A class of almost tangent structures in generalized geometry

A. M. Blaga and M. Crasmareanu

Abstract

A generalized almost tangent structure on the big tangent bundle $T^{b i g} M$ associated to an almost tangent structure on M is considered and several features of it are studied with a special view towards integrability. Deformation under a β - or a B-field transformation and the compatibility with a class of generalized Riemannian metrics are discussed. Also, a notion of tangentomorphism is introduced as a diffeomorphism f preserving the (generalized) almost tangent geometry and some remarkable subspaces are proved to be invariant with respect to the lift of f.

M.S.C. 2010: 53C15, 53C10, 53D18.

Key words: generalized almost tangent structure; generalized geometry; integrability.

1 Introduction

Almost tangent structures were introduced by R. S. Clark and M. Bruckheimer [4] and H. A. Eliopoulos [10] around 1960 and have been investigated by several authors, see [3], [5]-[8], [19], [25]. As is well-known, the tangent bundle of a manifold carries a canonical integrable almost tangent structure, hence the name. This almost tangent structure plays an important role in the Lagrangian description of analytical mechanics, [7]-[8], [11], [18].

Our aim is to consider this type of structure in generalized geometry, a theory introduced by N. Hitchin [13] in order to unify complex and symplectic geometry; Hitchin's suggestion was continued by M. Gualtieri whose PhD thesis [12] is an outstanding work on this subject. More precisely, we consider various versions of almost tangent structures on the big tangent bundles $T^{b i g} M$ and as main example we associate a generalized almost tangent structure \mathcal{J}_{J} to a given almost tangent one J on the base manifold M. Let us note that under various names, the notion of generalized almost tangent structure was already considered by I. Vaisman in [22]-[24].

The content of paper is as follows. After a short survey in almost tangent geometry and the construction of \mathcal{J}_{J} we study its invariance under β - and B-field transformations, respectively, and discuss the compatibility with generalized Riemannian metrics

[^0]of $T^{b i g} M$ induced by usual Riemannian metrics. Under the name of tangentomorphisms we consider the diffeomorphisms f between two almost tangent manifolds preserving their almost tangent structures and consider the same problem on the big tangent bundles. Some remarkable subspaces are associated with a fixed tangentomorphism and their invariance with respect to \mathcal{J}_{J} is proved. Since integrability is an important issue in a geometry induced by a tensor field of (1,1)-type, we study simultaneously integrability of two generalized almost tangent structures \mathcal{J}_{j} by means of simultaneous integrability of J_{1}, J_{2} of M. The last Section is devoted to the interplay between \mathcal{J}_{J} and the covariant derivative induced by the Levi-Civita connection of the base manifold M.

2 Almost tangent geometry revisited

Let M be a smooth, m-dimensional real manifold for which we denote: $C^{\infty}(M)$-the real algebra of smooth real functions on $M, \Gamma(T M)$-the Lie algebra of vector fields on $M, T_{s}^{r}(M)$-the $C^{\infty}(M)$-module of tensor fields of (r, s)-type on M. An element of $T_{1}^{1}(M)$ is usually called vector 1-form or affinor.

Recall the concept of almost tangent geometry:
Definition 2.1. $J \in T_{1}^{1}(M)$ is called almost tangent structure on M if it has a constant rank and:

$$
\begin{equation*}
i m J=\operatorname{ker} J \tag{2.1}
\end{equation*}
$$

The pair (M, J) is an almost tangent manifold.
The name is motivated by the fact that (2.1) implies the nilpotence $J^{2}=0$ exactly as the natural tangent structure of tangent bundles. Denoting rank $J=n$ it results $m=2 n$. If in addition, we suppose that J is integrable i.e.:

$$
\begin{equation*}
N_{J}(X, Y):=[J X, J Y]-J[J X, Y]-J[X, J Y]+J^{2}[X, Y]=0 \tag{2.2}
\end{equation*}
$$

then J is called tangent structure and (M, J) is called tangent manifold.
From [20, p. 3246] we get some features of tangent manifolds:
(i) the distribution $\operatorname{im} J(=\operatorname{ker} J)$ defines a foliation denoted by $V(M)$ and called the vertical distribution.
Example 2.2. $M=\mathbb{R}^{2}, J_{e}(x, y)=(0, x)$ is a tangent structure with ker J_{e} the Y axis, hence the name. The subscript e comes from "Euclidean", see also Example 7.4.
(ii) there exists an atlas on M with local coordinates $(x, y)=\left(x^{i}, y^{i}\right)_{1 \leq i \leq n}$ such that $J=\frac{\partial}{\partial y^{i}} \otimes d x^{i}$ i.e.:

$$
\begin{equation*}
J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{i}}, \quad J\left(\frac{\partial}{\partial y^{i}}\right)=0 \tag{2.3}
\end{equation*}
$$

We call canonical coordinates the above (x, y) and the change of canonical coordinates $(x, y) \rightarrow(\widetilde{x}, \widetilde{y})$ is given by:

$$
\left\{\begin{array}{l}
\widetilde{x}^{i}=\widetilde{x}^{i}(x) \tag{2.4}\\
\widetilde{y}^{i}=\frac{\partial \widetilde{x}^{i}}{\partial x^{a}} y^{a}+B^{i}(x) .
\end{array}\right.
$$

It results an alternative description in terms of G-structures. Namely, a tangent structure is a G-structure with:

$$
G=\left\{C=\left(\begin{array}{ll}
A & O_{n} \tag{2.5}\\
B & A
\end{array}\right) \in G L(2 n, \mathbb{R}) ; \quad A \in G L(n, \mathbb{R}), B \in g l(n, \mathbb{R})\right\}
$$

and G is the invariance group of matrix $J=\left(\begin{array}{cc}O_{n} & O_{n} \\ I_{n} & O_{n}\end{array}\right)$, i.e., $C \in G$ if and only if $C \cdot J=J \cdot C$.

The natural almost tangent structure J of $M=T N$ is an example of tangent structure having exactly the expression (2.3) if $\left(x^{i}\right)$ are the coordinates on N and $\left(y^{i}\right)$ are the coordinates in the fibers of $T N \rightarrow N$. Also, J_{e} of Example 2.2 has the above expression (2.3) with $n=1$, whence it is integrable. A third class of examples is obtained by duality: if J is an (integrable) endomorphism with $J^{2}=0$ then its dual $J^{*}: \Gamma\left(T^{*} M\right) \rightarrow \Gamma\left(T^{*} M\right)$, given by $J^{*} \alpha:=\alpha \circ J$ for $\alpha \in \Gamma\left(T^{*} M\right)$, is (integrable) endomorphism with $\left(J^{*}\right)^{2}=0$. Let us call this type of endomorphisms a weak almost tangent structure.

3 Generalized almost tangent structures

Fix now a smooth manifold M of dimension m not necessary even. The framework of this work is provided by the manifold $T^{b i g} M:=T M \oplus T^{*} M$. This manifold is the total space of a vector bundle $\pi: T^{b i g} M \rightarrow M$; so $T^{b i g} M$ is called the big tangent bundle of M [21] and the C^{∞}-module of its sections $\Gamma\left(T^{b i g} M\right)$ has the elements $\mathcal{X}=(X, \alpha)=X+\alpha$, where $X \in \Gamma(T M)$ and $\alpha \in \Gamma\left(T^{*} M\right) . T^{b i g} M$ is endowed with the Courant structure ($<,>,[$,$]), [6]:$

1. the (neutral) inner product (of signature (m, m)):

$$
\begin{equation*}
g_{b i g}((X, \alpha),(Y, \beta))=\frac{1}{2}(\beta(X)+\alpha(Y)) \tag{3.1}
\end{equation*}
$$

2. the (skew-symmetric) Courant bracket:

$$
\begin{equation*}
[(X, \alpha),(Y, \beta)]_{C}=\left([X, Y], \mathcal{L}_{X} \beta-\mathcal{L}_{Y} \alpha-\frac{1}{2} d(\beta(X)-\alpha(Y))\right) \tag{3.2}
\end{equation*}
$$

The same manifold $T M \oplus T^{*} M$ is called sometimes the Pontryagin bundle of M (in [14]) or generalized tangent bundle of M (in [17]).

Inspired by the first Section we introduce:
Definition 3.1. i) A weak classical generalized almost tangent structure on M is an endomorphism \mathcal{J} of the big tangent bundle $T^{\text {big }} M$ satisfying:

$$
\begin{equation*}
\mathcal{J}^{2}=0 \tag{3.3}
\end{equation*}
$$

If, moreover, \mathcal{J} satisfies:

$$
\begin{equation*}
\operatorname{ker} \mathcal{J}=i m \mathcal{J} \tag{3.4}
\end{equation*}
$$

then \mathcal{J} is a classical generalized almost tangent structure.
ii) $([23$, p. 278] $)$ If \mathcal{J} satisfies in addition the property of skew-symmetry with respect to $g_{b i g}$:

$$
\begin{equation*}
g_{b i g}(\mathcal{J X}, \mathcal{Y})+g_{b i g}(\mathcal{X}, \mathcal{J Y})=0 \tag{3.5}
\end{equation*}
$$

then we call it (weak) generalized almost tangent structure. Moreover, if \mathcal{J} is integrable i.e. its Nijenhuis tensor vanishes:

$$
\begin{equation*}
\mathcal{N}_{\mathcal{J}}(\mathcal{X}, \mathcal{Y}):=[\mathcal{J X}, \mathcal{J} \mathcal{Y}]_{C}-\mathcal{J}[\mathcal{X}, \mathcal{J} \mathcal{Y}]_{C}-\mathcal{J}[\mathcal{J X}, \mathcal{Y}]_{C}+\mathcal{J}[\mathcal{X}, \mathcal{Y}]_{C}=0 \tag{3.6}
\end{equation*}
$$

then \mathcal{J} is called (weak) generalized tangent structure.
iii) If $\mathcal{J}(T M) \subset T M$ and $\mathcal{J}\left(T^{*} M\right) \subset T^{*} M$ then \mathcal{J} is called (weak) splitting generalized (almost) tangent structure.

Remark 3.2. The interest in such types of endomorphisms comes from the theory of Dirac structures, a concept introduced in [6] in order to give a geometric theory of constrained (physical) systems; for other details see [1]. More precisely, as is pointed out in [24], for a weak generalized tangent structure \mathcal{J} its image $\operatorname{im\mathcal {J}}:=\mathcal{D}_{\mathcal{J}}$ is a Dirac structure.

Recall after [12] that an arbitrary endomorphism \mathcal{J} can be represented in the matrix form:

$$
\mathcal{J}=\left(\begin{array}{cc}
A & \sharp \pi \tag{3.7}\\
b_{\sigma} & B
\end{array}\right)
$$

where:

$$
\left\{\begin{array}{l}
A: \Gamma(T M) \rightarrow \Gamma(T M), \quad A:=p_{T M} \circ \mathcal{J} \circ i_{T M} \\
\sharp \pi: \Gamma\left(T^{*} M\right) \rightarrow \Gamma(T M), \quad \sharp \pi:=p_{T M} \circ \mathcal{J} \circ i_{T^{*} M} \\
b_{\sigma}: \Gamma(T M) \rightarrow \Gamma\left(T^{*} M\right), \quad b_{\sigma}:=p_{T^{*} M} \circ \mathcal{J} \circ i_{T M} \\
B: \Gamma\left(T^{*} M\right) \rightarrow \Gamma\left(T^{*} M\right), \quad B:=p_{T^{*} M} \circ \mathcal{J} \circ i_{T^{*} M}
\end{array}\right.
$$

with p_{*} the projection and i_{*} the inclusion map. The condition (3.5) yields that:
i) \sharp_{π} is defined by a bivector π by $\sharp_{\pi}(\alpha):=i_{\alpha} \pi$, for $\alpha \in \Gamma\left(T^{*} M\right)$,
ii) b_{σ} is defined by a 2-form σ by $b_{\sigma}(X):=i_{X} \sigma$, for $X \in \Gamma(T M)$,
iii) $B=-A^{*}$.
and hence the condition (3.3) means:

$$
\begin{equation*}
A^{2}=-\sharp_{\pi} \circ b_{\sigma}, \quad \pi\left(A^{*} \alpha, \beta\right)=\pi\left(\alpha, A^{*} \beta\right), \quad \sigma(A X, Y)=\sigma(X, A Y) \tag{3.8}
\end{equation*}
$$

The second relation (3.8) reads π is compatible with A while the third part of (3.8) is expressed as σ is compatible with A. The first relation (3.8) means that: $A^{2} X=$ $-i_{i_{X} \sigma} \pi$ for every vector field $X \in \Gamma(T M)$; therefore $\beta\left(A^{2} X\right)=-\pi\left(i_{X} \sigma, \beta\right)=$ $-\pi(\sigma(X, \cdot), \beta)$ for any $\beta \in \Gamma\left(T^{*} M\right)$.

Example 3.3. An almost tangent structure J yields a classical generalized almost tangent structure \mathcal{J}_{J} with:

$$
\mathcal{J}_{J}:=\left(\begin{array}{cc}
J & 0 \tag{3.9}\\
0 & -J^{*}
\end{array}\right)
$$

since $\mathcal{J}_{J}^{2}=0$ and also \mathcal{J}_{J} satisfies (3.4). Moreover, we have (3.5) and then we call it the generalized almost tangent structure induced by J. Note that \mathcal{J}_{J} is a splitting generalized almost tangent structure.

With respect to integrability we have:
Proposition 3.1. The generalized almost tangent structure \mathcal{J}_{J} is integrable if and only if J is integrable. The associated Dirac structure is $\mathcal{D}_{\mathcal{J}_{J}}=V(M) \oplus V^{*}(M)$ where $V^{*}(M)$ is the foliation generated by the weak tangent structure J^{*}.
Proof. We have: $N_{\mathcal{J}}(\mathcal{X}=X+\alpha, \mathcal{Y}=Y+\gamma)=Z+\eta$ where $Z=[J X, J Y]-$ $J[X, J Y]-J[J X, Y]$ and:

$$
\begin{equation*}
\eta(V)=\alpha\left(N_{J}(Y, V)\right)-\gamma\left(N_{J}(X, V)\right) \tag{3.10}
\end{equation*}
$$

for any $V \in \Gamma(T M)$. In other words:

$$
\begin{equation*}
N_{\mathcal{J}}(\mathcal{X}=X+\alpha, \mathcal{Y}=Y+\gamma)=\left(N_{J}(X, Y), \alpha \circ N_{J}(\cdot, Y)-\gamma \circ N_{J}(X, \cdot)\right) \tag{3.11}
\end{equation*}
$$

and the conclusion follows directly. The second part is a direct application of Remark 3.2 .

More generally, if $a, b \in \mathbb{R}^{*}$ then the pencil:

$$
\mathcal{J}_{J, a, b}:=\left(\begin{array}{cc}
a J & 0 \tag{3.12}\\
0 & -b J^{*}
\end{array}\right)
$$

is a splitting weak generalized almost tangent structure and $\mathcal{J}_{J}=\mathcal{J}_{J, 1,1}$.

4 Compatibility with generalized Riemannian metrics induced by usual metrics

Recall after [24] that a generalized Riemannian metric on the big tangent bundle $T^{b i g} M$ can be produced by an endomorphism \mathcal{G} on this manifold such that:

1. $\mathcal{G}^{2}=I_{T^{b i g} M}$ i.e. \mathcal{G} is an almost product structure on $T^{b i g} M$,
2. $g_{\text {big }}(\mathcal{G X}, \mathcal{G Y})=g_{\text {big }}(\mathcal{X}, \mathcal{Y})$ i.e. \mathcal{G} is a $g_{\text {big }}$-orthogonal transformation.

Representing \mathcal{G} as:

$$
\mathcal{G}=\left(\begin{array}{cc}
\varphi & \sharp g_{1} \tag{4.1}\\
b_{g_{2}} & \varphi^{*}
\end{array}\right)=: \mathcal{G}_{\varphi, g_{1}, g_{2}},
$$

where φ is an endomorphism of the tangent bundle $T M, \varphi^{*}$ its dual map, $b_{g_{i}}(X):=$ $i_{X} g_{i}, X \in \Gamma(T M)$ and $\nexists_{g_{i}}:=b_{g_{i}}^{-1}, i \in\{1,2\}$ for g_{1}, g_{2} Riemannian metrics on M, the above two conditions are equivalent to:

$$
\begin{equation*}
\varphi^{2}=I-\sharp g_{1} \circ b_{g_{2}}, \quad g_{i}(X, \varphi Y)=-g_{i}(\varphi X, Y), \tag{4.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $i \in\{1,2\}$.
Fix now (J, g) a pair (almost tangent structure, Riemannian metric) on M and for $\varepsilon= \pm 1$ say that J is ε-compatible with g if $g(J X, Y)=\varepsilon g(X, J Y)$, for any X, $Y \in \Gamma(T M)$. Consider also on $T^{b i g} M$ the generalized Riemannian metric $\mathcal{G}_{g}=\mathcal{G}_{0, g, g}$ induced by g. A natural question is if the induced generalized almost tangent structure \mathcal{J}_{J} is compatible with this generalized Riemannian metric.

Proposition 4.1. If J is ε-compatible with g then the generalized tangent structure \mathcal{J} induced by J is $(-\varepsilon)$-compatible with the generalized Riemannian metric \mathcal{G}_{g} :

$$
\begin{equation*}
\mathcal{G}_{g} \circ \mathcal{J}_{J}=-\varepsilon \mathcal{J}_{J} \circ \mathcal{G}_{g} . \tag{4.3}
\end{equation*}
$$

Proof. We have:

$$
\mathcal{G}_{g}:=\left(\begin{array}{cc}
0 & \not \sharp_{g} \tag{4.4}\\
b_{g} & 0
\end{array}\right)
$$

and then:

$$
\mathcal{G}_{g} \circ \mathcal{J}_{J}=\left(\begin{array}{cc}
0 & -\sharp_{g} \circ J^{*} \\
b_{g} \circ J & 0
\end{array}\right), \quad \mathcal{J}_{J} \circ \mathcal{G}_{g}=\left(\begin{array}{cc}
0 & J \circ \not \sharp_{g} \\
-J^{*} \circ b_{g} & 0
\end{array}\right) .
$$

The hypothesis means $b_{g} \circ J=\varepsilon J^{*} \circ b_{g}$ yielding then $\sharp_{g} \circ J^{*}=\varepsilon J \circ \sharp_{g}$. Comparing the previous relations it results the required equality.

5 Deformation under B-field and β-field transformations

Besides the diffeomorphisms, the Courant bracket admits some other symmetries, namely the B-field transformations. Now we are interested in what happens if we apply to the generalized almost tangent structure \mathcal{J}_{J} a B-field transformation.

Let B be a 2-form on M viewed as a map $B: \Gamma(T M) \rightarrow \Gamma\left(T^{*} M\right)$ and consider the B-transform:

$$
e^{B}:=\left(\begin{array}{cc}
I & 0 \\
B & I
\end{array}\right) .
$$

We define $\mathcal{J}_{B, J}:=e^{B} \mathcal{J}_{J} e^{-B}$ which has the expression:

$$
\mathcal{J}_{B, J}=\left(\begin{array}{cc}
J & 0 \tag{5.1}\\
B J+J^{*} B & -J^{*}
\end{array}\right) .
$$

$\mathcal{J}_{B, J}$ coincides with \mathcal{J}_{J} if and only if $B J+J^{*} B=0$ which means the skew-symmetry:

$$
\begin{equation*}
B(J X, Y)=-B(X, J Y) \tag{5.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Example 5.1. Let (J, g) be an almost tangent metric structure which means that J is (-1)-compatible with g. We consider the associated 2-form $B(X, Y):=g(J X, Y)$ for $X, Y \in \Gamma(T M)$ and then $B(J X, Y)=-B(X, J Y)$ since both expressions are equal to 0 . In conclusion $\mathcal{J}_{B, J}$ is just \mathcal{J}_{J}.

Proposition 5.1. For any 2-form B the endomorphism $\mathcal{J}_{B, J}$ is a classical generalized almost tangent structure which is a generalized almost tangent structure if and only if B satisfies the skew-symmetry condition (5.2).

Proof. Indeed, $\mathcal{J}_{B, J}^{2}=e^{B} \mathcal{J}_{J}^{2} e^{-B}=0$, so $i m \mathcal{J}_{B, J} \subseteq \operatorname{ker} \mathcal{J}_{B, J}$. Let $\mathcal{X}=X+\alpha \in$ $\operatorname{ker} \mathcal{J}_{B, J}$. Then $J X=0$ so that $X \in \operatorname{ker} J=i m J$ and $J^{*}(\alpha-B(X))=0$ so that $\alpha-B(X) \in \operatorname{ker} J^{*}=i m J^{*}$. Take $X=J Y$ and $\alpha=B(X)+J^{*} \gamma$. It follows $X+\alpha=\mathcal{J}_{B, J}(Y+B(Y)-\gamma) \in i m \mathcal{J}_{B, J}$ and we have the second part of conclusion, $\operatorname{ker} \mathcal{J}_{B, J} \subseteq i m \mathcal{J}_{B, J}$.

Remark 5.2. In the general case, if \mathcal{J} is represented as $\mathcal{J}=\left(\begin{array}{cc}J & \beta \\ B & -J^{*}\end{array}\right)$, then its B-transform:

$$
\mathcal{J}_{B}=\left(\begin{array}{cc}
J-\beta B & \beta \tag{5.3}\\
B J+J^{*} B+B-B \beta B & -J^{*}+B \beta
\end{array}\right)
$$

defines also a weak classical generalized almost tangent structure.
Similarly we shall see what happens if we apply to the endomorphism \mathcal{J}_{J} a β-field transformation. Let β be a bivector field on M viewed as a map $\beta: \Gamma\left(T^{*} M\right) \rightarrow$ $\Gamma(T M)$ and consider the β-transform:

$$
e^{\beta}:=\left(\begin{array}{cc}
I & \beta \tag{5.4}\\
0 & I
\end{array}\right)
$$

We can define $\mathcal{J}_{\beta, J}:=e^{\beta} \mathcal{J}_{J} e^{-\beta}$ which has the expression:

$$
\mathcal{J}_{\beta, J}=\left(\begin{array}{cc}
J & -J \beta-\beta J^{*} \tag{5.5}\\
0 & -J^{*}
\end{array}\right)
$$

which means that for $\mathcal{X}=X+\alpha \in \Gamma\left(T^{b i g} M\right)$, we have:

$$
\mathcal{J}_{\beta, J}(\mathcal{X})=\left(J X-J(\beta(\alpha))-\beta\left(J^{*} \alpha\right),-J^{*} \alpha\right)
$$

If the bivector field β satisfies the skew-symmetry $\beta \circ J^{*}=-J \circ \beta$ then $\mathcal{J}_{\beta, J}$ coincides with \mathcal{J}_{J}.

Proposition 5.2. For any bivector field β the endomorphism $\mathcal{J}_{\beta, J}$ is a classical generalized almost tangent structure.

Proof. Indeed, $\mathcal{J}_{\beta, J}^{2}=e^{\beta} \mathcal{J}_{J}^{2} e^{-\beta}=0$ so $i m \mathcal{J}_{\beta, J} \subseteq \operatorname{ker} \mathcal{J}_{\beta, J}$. Let $X+\alpha \in \operatorname{ker} \mathcal{J}_{\beta, J}$. Then $J^{*} \alpha=0$ so that $\alpha \in \operatorname{ker} J^{*}=i m J^{*}$ and $J(X-\beta(\alpha))=0$ so that $X-\beta(\alpha) \in$ ker $J=i m J$. Take $\alpha=J^{*} \gamma$ and $X=\beta(\alpha)+J Y$. It follows $X+\alpha=\mathcal{J}_{\beta}(Y-\beta(\gamma)-\gamma) \in$ $i m \mathcal{J}_{\beta, J}$ and we have the other inclusion, too, $\operatorname{ker} \mathcal{J}_{\beta, J} \subseteq i m \mathcal{J}_{\beta, J}$.

Remark 5.3. In the general case, if \mathcal{J}_{J} is represented $\mathcal{J}=\left(\begin{array}{cc}J & \beta \\ B & -J^{*}\end{array}\right)$ then its β-transform:

$$
\mathcal{J}_{\beta, J}=\left(\begin{array}{cc}
J+\beta B & -J \beta-\beta J^{*}+\beta-\beta B \beta \\
B & -J^{*}-B \beta
\end{array}\right)
$$

defines also a weak classical generalized almost tangent structure.

6 Tangentomorphisms and invariant subspaces

We shall prove that a diffeomorphism between two almost tangent manifolds preserving the almost tangent structures induces an isomorphism between their generalized tangent bundles which preserves the associated generalized almost tangent structures.

Definition 6.1. Let $\left(M_{1}, J_{1}\right)$ and $\left(M_{2}, J_{2}\right)$ be two almost tangent manifolds. We say that the diffeomorphism $f: M_{1} \rightarrow M_{2}$ is a (J_{1}, J_{2})-tangentomorphism if it satisfies:

$$
\begin{equation*}
J_{2} \circ f_{*}=f_{*} \circ J_{1} \tag{6.1}
\end{equation*}
$$

Lemma 6.1. If $f:\left(M_{1}, J_{1}\right) \rightarrow\left(M_{2}, J_{2}\right)$ is a tangentomorphism then $J_{1}^{*} \circ f^{*}=f^{*} \circ J_{2}^{*}$.
Proof. For $X \in \Gamma\left(T M_{1}\right)$ and $\alpha \in \Gamma\left(T^{*} M_{2}\right)$ we have:

$$
\left[\left(J_{1}^{*} \circ f^{*}\right)(\alpha)\right](X)=\left(f^{*} \alpha\right)\left(J_{1} X\right)=\alpha\left(f_{*}\left(J_{1} X\right)\right)
$$

and respectively:

$$
\left[\left(f^{*} \circ J_{2}^{*}\right)(\alpha)\right](X)=\left(J_{2}^{*} \alpha\right)\left(f_{*} X\right)=\alpha\left(J_{2}\left(f_{*} X\right)\right)=\alpha\left(f_{*}\left(J_{1} X\right)\right)
$$

which means the conclusion.
Proposition 6.2. Let $f:\left(M_{1}, J_{1}\right) \rightarrow\left(M_{2}, J_{2}\right)$ be a tangentomorphism. Then it induces an endomorphism between the generalized tangent bundles $f^{\text {big }}: T^{\text {big }} M_{1} \rightarrow$ $T^{b i g} M_{2}$ given by:

$$
\begin{equation*}
f^{b i g}(\mathcal{X}):=f_{*} X+\left(f^{-1}\right)^{*} \alpha \tag{6.2}
\end{equation*}
$$

It satisfies:

$$
\begin{equation*}
\mathcal{J}_{J_{2}} \circ f^{b i g}=f^{b i g} \circ \mathcal{J}_{J_{1}} \tag{6.3}
\end{equation*}
$$

Proof. Using the previous lemma we obtain for any $\mathcal{X}=X+\alpha \in \Gamma\left(T^{b i g} M_{1}\right)$:

$$
\begin{gathered}
\mathcal{J}_{J_{2}} \circ f^{b i g}(\mathcal{X})=\mathcal{J}_{J_{2}}\left(f_{*} X+\left(f^{-1}\right)^{*} \alpha\right)=\left(J_{2} \circ f_{*}(X),-J_{2}^{*} \circ\left(f^{-1}\right)^{*}(\alpha)\right)= \\
=\left(f_{*} \circ J_{1}(X),-\left(f^{-1}\right)^{*} \circ J_{1}^{*} \alpha\right)=f^{b i g}\left(J_{1} X-J_{1}^{*} \alpha\right)
\end{gathered}
$$

and the last term is $f^{b i g} \circ \mathcal{J}_{J_{1}}(X+\alpha)$ which means the required equality.
Extending this definition, we say that two generalized almost tangent structures \mathcal{J}_{1} and \mathcal{J}_{2} are isomorphic if there exists an endomorphism $F: \Gamma\left(T^{b i g} M_{1}\right) \rightarrow \Gamma\left(T^{b i g} M_{2}\right)$ such that $\mathcal{J}_{2} \circ F=F \circ \mathcal{J}_{1}$.

Let $\left(J_{i}, g_{i}\right)$ be almost tangent metric structures on $M_{i}, i \in\{1,2\}$ and $f:\left(M_{1}, J_{1}, g_{1}\right) \rightarrow\left(M_{2}, J_{2}, g_{2}\right)$ a tangentomorphism. For $i \in\{1,2\}$, consider:

$$
\begin{equation*}
\mathcal{S}_{i}:=\left\{\mathcal{X}=X+\alpha \in \Gamma\left(T^{b i g} M_{i}\right) \mid i_{X} g_{i}=\alpha\right\} \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
\check{\mathcal{S}}_{1}^{f}:=\left\{\mathcal{X}=X+f^{*}(\alpha) \in \Gamma\left(T^{b i g} M_{1}\right) \mid i_{X} g_{1}=f^{*}(\alpha), X \in \Gamma\left(T M_{1}\right), \alpha \in \Gamma\left(T^{*} M_{2}\right)\right\} \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\mathcal{S}}_{2}^{f}:=\left\{\mathcal{X}=f_{*}(X)+\alpha \in \Gamma\left(T^{b i g} M_{2}\right) \mid i_{f_{*}(X)} g_{2}=\alpha, X \in \Gamma\left(T M_{1}\right), \alpha \in \Gamma\left(T^{*} M_{2}\right)\right\} \tag{6.6}
\end{equation*}
$$

A straightforward computation gives:

$$
\begin{equation*}
\mathcal{J}_{J_{i}}\left(\mathcal{S}_{i}\right) \subset \mathcal{S}_{i}, \mathcal{J}_{J_{1}}\left(\check{\mathcal{S}}_{1}^{f}\right) \subset \check{\mathcal{S}}_{1}^{f}, \mathcal{J}_{J_{2}}\left(\hat{\mathcal{S}}_{2}^{f}\right) \nsubseteq \hat{\mathcal{S}}_{2}^{f} \tag{6.7}
\end{equation*}
$$

Therefore, a more interesting case is the coincidence of above almost tangent structures:

Proposition 6.3. Let f be a tangentomorphism on the almost tangent metric manifold (M, J, g). Then the following subspaces of $\Gamma\left(T^{b i g} M\right)$ are invariant by \mathcal{J}_{J} :

$$
\begin{equation*}
\check{\mathcal{S}}^{f}:=\left\{X+f^{*}(\alpha) \mid i_{X} g=f^{*}(\alpha), X+\alpha \in \Gamma\left(T^{b i g} M\right)\right\}, \tag{6.8}
\end{equation*}
$$

$$
\begin{align*}
& \hat{\mathcal{S}}^{f}:=\left\{f_{*}(X)+\alpha \mid i_{f_{*}(X)} g=\alpha, X+\alpha \in \Gamma\left(T^{b i g} M\right)\right\}, \tag{6.9}\\
& \overline{\mathcal{S}}^{f}:=\left\{f_{*}(X)+f^{*}(\alpha) \mid i_{f_{*}(X)} g=f^{*}(\alpha), X+\alpha \in \Gamma\left(T^{b i g} M\right)\right\} . \tag{6.10}
\end{align*}
$$

Proof. Fix $Y \in \Gamma(T M)$.
i) For $X+f^{*}(\alpha) \in \check{\mathcal{S}}^{f}$ we have $\mathcal{J}_{J}\left(X+f^{*}(\alpha)\right):=J X-J^{*}\left(f^{*}(\alpha)\right)$. Then:
$\left(i_{J X} g\right)(Y)=g(J X, Y)=-g(X, J Y)=-\left(i_{X} g\right)(J Y)=-\left(f^{*}(\alpha)\right)(J Y)=\left(-J^{*}\left(f^{*}(\alpha)\right)\right)(Y)$.
ii) For $f_{*}(X)+\alpha \in \hat{\mathcal{S}}^{f}$ we have $\mathcal{J}\left(f_{*}(X)+\alpha\right)=J\left(f_{*}(X)\right)-J^{*} \alpha=f_{*}(J X)-J^{*} \alpha$. Then:

$$
\begin{gathered}
i_{f_{*}(J X)} g(Y)=g\left(f_{*}(J X), Y\right)=g\left(J\left(f_{*}(X)\right), Y\right)=-g\left(f_{*} X, J Y\right)=-i_{f_{*} X} g(J Y)= \\
=-J^{*}\left(i_{f_{*} X} g\right)(Y)=-J^{*} \alpha(Y)
\end{gathered}
$$

iii) For $f_{*}(X)+f^{*}(\alpha) \in \overline{\mathcal{S}}^{f}$ we have $\mathcal{J}\left(f_{*}(X)+f^{*}(\alpha)\right):=J\left(f_{*}(X)\right)-J^{*}\left(f^{*}(\alpha)\right)=$ $f_{*}(J X)-f^{*}\left(J^{*} \alpha\right)$. Then:

$$
\begin{gathered}
i_{f_{*}(J X)} g(Y)=g\left(f_{*}(J X), Y\right)=g\left(J\left(f_{*} X\right), Y\right)=-g\left(f_{*} X, J Y\right)=-i_{f_{*} X} g(J Y)= \\
=-f^{*} \alpha(J Y)=-J^{*} f^{*} \alpha(Y)
\end{gathered}
$$

and the last term is $-f^{*}\left(J^{*} \alpha\right)(Y)$, which gives the conclusion.

7 Simultaneously integrability of two generalized almost tangent structures

Two skew-commuting almost tangent structures J_{1} and J_{2} on a $4 k$-dimensional manifold M satisfying:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} J_{1} \cap \operatorname{ker} J_{2}\right)=k \tag{7.1}
\end{equation*}
$$

are simultaneously integrable if [15]-[16]:

$$
\begin{equation*}
N_{J_{1}, J_{1}}=0, \quad N_{J_{1}, J_{2}}=0, \quad N_{J_{2}, J_{2}}=0 \tag{7.2}
\end{equation*}
$$

where the Nijenhuis tensor field of the pair $\left(J_{1}, J_{2}\right)$ is generally defined as:

$$
\begin{align*}
2 N_{J_{1}, J_{2}}(X, Y)= & {\left[J_{1} X, J_{2} Y\right]-J_{1}\left[J_{2} X, Y\right]-J_{2}\left[X, J_{1} Y\right]+\left[J_{2} X, J_{1} Y\right] } \\
& -J_{2}\left[J_{1} X, Y\right]-J_{1}\left[X, J_{2} Y\right]+\left(J_{1} J_{2}+J_{2} J_{1}\right)[X, Y] . \tag{7.3}
\end{align*}
$$

From these conditions follows that both J_{1} and J_{2} are integrable but conversely not.
Let us remark that the generalized almost tangent structures $\mathcal{J}_{J_{1}}, \mathcal{J}_{J_{2}}$ are skewcommuting if and only if the almost tangent structures J_{1} and J_{2} are skew-commuting. Inspired by the result above we introduce:

Definition 7.1. Two generalized almost tangent structures \mathcal{J}_{1} and \mathcal{J}_{2} on the $4 k$ dimensional manifold M satisfying $\operatorname{dim}\left(\operatorname{ker} \mathcal{J}_{1} \cap \operatorname{ker} \mathcal{J}_{2}\right)=2 k$ are said to be simultaneously integrable if:

$$
\begin{equation*}
N_{\mathcal{J}_{1}, \mathcal{J}_{1}}=0, \quad N_{\mathcal{J}_{1}, \mathcal{J}_{2}}=0, \quad N_{\mathcal{J}_{2}, \mathcal{J}_{2}}=0 \tag{7.4}
\end{equation*}
$$

where the Nijenhuis tensor field of the pair $\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)$ is:

$$
\begin{align*}
2 N_{\mathcal{J}_{1}, \mathcal{J}_{2}}(\mathcal{X}, \mathcal{Y})= & {\left[\mathcal{J}_{1} \mathcal{X}, \mathcal{J}_{2} \mathcal{Y}\right]_{C}-\mathcal{J}_{1}\left[\mathcal{J}_{2} \mathcal{X}, \mathcal{Y}\right]_{C}-\mathcal{J}_{2}\left[\mathcal{X}, \mathcal{J}_{1} \mathcal{Y}\right]_{C}+\left[\mathcal{J}_{2} \mathcal{X}, \mathcal{J}_{1} \mathcal{Y}\right]_{C} } \\
& -\mathcal{J}_{2}\left[\mathcal{J}_{1} \mathcal{X}, \mathcal{Y}\right]_{C}-\mathcal{J}_{1}\left[\mathcal{X}, \mathcal{J}_{2} \mathcal{Y}\right]_{C}+\left(\mathcal{J}_{1} \mathcal{J}_{2}+\mathcal{J}_{2} \mathcal{J}_{1}\right)[\mathcal{X}, \mathcal{Y}]_{C} \tag{7.5}
\end{align*}
$$

Remark that these conditions yields that both \mathcal{J}_{1} and \mathcal{J}_{2} are integrable but not conversely.
Proposition 7.1. Let two skew-commuting almost tangent structures J_{1} and J_{2} be given on the $4 k$-dimensional manifold M satisfying $\operatorname{dim}\left(\operatorname{ker} J_{1} \cap \operatorname{ker} J_{2}\right)=k$. Then the generalized almost tangent structures $\mathcal{J}_{J_{1}}$ and $\mathcal{J}_{J_{2}}$ are simultaneously integrable if and only if J_{1} and J_{2} are simultaneously integrable.
Proof. Since we have
(7.6) $\operatorname{dim}\left(\operatorname{ker} \mathcal{J}_{J_{1}} \cap \operatorname{ker} \mathcal{J}_{J_{2}}\right)=2 \operatorname{dim}\left(\operatorname{ker} J_{1} \cap \operatorname{ker} J_{2}\right)+2 \operatorname{dim}(M)-\left[\operatorname{dim}\left(\operatorname{ker} J_{1}\right)+\operatorname{dim}\left(\operatorname{ker} J_{2}\right)\right]$
and from the condition $\operatorname{ker} J_{i}=i m J_{i}, i \in\{1,2\}$, we deduce that $\operatorname{dim}\left(\operatorname{ker} J_{i}\right)=$ $\operatorname{dim}(M)=4 k$. The relation between the intersection of the kernels becomes:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} \mathcal{J}_{J_{1}} \cap \operatorname{ker} \mathcal{J}_{J_{2}}\right)=2 \operatorname{dim}\left(\operatorname{ker} J_{1} \cap \operatorname{ker} J_{2}\right)=2 k \tag{7.7}
\end{equation*}
$$

Similar to the formula (3.11) we have that $N_{\mathcal{J}_{J_{1}}, \mathcal{J}_{J_{2}}}(\mathcal{X}=X+\alpha, \mathcal{Y}=Y+\gamma)=Z+\eta$, where $Z=N_{J_{1}, J_{2}}(X, Y)$ and:

$$
\begin{equation*}
\eta(V)=\alpha\left(N_{J_{1}, J_{2}}(Y, V)\right)-\gamma\left(N_{J_{1}, J_{2}}(X, V)\right) \tag{7.8}
\end{equation*}
$$

for any $V \in \Gamma(T M)$. In conclusion, $N_{\mathcal{J}_{J_{i}}, \mathcal{J}_{J_{j}}}=0, i \in\{1,2\}$, if and only if $N_{J_{i}, J_{j}}=0$, $i \in\{1,2\}$.

Example 7.2. For any $a, b \in \mathbb{R}^{*}$ define now the family $\left(J_{a, b}\right)$ with $J_{a, b}:=a \cdot J_{1}+b \cdot J_{2}$. A straightforward calculus gives that $J_{a, b}$ defines an almost tangent structure if and only if $J_{1} J_{2}+J_{2} J_{1}=0$. Similar, consider the family $\left(\mathcal{J}_{a, b}\right)$ defined by $\mathcal{J}_{a, b}:=$ $a \cdot \mathcal{J}_{1}+b \cdot \mathcal{J}_{2}$. In fact:

$$
\mathcal{J}_{a, b}:=\left(\begin{array}{cc}
a \cdot J_{1}+b \cdot J_{2} & 0 \tag{7.9}\\
0 & -\left(a \cdot J_{1}+b \cdot J_{2}\right)^{*}
\end{array}\right)=\left(\begin{array}{cc}
J_{a, b} & 0 \\
0 & -J_{a, b}^{*}
\end{array}\right) .
$$

It results that $\mathcal{J}_{a, b}$ is a weak generalized almost tangent structure if and only if $J_{1} J_{2}+J_{2} J_{1}=0$.

In order to have a class of examples we introduce:
Definition 7.3. Let g be a non-degenerate 2-form on M. Two almost tangent structures $\left(J_{1}, J_{2}\right)$ form a dual pair with respect to g if $\operatorname{ker} J_{1} \perp_{g} \operatorname{ker} J_{2}$.

Since ker $J_{i}=\operatorname{im} J_{i}, i \in\{1,2\}$, the condition of the previous definition is equivalent to $g\left(J_{1} X, J_{2} Y\right)=0$ for any $X, Y \in \Gamma(T M)$. In the same way can be defined a dual pair of (weak) generalized almost tangent structures $\mathcal{J}_{1}, \mathcal{J}_{2}$ with respect to a nondegenerate 2-form g of $T^{b i g} M$.

Consider now $\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)$ a dual pair of (weak) generalized almost tangent structures with respect to the neutral metric $g_{\text {big }}$. Then $g_{\text {big }}\left(\mathcal{J}_{1} \mathcal{X}, \mathcal{J}_{2} \mathcal{Y}\right)=0$. A step further is to suppose that $\left(\mathcal{J}_{i}, g_{\text {big }}\right), i \in\{1,2\}$, are generalized almost tangent metric structures i.e.:

$$
g_{b i g}\left(\mathcal{J}_{i} \mathcal{X}, \mathcal{Y}\right)=-g_{b i g}\left(\mathcal{X}, \mathcal{J}_{i} \mathcal{Y}\right)
$$

Then the image of the endomorphisms $\mathcal{J}_{1} \mathcal{J}_{2}, \mathcal{J}_{2} \mathcal{J}_{1}$ is a subspace in the set of $g_{\text {big }}$-null sections of $T^{b i g} M$.

Proposition 7.2. If the almost tangent structures J_{1} and J_{2} satisfy $J_{1} J_{2}=J_{2} J_{1}=0$ then the generalized almost tangent structures $\mathcal{J}_{J_{1}}$ and $\mathcal{J}_{J_{2}}$ induced by them form a dual pair with respect to $g_{\text {big }}$.
Proof. For $\mathcal{X}=X+\alpha, \mathcal{Y}=Y+\gamma \in \Gamma\left(T^{b i g} M\right)$ the relation:

$$
g_{b i g}\left(\mathcal{J}_{J_{1}}(\mathcal{X}), \mathcal{J}_{J_{2}}(\mathcal{Y})\right)=-\frac{1}{2}\left[\alpha\left(J_{1} J_{2} Y\right)+\gamma\left(J_{2} J_{1} X\right)\right]=0
$$

gives the conclusion.
Example 7.4. Returning to Example 2.2 it results that J_{e} and $J_{e}^{\text {dual }}$ given by $J_{e}^{\text {dual }}(x, y)=(y, 0)$ form a dual pair with respect to the Euclidean metric of \mathbb{R}^{2}. We have:

$$
\begin{equation*}
J_{e} J_{e}^{\text {dual }}+J_{e}^{\text {dual }} J_{e}=I . \tag{7.10}
\end{equation*}
$$

A pair $\left(J_{1}, J_{2}\right)$ of weak almost tangent structures satisfying $J_{1} J_{2}+J_{2} J_{1}=I$ is called almost bitangent structure in [9, p. 7].

8 Covariant derivatives on the generalized tangent bundle

Let ∇ be the Levi-Civita connection associated to a given Riemannian metric g on M and ∇^{\prime} its extension to 1 -forms [2, p. 28]:

$$
\begin{equation*}
\left(\nabla^{\prime}{ }_{X} \alpha\right)(Y):=X(\alpha(Y))-\alpha\left(\nabla_{X} Y\right) \tag{8.1}
\end{equation*}
$$

with $X, Y \in \Gamma(T M)$ and $\alpha \in \Gamma\left(T^{*} M\right)$. Then we define the extension of ∇ to $T^{b i g} M$:

$$
\begin{equation*}
\nabla_{\mathcal{X}}^{b i g} \mathcal{Y}=\nabla_{X+\alpha}^{b i g} Y+\gamma:=\nabla_{X} Y+\nabla_{\sharp_{g} \alpha}^{\prime} \gamma \tag{8.2}
\end{equation*}
$$

In general, $\nabla^{b i g}$ is not a linear connection on $T^{b i g} M$, but it satisfies the following properties:
i) is \mathbb{R}-bilinear,
ii) $\nabla_{f \mathcal{X}}^{b i g} \mathcal{Y}=f \nabla_{\mathcal{X}}^{b i g} \mathcal{Y}$ for any $f \in C^{\infty}(M)$,
iii) $\nabla_{\mathcal{X}}^{b i g} f \mathcal{Y}=f \nabla_{\mathcal{X}}^{b i g} \mathcal{Y}+X(f) \mathcal{Y}$.

If ∇ is J-invariant: $\nabla_{X} J Y=J\left(\nabla_{X} Y\right)$ for any $X, Y \in \Gamma(T M)$, then ∇^{\prime} is J^{*} invariant: $\nabla_{X}^{\prime} J^{*} \alpha=J^{*}\left(\nabla_{X}^{\prime} \alpha\right)$ for any $\alpha \in \Gamma\left(T^{*} M\right)$. With respect to the big tangent bundle we have:

Proposition 8.1. If ∇ is J-invariant then $\nabla^{\text {big }}$ is \mathcal{J}_{J}-invariant.
Proof. From definitions it results:

$$
\begin{aligned}
\mathcal{J}_{J}\left(\nabla_{\mathcal{X}}^{b i g} \mathcal{Y}\right) & =\mathcal{J}_{J}\left(\nabla_{X} Y+\nabla_{\sharp_{g} \alpha}^{\prime} \gamma\right) \\
& =J\left(\nabla_{X} Y\right)-J^{*}\left(\nabla_{\sharp_{g} \alpha}^{\prime} \gamma\right) \\
& =\nabla_{X} J Y-\nabla_{\sharp_{g} \alpha}^{\prime} J^{*} \gamma=\nabla_{\mathcal{X}}^{b i g} \mathcal{J}_{J} \mathcal{Y},
\end{aligned}
$$

for any $\mathcal{X}=X+\alpha, \mathcal{Y}=Y+\gamma \in \Gamma\left(T^{b i g} M\right)$.
Remark that $\nabla^{b i g}$ is a natural operator, that is, for any isometry $f:\left(M_{1}, g_{1}\right) \rightarrow$ $\left(M_{2}, g_{2}\right)$ such that the isomorphism $f^{b i g}$ satisfies $f^{b i g}\left(\mathcal{S}_{1}\right) \subseteq \mathcal{S}_{2}$ with respect to S_{i} from (6.4), the following diagram commutes:

$$
\begin{array}{ccc}
\mathcal{S}_{1} \times \mathcal{S}_{1} \\
f^{b i g} \times f^{b i g} \downarrow & \xrightarrow{\nabla_{1}^{b i g}} & \mathcal{S}_{1} \\
\downarrow f^{b i g}
\end{array} .
$$

Acknowledgement. The first author acknowledges the support by the research grant PN-II-ID-PCE-2011-3-0921.

References

[1] M. Anastasiei, Banach Lie algebroids and Dirac structures, Balkan J. Geom. Appl. 18, 1 (2013), 1-11.
[2] A. M. Blaga, Connections on the generalized tangent bundle of a Riemannian manifold, Balkan J. Geom. Appl. 16, 1 (2011), 27-36.
[3] F. Brickell, R. S. Clark, Integrable almost tangent structures, J. Diff. Geom. 9 (1974), 557-563.
[4] R. S. Clark, M. Bruckheimer, Sur les structures presque tangents, C. R. A. S. Paris 251 (1960), 627-629.
[5] R. S. Clark, D. S. Goel, On the geometry of an almost tangent manifold, Tensor 24 (1972), 243-252.
[6] T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319, 2 (1990), 631-661.
[7] M. Crampin, Defining Euler-Lagrange fields in terms of almost tangent structures, Phys. Lett. A 95, 9 (1983), 466-468.
[8] M. Crampin, G. Thompson, Affine bundles and integrable almost tangent structures, Math. Proc. Camb. Phil. Soc. 98 (1985), 61-71.
[9] V. Cruceanu, On almost biproduct complex manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 52, 1 (2006), 5-24.
[10] H. A. Eliopoulos, Structures presque tangents sur les variétés différentiables, C. R. A. S. Paris 255 (1962), 1563-1565.
[11] J. Grifone, Structure presque-tangente et connexions, I, II. Ann. Inst. Fourier (Grenoble) 22, 1 and 3 (1972), 287-334, 291-338.
[12] M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, Univ. Oxford, 2003, arXiv: math.DG/0401221v1.
[13] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54, 3 (2003), 281-308.
[14] M. Jotz, T. S. Ratiu, J. Śniatycki, Singular reduction of Dirac structures, Trans. Amer. Math. Soc. 363 (2011), 2967-3013.
[15] V. Kubát, Simultaneous integrability of two J-related almost tangent structures, Comm. Math. Univ. Carolinae 20, 3 (1979), 461-473.
[16] V. Kubát, On simultaneous integrability of two commuting almost tangent structures, Comm. Math. Univ. Carolinae, 22, 1 (1981), 149-160.
[17] A. Nannicini, Almost complex structures on cotangent bundles and generalized geometry, J. Geom. Phys. 60, 11 (2010), 1781-1791.
[18] M. Rahula, Tangent structures and analytical mechanics, Balkan J. Geom. Appl. 16, 1 (2011), 122-127.
[19] G. Thompson, U. Schwardmann, Almost tangent and cotangent structures in the large, Trans. Amer. Math. Soc. 327, 1 (1991), 313-328.
[20] I. Vaisman, Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.
[21] I. Vaisman, Isotropic subbundles of $T M \oplus T^{*} M$, Int. J. Geom. Methods Mod. Phys. 4, 3 (2007), 487-516.
[22] I. Vaisman, From generalized Kähler to generalized Sasakian structures, J. Geom. Symmetry Phys. 18 (2010), 63-86.
[23] I. Vaisman, On some quantizable generalized structures, An. Univ. Vest Timiş. Ser. Mat.-Inform. 48, 1-2 (2010), 275-284.
[24] I. Vaisman, Dirac structures on generalized Riemannian manifolds, Rev. Roum. Math. Pures Appl. 57, 2 (2012), 179-203.
[25] K. Yano, E. T. Davies, Differential geometry on almost tangent manifolds, Ann. Mat. Pura Appl. (4) 103 (1975), 131-160.

Authors' addresses:
Adara M. Blaga
Dept. Mathematics and Informatics, West Univ. of Timişoara,
Bld. V. Pârvan, no. 4, 300223, Timişoara, România.
E-mail: adara@math.uvt.ro
Mircea Crasmareanu
Faculty of Mathematics, University "Al. I. Cuza" Iasi, 700506, Iaşi, România.
E-mail: mcrasm@uaic.ro, http://www.math.uaic.ro/~mcrasm

[^0]: Balkan Journal of Geometry and Its Applications, Vol.19, No.2, 2014, pp. 23-36.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2014.

