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Abstract. In this paper, we establish a one-parameter family of Harnack
inequalities connecting the constrained trace Li-Yau differential Harnack
inequality to the constrained trace Chow-Hamilton Harnack inequality for
a nonlinear parabolic equation with respect to evolving metrics related to
the Yamabe flow on the n-dimensional complete manifold.
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1 Introduction

Let (Mn, g(t)), t ∈ [0, T ), be a solution to the ε-Yamabe flow on the n-dimensional
complete manifold Mn as follows:

(1.1)
∂

∂t
gij = −εR · gij ,

where ε is a nonnegative constant and R is the scalar curvature of g(t). It is obvious
that when ε = 1, the ε-Yamabe flow becomes the Yamabe flow. Recall that along the
ε-Yamabe flow, we have

(1.2)
∂R

∂t
= (n− 1) ε∆R + εR2.

Using the maximum principle, one can see that R ≥ c for some c ∈ R is preserved
along the ε-Yamabe flow.

In this paper, we will establish an interpolation between the constrained trace
Li-Yau differential Harnack inequality for a nonlinear parabolic equation with respect
to static metrics and the constrained trace Chow-Hamilton Harnack inequality for
the nonlinear parabolic equation with respect to evolving metrics related to Yamabe
flow.
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Recall that the research of Harnack estimates for parabolic equations originated
in Moser’s work [11], in which he treated the case of linear divergence-form equations.
In his paper, the inequality estimates a solution from below, in terms of the values
it attains on an earlier region of the parabolic domain. Inequalities of this type have
recently appeared for many geometric evolution equations. These new developments
began with the work of Li and Yau [9], in which they obtained a Harnack inequality for
the heat equation on a Riemannian manifold. Their proof relies only on the parabolic
maximum principle. From then on, their Harnack inequalities are often called Li-
Yau differential Harnack inequalities. Surprisingly, similar techniques were employed
by R. Hamilton, who proved Harnack inequalities for the Ricci flow [6] and [7], the
mean curvature flow [5] and a matrix Harnack inequality for the heat equation [4].
Moreover, Perelman [12] proved a Harnack estimate for the fundamental solution of
the conjugate heat equation under the Ricci flow without any curvature assumption.

On the other hand, differential Harnack inequalities for (backward) heat equations
coupled with the Ricci flow have become an important object, which were first studied
by R. Hamilton [6]. One of the excellent important work is that G. Perelman [12]
derived differential Harnack inequalities for the fundamental solution to the conjugate
heat equation coupled with the Ricci flow without any curvature assumption. Later
X. Cao [1], and S.-L. Kuang and Qi S. Zhang [10] both extended Perelman’s result to
the case of all positive solutions to the conjugate heat equation under the Ricci flow
on closed manifolds with nonnegative scalar curvature.

In order to make a clear statement of our Harnack inequalities, we need to recall
some known results. In [4], B. Chow and R. Hamilton extended Li-Yau differential
Harnack inequality [9] for the heat equation on a closed manifold, which they called
a constrained trace Harnack inequality.

Theorem 1.1 (Chow-Hamilton [4]). Let (Mn, g) be a closed manifold with non-
negative Ricci curvature. If S and T are two solutions to the heat equations

∂S

∂t
= ∆S and

∂T

∂t
= ∆T

with |T | < S, then

∂

∂t
ln S − |∇ ln S|2 +

n

2t
= ∆ ln S +

n

2t
>
|∇h|2
1− h2

,

where h := T/S.

Furthermore they generalized Hamilton’s trace Harnack inequality [6] for the Ricci
flow on surfaces with positive scalar curvature, and proved the following constrained
linear trace Harnack inequality.

Theorem 1.2 (Chow-Hamilton [4]). Let
(
M2, g(t)

)
be a solution to the Ricci flow

∂

∂t
gij = −R · gij ,

on a closed surface with scalar curvature R > 0. If S and T are two solutions to

∂S

∂t
= ∆S + RS and

∂T

∂t
= ∆T + RT
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with |T | < S, then

∂

∂t
ln S − |∇ ln S|2 +

1
t

= ∆ ln S + R +
1
t

>
|∇h|2
1− h2

,

where h := T/S.

Recently, J.-Y. Wu and Y. Zheng [14] generalized Theorem 1.2 and Chow’s in-
terpolated Harnack inequality [3] and proved the interpolated and constrained linear
trace Harnack inequality.

Theorem 1.3 (Wu-Zheng [14]). Let
(
M2, g(t)

)
be a solution to the ε-Ricci flow

(1.3)
∂

∂t
gij = −εR · gij ,

on a closed surface with R > 0. If S and T are solutions to the following equations

∂S

∂t
= ∆S + εRS and

∂T

∂t
= ∆T + εRT

with |T | < S, then

∂

∂t
ln S − |∇ ln S|2 +

1
t

= ∆ ln S + εR +
1
t

>
|∇h|2
1− h2

,

where h := T/S.

In Theorem 1.3, if let T ≡ 0 , then the result of J.-Y. Wu and Y. Zheng recov-
ers the Chow’s interpolated Harnack inequality [3]. Very recently, J.-Y. Wu in [13]
also generalized Theorem 1.3, and established an interpolated phenomenon for the
nonlinear parabolic equation

(1.4)
∂f

∂t
= ∆f − f ln f + εRf

under the ε-Ricci flow.

Theorem 1.4 (Wu [13]). Let
(
M2, g(t)

)
be a solution to the ε-Ricci flow (1.4) on

a closed surface with the initial scalar curvature satisfying

R(g(0)) ≥ −2 ln c0

1− c2
0

− 1 > 0,

where c0 is a free parameter satisfying 0 < c0 < 1. If S and T are solutions to the
following nonlinear parabolic equations

∂S

∂t
= ∆S − S ln S + εRS and

∂T

∂t
= ∆T − T ln T + εRT,

respectively with 0 < c0S < T < S (this condition preserved by the ε-Ricci flow),
where c0 is a free parameter satisfying 0 < c0 < 1, then

(1.5)
∂

∂t
ln S − |∇ ln S|2 + ln S +

1
t

= ∆ ln S + εR +
1
t

>
|∇h|2
1− h2

,

where h := T/S.
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In this paper, using the approach of Chow, J.-Y. Wu and Y. Zheng, we will estab-
lish the following one-parameter family of interpolated Harnack inequalities connect-
ing the constrained trace Li-Yau differential Harnack inequality to the constrained
trace Chow-Hamilton Harnack inequality for the nonlinear parabolic equation

(1.6)
∂S

∂t
= ∆S − S ln S + εRS,

(1.7)
∂T

∂t
= ∆T − T ln T + εRT,

with respect to evolving metrics related to the ε-Yamabe flow (1.1). To establish our
main results, we need the following curvature condition used by Huisken in [8] and
by B.-L. Chen and X.-P. Zhu in [2]. Firstly recall the following facts.

Let Mn be an n-dimensional (n ≥ 3) smooth complete Riemannian manifold. It
is well known that the curvature tensor Rm = {Rijkl} can be decomposed into the
orthogonal components which have the same symmetries as

Rm = W + V + U,

where W = {Wijkl} is the Weyl conformal curvature tensor, and V = {Vijkl} and
U = {Uijkl} denote the traceless Ricci part and the scalar curvature part respectively.
When the following curvature condition is satisfied

(1.8) |W |2 + |V |2 ≤ δn(1− ε)2|U |2,
where ε > 0, δ4 = 1

5 , δ5 = 1
10 , and δn = 2

(n−2)(n+1) , n ≥ 6, B.-L. Chen and X.-P. Zhu
in [2] proved that

Theorem 1.5 (Chen-Zhu [2]). Suppose Mn, where n ≥ 4, is a smooth complete
n-dimensional manifold with positive and bounded scalar curvature and satisfies the
pointwise pinching condition (1.8), then Mn is compact. Moreover, let M3 be a
3-dimensional complete noncompact Riemannian manifold with bounded and nonneg-
ative sectional curvature, suppose M3 satisfies the following Ricci pinching condition

Rij ≥ εRgij

for some ε > 0, then M3 is flat.

Theorem 1.6 (Main result I). Let (Mn, g(t)), where n ≥ 4, t ∈ [0, T ) be a solution
to the ε-Yamabe flow (1.1) on a complete manifold Mn with the scalar curvature
satisfying

(1.9) R(g(0)) ≥ −2 ln c0

1− c2
0

− 1 > 0

and the curvature tensor Rm (g (0)) satisfying the pointwise pinching condition (1.8),
where c0 is a free parameter satisfying 0 < c0 < 1. If S and T are solutions to the
nonlinear parabolic equations (1.6) and (1.7) respectively with 0 < c0S < T < S (this
condition preserved by the ε-Yamabe flow), then

(1.10)
∂

∂t
ln S − |∇ ln S|2 + ln S +

1
t

= ∆ ln S + εR +
1
t

>
|∇h|2
1− h2

,

where h := T/S.
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In the two and three-dimensional cases, we can weaken the curvature operator
pinching condition (1.8) to an arbitrary Ricci curvature pinching condition as follows.

Theorem 1.7 (Main result II). Let (Mn, g(t)), where 2 ≤ n ≤ 3, t ∈ [0, T ) be
a solution to the ε-Yamabe flow (1.1) on a complete manifold Mn with the scalar
curvature satisfying (1.9) and the Ricci curvature Rc (g (0)) satisfying the pointwise
pinching condition

(1.11) Rc (g (0)) ≥ λR (g (0)) g (0)

for some λ > 0,where c0 is a free parameter satisfying 0 < c0 < 1. If S and T
are solutions to the nonlinear parabolic equations (1.6) and (1.7) respectively with
0 < c0S < T < S (this condition preserved by the ε-Yamabe flow), then we also have
the Harnack inequality(1.10).

Remark 1.1. Recall the facts that when n = 2, the ε-Yamabe flow is the same as
ε-Ricci flow and 2-dim manifold is an Einstein manifold satisfying (1.11) clearly, thus
Theorem 1.7 is actually a generalization of Theorem 1.4 of J.-Y. Wu.

As the consequences of Theorem 1.6 and 1.7, we have classical Harnack inequalities
as follows.

Theorem 1.8 (Harnack inequality I). Let (Mn, g(t)), where n ≥ 4, t ∈ [0, T ) be a
solution to the ε-Yamabe flow (1.1) on a complete manifold Mn with the initial scalar
curvature satisfying (1.9) and the initial curvature tensor Rm (g (0)) satisfying the
pointwise pinching condition (1.8). Let S and T be two solutions to (1.6) and (1.7)
respectively with 0 < c0S < T < S, and assume that (x1, t1) and (x2, t2), 0 < t1 < t2,
are two points in Mn × (0, T ), then we have

(1.12) et1 ln S(x1, t1) < et2 ln S(x2, t2) +
1
4

inf
γ

∫ t2

t1

et

(∣∣∣∣
dγ

dt
(t)

∣∣∣∣
2

+
4
t

)
dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

Theorem 1.9 (Harnack inequality II). Let (Mn, g(t)), where 2 ≤ n ≤ 3, t ∈ [0, T )
be a solution to the ε-Yamabe flow (1.1) on a complete manifold Mn with the initial
scalar curvature satisfying (1.9) and the initial Ricci curvature satisfying the pointwise
pinching condition (1.11),. Let S and T be two solutions to (1.6) and (1.7) respectively
with 0 < c0S < T < S, then we also have the classical Harnack inequality (1.12).

The paper is organized as follows. In Section 2, we will prove Theorem 1.6 and 1.7
following the approach in [13], which needs a lengthy but straight-forward computa-
tion and makes use of the parabolic maximum principle. In Section 3, using Theo-
rem 1.6 and 1.7, we will prove Theorem 1.8 and 1.9 by the standard arguments.

2 Proof of Theorem 1.6 and 1.7

Under the ε-Yamabe flow (1.1), we can compute that

∂

∂t
ln S =

1
S

∂S

∂t
=

1
S

(∆S − S ln S + εRS)
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and

∆ ln S + |∇ ln S|2 − ln S + εR = ∇
(∇S

S

)
+

∣∣∣∣
∇S

S

∣∣∣∣
2

− ln S + εR

=
∆S

S
− ∇S · ∇S

S2
+

∣∣∣∣
∇S

S

∣∣∣∣
2

− ln S + εR.

Thus we have

(2.1)
∂

∂t
ln S = ∆ ln S + |∇ ln S|2 − ln S + εR,

(2.2)
∂

∂t
(∆) = εR∆

and

(2.3)
∂

∂t
ln R = (n− 1) ε

∆R

R
+ εR = (n− 1) ε

(
∆ln R + |∇ ln R|2

)
+ εR,

where the Laplacian ∆ is acting on smooth functions. Now we can complete the proof
of Theorem 1.6.

Proof of Theorem 1.6. Firstly, by using Theorem 1.5, the pointwise pinching condi-
tion (1.8) which the initial curvature tensor Rm (g (0)) satisfies implies that the man-
ifold (Mn, g(0)) is compact, then Rc(g(0)) ≥ λR(g(0))g(0), for some free parameter
λ ≤ 1

n . Thus the positive Ricci pinching condition is preserved along the ε-Yamabe
flow (1.1), which is well-understood by R. Ye’s work in [15]. Hence for any 0 ≤ t < T ,
we also have Rc(g(t)) ≥ λR(g(t))g(t) for the free parameter λ ≤ 1

n , and the rest proof
follows from a direct computation and the parabolic maximum principle. Here we
mainly follow the arguments of [14]. Let

Q := ∆ ln S + εR =
∂

∂t
ln S − |∇ ln S|2 + ln S,

where S is a positive solution to the equation (1.6). Following [13], using (1.2), (2.1),
(2.2), (2.3) and Bochner formula, we compute that

∂Q

∂t
= ∆

(
∂

∂t
ln S

)
+

(
∂

∂t
∆

)
ln S + ε

∂R

∂t

= ∆
(
∆ lnS + |∇ ln S|2 − ln S + εR

)
+ εR∆ lnS + ε

∂R

∂t

= ∆Q + ∆|∇ ln S|2 + (εR− 1) Q + εR− ε2R2 + ε
∂R

∂t

= ∆Q + 2|∇∇ ln S|2 + 2∇∆ln S · ∇ ln S + Rc (∇ ln S,∇ ln S)

+ (εR− 1) Q + εR− ε2R2 + ε
∂R

∂t

≥ ∆Q + 2|∇∇ ln S|2 + 2∇Q · ∇ ln S + λR|∇ ln S|2 − 2ε∇R · ∇ ln S

+ (εR− 1) Q + εR− ε2R2 + ε
∂R

∂t

= ∆Q + 2∇Q · ∇ ln S + 2εR∆ln S + 2|∇∇ ln S|2 +
nε2

2
R2
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+ λR |∇ ln S|2 +
ε2

λ
R |∇ ln R|2 − 2ε∇R · ∇ ln S − 2εR∆ln S − nε2

2
R2

+ (εR− 1) Q + εR− ε2R2 + εR

(
∂

∂t
ln R− ε

λ
|∇ ln R|2

)

= ∆Q + 2∇Q · ∇ ln S − (εR + 1) Q + 2
∣∣∣∇∇ ln S +

ε

2
Rg

∣∣∣
2

+ R
∣∣∣
√

λ∇ ln S − ε∇ ln R
∣∣∣
2

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)
.

Hence

∂Q

∂t
≥ ∆Q + 2∇Q · ∇ ln S − (εR + 1) Q + 2

∣∣∣∇∇ ln S +
ε

2
Rg

∣∣∣
2

+ εR

(
(n− 1) ε∆ lnR−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)
.

(2.4)

On the other hand, by (1.6) and (1.7), we can calculate that

∂h

∂t
= ∆h + 2∇h · ∇ ln S − h ln h,

which leads to the evolution equation of ∇h as follows

(2.5)

∂

∂t
(∇h) = ∇

(
∂h

∂t

)

= ∇ (∆h + 2∇h · ∇ ln S − h ln h)

= ∆∇h + 2〈∇∇ ln S,∇h〉+ 2〈∇ ln S,∇∇h〉 − R∇h

2
− (1 + ln h)∇h.

Thus under the ε-Yamabe flow, using (2.5), we have

∂

∂t
|∇h|2 = 2∇h

(
∂

∂t
∇h

)
− gkiglj ∂

∂t
gkl∇ih∇jh

= 2∇h

(
∆∇h + 2〈∇∇ ln S,∇h〉+ 2〈∇ ln S,∇∇h〉 − R∇h

2
− (1+ ln h)∇h

)

+ εR|∇h|2
= ∆|∇h|2 − 2|∇∇h|2 + 4〈∇∇ ln S,∇h∇h〉+ 2〈∇ ln S,∇|∇h|2〉

+ ((ε− 1)R− 2(1 + ln h)) |∇h|2.

We can also compute that

∂

∂t
(1− h2) = ∆(1− h2) + 2〈∇ ln S,∇(1− h2)〉+ 2|∇h|2 + 2h2 ln h.

Then we shall compute the evolution equation of |∇h|2
1−h2 . Recall the following

general result that if two functions E and F satisfy the heat equations of the form

∂E

∂t
= ∆E + A and

∂F

∂t
= ∆F + B,
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where A and B are some functions, then

∂

∂t

(
E

F

)
= ∆

(
E

F

)
+

2
F 2
〈∇E,∇F 〉 − 2E

F 3
|∇F |2 +

A

F
− EB

F 2
.

Applying this result to
E := |∇h|2, F := 1− h2,

B := 2〈∇ ln S,∇(1− h2)〉+ 2|∇h|2 + 2h2 ln h

and
A : = −2|∇∇h|2 + 4〈∇∇ ln S,∇h∇h〉+ 2〈∇ ln S,∇|∇h|2〉

+ ((ε− 1)R− 2(1 + ln h)) |∇h|2,
we get that

∂

∂t

( |∇h|2
1− h2

)
= ∆

( |∇h|2
1− h2

)
+

2〈∇(1− h2),∇|∇h|2〉
(1− h2)2

− 2|∇h|2
(1− h2)3

∣∣∇(1− h2)
∣∣2

+
1

1− h2
· (−2|∇∇h|2 + 4〈∇∇ ln S,∇h∇h〉)

+
2

1− h2
· 〈∇ ln S,∇|∇h|2〉+

(ε− 1)R− 2(1 + ln h)
1− h2

|∇h|2

− 2|∇h|2
(1− h2)2

· (〈∇ ln S,∇(1− h2)〉+ |∇h|2 + h2 ln h
)
.

Rearranging terms yields

(2.6)

∂

∂t

( |∇h|2
1− h2

)
= ∆

( |∇h|2
1− h2

)
+ 2

〈
∇

( |∇h|2
1− h2

)
,∇ ln S

〉

− 2
(1− h2)3

∣∣2h∇h∇h + (1− h2)∇∇h
∣∣2

+
4

1− h2
〈∇∇ ln S,∇h∇h〉 − 2|∇h|4

(1− h2)2

+
(ε− 1)R− 2(1 + ln h)

1− h2
|∇h|2 − 2h2 ln h

(1− h2)2
|∇h|2.

Thus we define

(2.7) P := Q− |∇h|2
1− h2

= ∆ ln S + εR− |∇h|2
1− h2

.

Combining (2.4) and (2.6), we conclude that

∂P

∂t
≥ ∆P + 2∇P · ∇ ln S − (εR + 1) Q + 2

∣∣∣∇∇ ln S +
ε

2
Rg

∣∣∣
2

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)

+
2

(1− h2)3
∣∣2h∇h∇h + (1− h2)∇∇h

∣∣2 − 4
1− h2

〈∇∇ ln S,∇h∇h〉

+
2|∇h|4

(1− h2)2
+

(1− ε)R + 2(1 + ln h)
1− h2

|∇h|2 +
2h2 ln h

(1− h2)2
|∇h|2
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= ∆P + 2∇P · ∇ ln S − (εR + 1) Q + 2
∣∣∣∣∇∇ ln S +

ε

2
Rg − ∇h∇h

1− h2

∣∣∣∣
2

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)

+
(1 + ε)R + 2(1 + ln h)

1− h2
|∇h|2 +

2h2 ln h

(1− h2)2
|∇h|2

+
2

(1− h2)3
∣∣2h∇h∇h + (1− h2)∇∇h

∣∣2 .

Hence we have

∂P

∂t
≥ ∆P + 2∇P · ∇ ln S +

2
n

P 2 − (εR + 1) P +
|∇h|2
1− h2

(
R + 1 +

2 ln h

1− h2

)

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)
,

(2.8)

where we used the following elementary inequality
∣∣∣∣∇∇ ln S +

ε

2
Rg − ∇h∇h

1− h2

∣∣∣∣
2

≥ 1
n

(
∆ln S + εR− |∇h|2

1− h2

)2

=
P 2

n
.

Since 0 < c0 < h < 1 and the function 2 ln h
1−h2 is increasing on (0, 1), then 2 ln h

1−h2 >
2 ln c0
1−c2

0
. By the assumption of the theorem, using the maximum principle, we can see

that the inequality (1.9) still holds under the ε-Yamabe flow. Hence

R + 1 +
2 ln h

1− h2
> R + 1 +

2 ln c0

1− c2
0

> 0

for all time t. Therefore, (2.8) becomes

∂P

∂t
≥ ∆P + 2∇P · ∇ ln S +

2
n

P 2 − (εR + 1) P

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

)
.

Adding 1
t to P yields

∂

∂t

(
P +

1
t

)

≥∆
(

P +
1
t

)
+ 2∇

(
P +

1
t

)
· ∇ ln S +

(
P +

1
t

)(
P − 1

t

)
− (εR + 1)

(
P +

1
t

)

+ εR

(
(n− 1) ε∆ln R−

(
1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R +

1
t

)
.

(2.9)

Noting that we have the following relation

(n− 1) ε∆ lnR−
(

1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R

= (n− 1) ε
(
∆ln R + |∇ ln R|2

)
+ εR− 1

λ
ε |∇ ln R|2 + 1− (n− 2) ε

2
R



Interpolating between Li-Yau and Chow-Hamilton Harnack inequalities 115

=
∂

∂t
ln R− 1

λ
ε |∇ ln R|2 + 1− (n− 2) ε

2
R,

then as the approach of the trace Harnack inequality for the ε-Ricci flow on a closed
surface proved by B. Chow in [5] (see also Lemma 2.1 in [14]) implies that

(n− 1) ε∆lnR−
(

1
λ
− n + 1

)
ε |∇ ln R|2 + 1− (n− 4) ε

2
R +

1
t
≥ 0.

Since g(t) has positive scalar curvature, we have

(2.10)

∂

∂t

(
P +

1
t

)
≥ ∆

(
P +

1
t

)
+ 2∇

(
P +

1
t

)
· ∇ ln S +

(
P +

1
t

)(
P − 1

t

)

− (εR + 1)
(

P +
1
t

)
.

It is clear to see that P + 1/t > 0 for very small positive t. Then applying the
maximum principle to the above evolution formula, we conclude that P + 1/t > 0 for
all positive time t, and hence the desired theorem follows. ¤

Proof of Theorem 1.7. Firstly, by using Theorem 1.5, the pointwise pinching condi-
tion (1.11) which the initial Ricci curvature tensor Rc (g (0)) satisfies implies that the
manifold (Mn, g(0)) is compact, then the positive Ricci pinching condition is pre-
served along the ε-Yamabe flow (1.1), which is well-understood by R. Ye’s work in
[15]. Hence for any 0 ≤ t < T , we also have Rc(g(t)) ≥ λR(g(t))g(t) for the free
parameter λ ≤ 1

n , and the rest proof is the same as the proof of Theorem 1.6. ¤

For Theorem 1.6 and 1.7, if we let ε = 0, then

Corollary 2.1. Let (Mn, g), where n ≥ 4, be a complete manifold Mn with the scalar
curvature satisfying (1.9) and the curvature tensor Rm (g) satisfying the pointwise
pinching condition (1.8), where c0 is a free parameter satisfying 0 < c0 < 1. If S and
T are solutions to the nonlinear parabolic equations (1.6) and (1.7) respectively with
0 < c0S < T < S, then

(2.11)
∂

∂t
ln S − |∇ ln S|2 + ln S +

1
t

= ∆ ln S +
1
t

>
|∇h|2
1− h2

,

where h := T/S.

Corollary 2.2. Let (Mn, g), where 2 ≤ n ≤ 3, be a complete manifold Mn with the
scalar curvature satisfying (1.9) and the Ricci curvature Rc (g) satisfying the pointwise
pinching condition (1.11) for some λ > 0,where c0 is a free parameter satisfying
0 < c0 < 1. If S and T are solutions to the nonlinear parabolic equations (1.6) and
(1.7) respectively with 0 < c0S < T < S, then we also have the Harnack inequality
(2.11).

If we set
ḡ = ε−1g and α = ε−1

in Theorem 1.6 and 1.7, then

∆̄ = ε∆ and R̄ = εR.

Hence Theorem 1.6 and 1.7 can be rephrased as follows:
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Corollary 2.3. Let (Mn, ḡ(t)), where n ≥ 4, t ∈ [0, T ) be a solution to the Yam-
abe flow (1.1) on a complete manifold Mn with initial the scalar curvature satisfying
αR̄(ḡ(0)) ≥ − 2 ln c0

1−c2
0
− 1 > 0, and the curvature tensor Rm (g (0)) satisfying the point-

wise pinching condition (1.8), where α is a positive constant and c0 is a free parameter
satisfying 0 < c0 < 1. If S and T are solutions to the nonlinear parabolic equations
(1.6) and (1.7) respectively with 0 < c0S < T < S (this condition preserved by the
Yamabe flow), then

∂

∂t
ln S − α|∇̄ ln S|2 + ln S +

1
t

= α∆̄ ln S + R̄ +
1
t

>
α|∇̄h|2
1− h2

,

where h := T/S.

Corollary 2.4. Let (Mn, ḡ(t)), where 2 ≤ n ≤ 3, t ∈ [0, T ) be a solution to the
Yamabe flow (1.1) on a complete manifold Mn with the scalar curvature satisfying
αR̄(ḡ(0)) ≥ − 2 ln c0

1−c2
0
−1 > 0, and the Ricci curvature Rc (g (0)) satisfying the pointwise

pinching condition (1.11) for some λ > 0, where α is a positive constant and c0 is
a free parameter satisfying 0 < c0 < 1. If S and T are solutions to the nonlinear
parabolic equations (1.6) and (1.7) respectively with 0 < c0S < T < S (this condition
preserved by the Yamabe flow), then we also have the Harnack inequality (2.11).

3 Proof of Theorem 1.8 and 1.9

In section 3, we prove Theorem 1.8 and 1.9 by using Theorem 1.6 and 1.7. Note that
the proof of Theorem 1.9 is the same as Theorem 1.8, thus we only prove Theorem 1.8
which is quite standard by integrating the inequality (1.10).

Proof of Theorem 1.8. We pick a space-time path γ(x, t) joining (x1, t1) and (x2, t2)
with t2 > t1 > 0. Along γ, by Theorem 1.6 we have

d

dt
ln S(x, t) =

∂

∂t
ln S +∇ ln S · dγ

dt

> |∇ ln S|2 − ln S − 1
t

+
|∇h|2
1− h2

+∇ ln S · dγ

dt

≥ −1
4

∣∣∣∣
dγ

dt
(t)

∣∣∣∣
2

− ln S − 1
t
.

Hence d
dt (et ln S(x, t)) > −et

(
1
4

∣∣∣dγ
dt (t)

∣∣∣
2

+ 1
t

)
. Integrating this inequality from the

time t1 to t2 yields

et1 ln S(x1, t1)− et2 ln S(x2, t2) <

∫ t2

t1

et

(
1
4

∣∣∣∣
dγ

dt
(t)

∣∣∣∣
2

+
1
t

)
dt,

which completes the proof of Theorem 1.8. ¤
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