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Abstract

We give two lower bound formulas for multicolored Ramsey numbers. These formu-
las improve the bounds for several small multicolored Ramsey numbers.

1. INTRODUCTION

In this short article we give two new lower bound formulas for edgewise r-colored
Ramsey numbers, R(k1, k2, . . . , kr), r ≥ 3, defined below. Both formulas are derived via
construction.

We will make use of the following notation. Let G be a graph, V (G) the set of vertices
of G, and E(G) the set of edges of G. An r-coloring, χ, will be assumed to be an edgewise
coloring, i.e. χ(G) : E(G) → {1, 2, . . . , r}. If u, v ∈ V (G), we take χ(u, v) to be the color
of the edge connecting u and v in G. We denote by Kn the complete graph on n vertices.

Definition 1.1 Let r ≥ 2. Let ki ≥ 2, 1 ≤ i ≤ r. The number R = R(k1, k2, . . . , kr) is
defined to be the minimal integer such that any edgewise r-coloring of KR must contain,
for some j, 1 ≤ j ≤ r, a monochromatic Kkj

of color j. If we are considering the
diagonal Ramsey numbers, i.e. k1 = k2 = · · · = kr = k, we will use Rr(k) to denote the
corresponding Ramsey number.

The numbers R(k1, k2, . . . , kr) are well-defined as a result of Ramsey’s theorem [Ram].
Using Definition 1.1 we make the following definition.
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Definition 1.2 A Ramsey r-coloring for R = R(k1, k2, . . . , kr) is an r-coloring of the
complete graph on V < R vertices which does not admit any monochromatic Kkj

subgraph
of color j for j = 1, 2, . . . , r. For V = R − 1 we call the coloring a maximal Ramsey
r-coloring.

2. THE LOWER BOUNDS

We start with an easy bound which nonetheless improves upon some current best lower
bounds.

Theorem 2.1 Let r ≥ 3. For any ki ≥ 3, i = 1, 2, . . . , r, we have

R(k1, k2, . . . , kr) > (k1 − 1)(R(k2, k3, . . . , kr) − 1).

Proof. Let φ(G) be a maximal Ramsey (r − 1)-coloring for R(k2, k3, . . . , kr) with colors
2, 3, . . . , r. Let k1 ≥ 3. Define graphs Gi, i = 1, 2, . . . , k1 − 1, with |V (Gi)| = |V (G)| on
distinct vertices (from each other), each with the coloring φ. Let H be the complete graph
on the vertices V (H) = ∪k1−1

i=1 V (Gi). Let vi ∈ Gi, vj ∈ Gj and define χ(H) as follows:

χ(vi, vj) =

{
φ(vi, vj) if i = j
1 if i 6= j.

We now show that χ(H) is a Ramsey r-coloring for R(k1, k2, . . . , kr). For j ∈ {2, 3, . . . , r},
χ(H) does not admit any monochromatic Kkj

of color j by the definition of φ. Hence, we
need only consider color 1. Since φ(Gi), 1 ≤ i ≤ k1 − 1, is void of color 1, any monochro-
matic Kk1 of color 1 may only have one vertex in Gi for 1 ≤ i ≤ k1−1. By the pigeonhole
principle, however, there exists x ∈ {1, 2, . . . , k1 − 1} such that Gx contains two vertices
of Kk1 , a contradiction. 2

Examples. Theorem 2.1 implies that R5(4) ≥ 1372, R5(5) ≥ 7329, R4(6) ≥ 5346, and
R4(7) ≥ 19261, all of which beat the current best known bounds given in [Rad].

We now look at an off-diagonal bound. This uses and generalizes methods found in
[Chu] and [Rob].

Theorem 2.2 Let r ≥ 3. For any 3 ≤ k1 < k2, and kj ≥ 3, j = 3, 4, . . . , r, we have

R(k1, k2, . . . , kr) > (k1 + 1)(R(k2 − k1 + 1, k3, . . . , kr) − 1).

Before giving the proof of this theorem, we have need of the following definition.
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Definition 2.3 We say that the n × n symmetric matrix

T = T (x0, x1, . . . , xr) = (aij)1≤i,j≤n

is a Ramsey incidence matrix for R(k1, k2, . . . , kr) if T is obtained by using a Ramsey
r-coloring for R(k1, k2, . . . , kr), χ : E(Kn) → {x1, x2, . . . , xr}, as follows. Define aij =
χ(i, j) if i 6= j and aii = x0.

From Definition 2.3 we see that an n × n Ramsey incidence matrix T (x0, x1, . . . , xr)
for R(k1, k2, . . . , kr) gives rise to an r-colored Kn which does not contain Kki

of color xi

for i = 1, 2, . . . , r.

Proof of Theorem 2.2. We will be using Ramsey incidence matrices to construct an
r-colored Ramsey graph on (k1 +1)(R(k2 −k1 +1, k3, . . . , kr)−1) vertices which does not
admit monochromatic subgraphs Kki

of color i, i = 1, 2, . . . , r. We start the proof with
R(t, k, l) and then generalize to an arbitrary number of colors.

Let l > t and consider a maximal Ramsey 2-coloring for R = R(k, l − t + 1). Let T =
T (x0, x1, x2) denote the associated Ramsey incidence matrix. Define A = A? = T (0, 2, 3),
B = B? = T (3, 2, 1), and C = T (1, 2, 3), and consider the symmetric (t+1)(R− 1)× (t+
1)(R−1) matrix, M , below (so that there are t+1 instances of T in each row and in each
column). We note that in the definitions of A and A? we have the color 0 present. This is
valid since, as M is defined in equation (1), the color 0 only occurs on the main diagonal of
M and the main diagonal entries correspond to nonexistent edges in the complete graph.

A B? C C C · · · C
B? A? C C C · · · C
C C A B B · · · B

M = C C B A B · · · B

C C B B A
. . .

...
...

...
...

...
. . .

. . . B
C C B B . . . B A

(1)

We will show that M defines a 3-coloring which contains no monochromatic Kt of
color 1, no monochromatic Kk of color 2, and, for l > t, no monochromatic Kl of color 3,
to show that R(t, k, l) > (t + 1)(R(k, l − t + 1) − 1).

Note 1: We will use the phrase diagonal of X, where X = A, A?, B, B?, or C, to mean
the diagonal of X when X is viewed as a matrix by itself.

Note 2: For ease of reading, we will use (i, j) to represent the matrix entry aij .

No monochromatic Kt of color 1. Let V (Kt) = {i1, i2, . . . , it} with i1 < i2 < · · · < it,
so that we can view E(Kt) as corresponding to the entries in M given by ∪j>k (ij, ik).
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We now argue that not all of these entries can be equal to 1. Assume, for a contradiction,
that all entries are equal to 1.

First, we cannot have two distinct entries in the collection of C’s. Assume otherwise
and let (ij1, ik1) and (ij2, ik2) both be in the collection of C’s with either ij1 6= ij2 or
ik1 6= ik2 .

Case I. (ij1 6= ij2) Let ij1 < ij2 . Note that the entry 1 occurs only on the diagonal of C.
We have two subcases to consider.

Subcase i. (ik1 = ik2) In this subcase, (ij2 , ij1) is on the diagonal of B, a contradiction.

Subcase ii. (ik1 6= ik2) In this subcase, one of (ij1, ik2), (ij2, ik1) is not on the diagonal
of C, but is in C, a contradiction.

Case II. (ij1 = ij2 and ik1 6= ik2) Letting ik1 < ik2 forces (ik2, ik1) to be on the diagonal of
B?, a contradiction.

The above cases show that we can have at most one entry in the collection of C’s.

Next, since A does not contain 1, we must have at least
(

t
2

)−1 entries in the collection
of B’s (including B?). If there exists an entry in B? then, since we can have at most one
entry in the collection of C’s, we must have all of the entries ∪k<j<t (ij, ik) in B?. Since
t ≥ 3, we must have 1 = (it−1, it−2) ∈ A?, a contradiction. Hence, there cannot exist an
entry in B?.

Thus, we must have
(

t
2

)− 1 entries in the collection of B’s, but not in B?. Now, if we
assume that (ij1, ik1) and (ij2 , ik2), ij1 < ij2, are both in the same B, then we must have
(ij2, ij1) ∈ A, a contradiction. Furthermore, we cannot have ij1 = ij2 since this implies
that (ik2, ik1) ∈ A. Hence, each B contains at most one entry for a total of at most

(
t−1
2

)
entries. Since

(
t−1
2

)
<

(
t
2

) − 1 for t ≥ 3, we cannot have all entries equal to 1, and hence
we cannot have a monochromatic Kt of color 1.

No monochromatic Kk of color 2. For this case we will use the following lemma.

Lemma 2.3 Let S(x0, x1, . . . , xr) be a Ramsey incidence matrix for R(k1, k2, . . . , kr). Let
N be a block matrix defined by instances of S (for example, equation (1)). For y ≥ 3, let
V (Ky) = {i1, i2, . . . , iy} with i1 < i2 < · · · < iy so that we can associate with E(Ky) the
entries of N given by ∪j>k (ij, ik). Fix xf for some 1 ≤ f ≤ r. If xf = (ij , ik) for all
1 ≤ k < j ≤ y, and xf as an argument of S is in the same (argument) position, but not
the first (argument) position, for all instances of S then y < kf .

Proof. Let m = R(k1, . . . , kr)−1. By assumption of identical argument positions of xf

in all instances of S, for any entry (i, j) = xf we must have (i (mod m), j (mod m)) = xf .
Provided all (ij (mod m), ik (mod m)), 1 ≤ k < j ≤ y, are distinct, this would imply that
a monochromatic Ky of color f exists in a maximal Ramsey r-coloring for R(k1, . . . , kr),
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thus giving y < kf .

It remains to show that all (ij (mod m), ik (mod m)), 1 ≤ k < j ≤ y, are distinct.
Assume not and consider (ij1 , ik1) and (ij2, ik2) with either ij1 6= ij2 or ik1 6= ik2.

Case I. (ij1 6= ij2) Let ij1 < ij2. Since ij1 ≡ ij2 (mod m) this implies that (ij2 , ij1) must be
on the diagonal of some instance of S, a contradiction, since the first argument denotes
the diagonal, and all entries are not on the diagonal of any instance of S.

Case II. (ik1 6= ik2) Let ik1 < ik2. As in Case I, this implies that (ik2 , ik1) must be on the
diagonal of some instance of S, a contradiction. 2

Applying Lemma 2.3 with N = M , S = T , and f = 2 we see that we cannot have a
monochromatic Kk of color 2.

No monochromatic Kl of color 3. Let V (Kl) = {i1, i2, . . . , il} with i1 < i2 < · · · < il,
so that we can view E(Kl) as corresponding to the entries in M given by ∪j>k (ij, ik). We
now argue that not all of these entries can be equal to 3. Suppose, for a contradiction,
that all of these entries are equal to 3.

If there are no entries in the collection of B’s (including B?), then by Lemma 2.3 (with
N = M , S = T , and f = 3) we must have l < l − t + 1, a contradiction. Hence, there
exists an entry in some B or B?.

Next, note that 3 only occurs on the diagonals of B and B?. Thus, we cannot have
(ij1, ik1) and (ij2, ik2), ij1 < ij2 , both be in the same B or the same B?, for otherwise
(ij2, ik1) is not on the diagonal of B or B?, a contradiction. Hence, each B and B?

contains at most one entry.

Consider the complete subgraph Kl−t+1 of Kl on the vertices {i2, i3, . . . , il−t+2}, so that
we can view E(Kl−t+1) as corresponding to the entries in M given by ∪l−t+2≥j>k≥2 (ij, ik).
By construction, none of these entries are in the collection of B’s and B?’s. To see this,
note that we may have (ik, i1) ∈ B? for at most one 2 ≤ k ≤ t and we may have (ik, ij) ∈ B
for each l − (t − 2) + 1 ≤ k ≤ l for at most one 1 ≤ j < k (i.e. one entry in each of
the bottom t − 2 rows of M). Hence, none of the edges of Kl−t+1 on {i2, . . . , il−t+2} are
associated with an entry in B or B?.

Applying Lemma 2.3 (with N = M , S = T , and f = 3) we get l − t + 1 < l − t + 1, a
contradiction. Thus, no monochromatic Kl of color 3 exists.

The full theorem. To generalize the above argument to an arbitrary number of
colors we change the definitions of A, A?, B, B?, and C; A = A? = T (0, 2, 3, 4, 5, . . . , r),
B = B? = T (3, 2, 1, 4, 5, . . . , r), C = T (1, 2, 3, 4, 5, . . . , r). To see that there is no
monochromatic Kkj

of color j for j = 4, 5, . . . , r, see the argument for no monochro-
matic Kk of color 2 above. 2
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Example. Theorem 2.2 implies that R(3, 3, 3, 11) ≥ 437, beating the previous best lower
bound of 433 as given in [Rad].

Acknowledgment. I thank an anonymous referee for suggestions which drastically im-
proved the presentation of this paper.
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