � .The estimated error of convergence illustrated in Table 5.8 is in agreement with the su-
perconvergence rates predicted by Theorems 4.13 and 4.22; that is we obtain the theoretical
order of convergence X�� ÏÒ �¤ @ Ý#� ÏÒ ¾¢�¤ �k� , X�� ÏÒ �¤ � and X�� ÏÒ U¤ @ Ý]� ÏÒ ¾¢�¤ �_� , respectively.

For the linear and quadratic interpolation case we almost obtain an additional order of
convergence compared to the theoretical results predicted by Theorems 4.13 and 4.22. This
is possibly due to the smoothing effect of the integral of the density function. We get similar
result for points closer to the boundary; see [21].

The numerical results shown in Table 5.9 for a peanut are in agreement with the theo-
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TABLE 5.10
Constant, linear and quadratic interpolation for an acorn.

Constant interpolation with ÆGÇ?ÈkÊ�Ë¤ ( ¤�¥ ) È?É é!Ê ò î EOC È�É é!Ê û î EOC È�É é!Ê ó î EOC
4 (4) 2.5980D-01 0.20 2.8900D-01 0.78 8.8502D-02 0.2216 (16) 2.2626D-01 2.06 1.6782D-01 1.97 7.6075D-02 2.2264 (64) 5.4086D-02 3.05 4.2960D-02 3.06 1.6292D-02 3.09256 (256) 6.5394D-03 2.34 5.1552D-03 2.35 1.9068D-03 2.371024 (1024) 1.2956D-03 1.0109D-03 3.7004D-04

Linear interpolation with ÆGÇ?ÈkÊ�Í¤ ( ¤�¥ ) È?É é!Ê ò î EOC È�É é!Ê û î EOC È�É é!Ê ó î EOC
4 (12) 6.8475D-02 0.24 5.2062D-02 0.39 1.9049D-02 0.2616 (48) 5.7888D-02 4.29 3.9641D-02 4.18 1.5944D-02 4.1664 (192) 2.9618D-03 3.65 2.1820D-03 4.03 8.9133D-04 3.47256 (768) 2.3629D-04 1.3344D-04 8.0285D-05

Quadratic interpolation with ÆGÇeÈkÊ~È_Î¤ ( ¤�¥ ) È?É é!Ê ò î EOC È�É é!Ê û î EOC È�É é!Ê ó î EOC
4 (24) 1.8245D-01 3.95 1.2662D-01 3.78 4.9425D-02 3.8916 (96) 1.1798D-02 2.96 9.2453D-03 3.03 3.3440D-03 2.9364 (384) 1.5205D-03 6.44 1.1285D-03 6.68 4.3950D-04 6.43256 (1536) 1.7514D-05 1.0973D-05 5.1072D-06

retical results predicted by Theorems 4.13 and 4.22. Note that we do not have an additional
order of convergence for the linear interpolation as in the ellipsoidal case. The same is true
for an acorn as illustrated in Table 5.10. Finally, note that different wave numbers give similar
convergence rates.

Lastly, we consider a cube with edge length two centered at the origin, although it con-
tradicts the assumption that the surface has to be of class 
 � . The points in the exterior are
given by - � (.� � { � , � { � , � { � � , - � (¦� � { � , � { � , � { � � and - � (.��³-{ *-,k³T{ *T,k³T{ *Z� .

TABLE 5.11
Constant, linear and quadratic interpolation for the unit cube.

Constant interpolation with ÆGÇ?ÈkÊ�Ë¤ ( ¤�¥ ) È?É é!Ê ò î EOC È�É é!Ê û î EOC È�É é!Ê ó î EOC
12 (12) 2.1878D-01 1.44 1.5350D-01 2.33 8.2077D-02 3.1348 (48) 8.0459D-02 2.14 3.0520D-02 1.78 9.3621D-03 1.40192 (192) 1.8311D-02 2.05 8.9033D-03 1.94 3.5481D-03 1.91768 (768) 4.4321D-03 1.80 2.3155D-03 1.73 9.4360D-04 1.703072 (3072) 1.2767D-03 6.9779D-04 2.9047D-04

Linear interpolation with ÆGÇ?ÈkÊ�Í¤ ( ¤ ¥ ) È É é!Ê ò î EOC È É é!Ê û î EOC È É é!Ê ó î EOC
12 (36) 1.1097D-01 4.56 4.4018D-02 3.94 1.7682D-02 3.3248 (144) 4.6919D-03 2.69 2.8649D-03 2.70 1.7645D-03 3.08192 (576) 7.3286D-04 0.53 4.4041D-04 0.63 2.0926D-04 0.72768 (2304) 5.0750D-04 2.8441D-04 1.2697D-04

Quadratic interpolation with ÆGÇeÈkÊ~È_Î¤ ( ¤ ¥ ) È É é!Ê ò î EOC È É é!Ê û î EOC È É é!Ê ó î EOC
12 (72) 2.1166D-02 3.38 1.0229D-02 3.47 5.4511D-03 3.7448 (288) 2.0360D-03 1.78 9.2309D-04 1.52 4.0937D-04 1.53192 (1152) 5.9166D-04 3.2087D-04 1.4189D-04

Surprisingly, we can obtain quite good results for this polyhedral domain provided we
use constant interpolation as illustrated in Table 5.11. It seems like we can almost achieve the
order of convergence X � Ø � @ Ý � Ø ¾�� ��� and thus, this shows the applicability of our method
even for such polyhedral domain, but further investigation is necessary from the theoretical
point of view. This will be possible future research which could be based on ideas of [2, 8, 9,
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17, 18]. However, note that we do not have the desired superconvergence for the linear and
quadratic case.

6. Summary. We use the boundary element collocation method to solve a Fredholm
integral equation of the second kind, where we use interpolation at interior points. We prove
superconvergence at the collocation nodes, distinguishing the cases of even and odd interpola-
tion, and illustrate it with numerical results for several smooth surfaces. We also demonstrate
numerical results for a cube (a polyhedral surface) not satisfying the smoothness assumption
which in theory is necessary to obtain superconvergence. But, surprisingly, our approach still
works for a cube using constant interpolation and investigation regarding this observation
might be possible future research.

Appendix. In this appendix, we prove the following theorem.
THEOREM A.1. We have

ÏÒ C�� �¤ X = > ¾ <on�� �N Â ´ K / N " �N Â ´ K / N �Ñ� aTbZ�T/G�)(�X | ÏÒ C�� �¤ @ Ý#� ÏÒ ¾��¤ � � {
Proof. Without loss of generality, assume Â ´ (.��*-,E*-,k*Z� . DefineÒ |~} W (w¥~^ÿ� £ ¤ ½ N ^�NZ± Ä « ,

such that
� � � Ò |~} W , where

Ä l5* is sufficiently small (since we can assume diam � � � �)��*
as ÏÒ ¤ ��* ). For the integral

X = > ¾ ¡�ÓwÔ Õ J �N / N " �N / N � M aTbZ�3/G�>,
we have����� X =h> ¾ ¡ ÓwÔ Õ J �N / N " �N / N � M?aTbZ�3/G� ����� ¨ X =h> ¾ ¡ Ó�Ô Õ J �Ä " �Ä � M?aTbZ�3/G�W± J �Ä " �Ä � MvN £`¤ N�( � {
Hence,

ÏÒ C�� �¤ X =h> ¾ ¡ Ó�Ô Õ J �N / N " �N / N � M¸aTbZ�3/G�;(�X | ÏÒ C�� �¤ � {(6.1)

Now, consider the integral

ÏÒ�C�� �¤ X ¡ Ó�Ô Õ ¾ < n J �N / N " �N / N � M¸aTbZ�3/��c{
Define Ò |�} § � > (n¥~^�� £ ¤ ½ N ^�N�± © Ò ¤ «
with the constant © l�* sufficiently small such that

Ò |~} § � > is contained in
� �

. Note that
we can find such © , since the diameter of the curved triangle

� �
is smaller or equal to the

maximum mesh size
Ò~¤

of the surface. Also note that the projection of
Ò |�} W and

Ò |�} § � >
into the parametrization plane are circles centered at zero with radius

Ä
and © ÏÒ ¤ , since the
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maximum diameter of the triangles in the parametrization plane is by definition ÏÒ�¤ . Using
polar coordinates we get the following (see [14, p. 40])ÏÒ C�� �¤ � X ¡ Ó�Ô Õ ¾ < n J �N / N " �N / N � M aTbZ�3/��

¨ ÏÒ C�� �¤ � X ¡�Ó�Ô Õ ¾ ¡ Ó�Ô ��Ö > J �N / N " �N / N � M¸aTbZ�3/G�
¨ � ÏÒ�C�� �¤ � � X ��×| X W§ ;� > J �H " �H � M H a H a&Ø
¨ � ÏÒ C�� �¤ � q�s�X W§ ;� > J � " �H M¸a H( � ÏÒ C�� �¤ � c q�sÕ� Ä " @ Ý#� Ä �k� K q�s | © ÏÒ�¤ " @ Ý | © ÏÒ~¤ �i� d(�X | ÏÒ�C�� �¤ @ Ý | ÏÒ ¾��¤ �Â� {(6.2)

Combining (6.1) and (6.2) yields the result.
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solves the Laplace equation by a boundary element method.
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