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Abstract. Many microeconomic and engineering problems can be formu-
lated as stochastic optimization problems that are modelled by Itô evo-
lution systems and by cost functionals expressed as stochastic integrals.
Our paper studies some optimization problems constrained by stochastic
evolution systems, giving original results on stochastic first integrals, ad-
joint stochastic processes and a version of simplified single-time stochastic
maximum principle. It extends to the stochastic case the work of first
author regarding the geometrical methods in optimal control, constrained
by normal ODEs. More precisely, our Lagrangians and Hamiltonians are
stochastic 1-forms. Physical and economic applications of the general re-
sults are discussed.
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1 Introduction

The objective of this paper is to study the single-time stochastic optimal control
problems by some crucial geometrical observations/intuitions. Besides mathematical
curiosity, however, there are practical motivations for imposing new point of views on
such problems.

The paper is organized as follows. Section 2 recalls some preliminaries results on
Wiener processes. In Section 3 we start from Itô product formula and a variational
stochastic differential system in order to introduce the adjoint (dual) Itô stochastic
differential system. Section 4 combines the mathematical ingredients necessary to
obtain an optimizing method by selecting a nonanticipative decision among the one
satisfying all the constraints. In Theorem 4.1 one proves that if exists an optimal con-
trol u∗(·) which determines the stochastic optimal evolution x(·), then there exists an
adapted dual process p(t, ω)t∈Ω0T

which verifies the adjoint (dual) stochastic differ-
ential system. This result is called single-time stochastic maximum principle. Section
5 presents the optimal feedback control of a continuously monitored spin. Section
6 analyses the Ramsey and Uzawa-Lucas stochastic models using our formulation
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of stochastic maximum principle. Section 7 underlines the most important original
contributions.

A still open problem for the stochastic optimal control is the stochastic multitime
maximum principle [15]. The difficulties of this problem are involved in the definition
of the multitime stochastic Itô evolution and in accepting a payoff as a curvilinear
integral or as a multiple integral.

In this paper we formulate and prove a new single-time stochastic maximum prin-
ciple, different from the classical maximum principles existing in the stochastic lit-
erature (e.g., [2], [10]). The advantage of our theory consists in the possibility of
extending it to the multitime case. Consequently we are able to state a multitime
stochastic maximum principle associated to curvilinear integral actions or multiple
integral actions. We remark that one cannot build a multitime version starting from
the classical statements of the stochastic maximum principles.

Since the stochastic optimal evolution, the variational optimal evolution and the
adjoint optimal evolution are not generally given by explicit formulas, we show how
is possible to apply numerical simulations for solving the control stochastic problems.

2 Wiener process

Let 0, T be fixed points in R+ and denote by Ω0T the closed interval 0 ≤ t ≤ T . Let
t ∈ Ω0T be the parameter of evolution or time.

Let (Ω,F ,P) be a probability space endowed with a complete, increasing and
right-continuous filtration (a complete natural history)

{(Ft)t : t ∈ Ω0T } .

Such a probability space
(
Ω,F , (Ft)t∈Ω0T

,P
)

is called filtred probability space. Let us
denote by K1,K2 ⊂ F two arbitrary σ−algebras with the property K1 ⊂ K2. We say
that the filtration satisfies the conditional independence property if for all bounded
random variables X, all t ∈ R+, we have

(2.1) E [X | K1] = E [E [X | K2] | K1] .

This property implies that the conditional expectations with respect to K1 and K2

commutes.
For a process x = (x (t, ω))t∈Ω0T

, the increment of x on an interval (t1, t2], t1 ≤ t2,
is given by

x ((t1, t2]) = x (t2, ω)− x (t1, ω) .

Definition 2.1. (Martingale) Let x = (x(t, ω))t∈Ω0T be an Ft-adapted process.

1. The process x is called weak martingale if E [x ((t, s]) (ω) | Ft] = 0, for all t, s ∈
R+, such that t ≤ s.

2. The process x is called martingale if E [x (s, ω) | Ft] = xt, for all t, s ∈ R+, such
that t ≤ s.

3. The process x is called strong martingale if E [x ((t, s]) (ω) | F∗t ] = 0, for all
t, s ∈ R+, such that t ≤ s.
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Obviously, every strong martingale and every martingale is a weak martingale.

Definition 2.2. (Wiener process) A stochastic process (W(t, ω) : t ∈ Ω0T ) is called
Wiener process (starting at zero) (or Brownian motion) if W(0, ω) = 0 and W(t, ω)
is a gaussian process with E [W(t, ω)] = 0 and for t1, t2 ∈ R, we have

E [W(t1, ω)W(t2, ω)] = min {t1, t2} .

Definition 2.3. The stochastic process (W(t, ω) : t ∈ Ω0T ) is called Ft− Wiener
process if, in addition,

E [W(s, ω) | Ft] = W(t, ω) ,

for all t, s ∈ R+, such that t ≤ s.

A first example of martingale is the Wiener process.
Hypothesis RL Suppose that a sample function x : Ω0T → R is continuous from

the right and limited from the left at every point. That means, for every t0 ∈ T , t ↓ t0,
implies x (t) −→ x (t0) and for t ↑ t0, limt↑t0 x (t) exists, but need not be x (t0). We
use only stochastic processes x where almost all sample paths have the RL property.

3 Itô product formula and
adjoint stochastic systems

Let Ω0T be the closed interval 0 ≤ t ≤ T in R+ and t ∈ Ω0T be the time. For any
given Euclidean space H, we denote by 〈·, ·〉 (resp. |·|) the inner product (resp. norm)
of H. Let M2 (Ω0T ; H) denote the space of all Ft−progressively processes x (·, ω)
with values in H such that

E
∫

Ω0T

|x (t, ω)|2 dt < ∞.

Given a filtred probability space
(
Ω,F , (Ft)t∈Rm

+
,P

)
satisfying the usual conditions,

on which a Wiener process W (·, ω) with values in Rd is defined, we consider a con-
straint as a controlled stochastic system

(3.1)
{

dxi
t = µi (t, xt, ut) dt + σi

a (t, xt, ut) dW a
t ,

x (0) = x0 ∈ Rn, a = 1, d, i = 1, n,

where
µ (·, x (·, ω) , u (·, ω)) : Ω0T × Rn × U −→ Rn,

σ (·, x (·, ω) , u (·, ω)) : Ω0T × Rn × U −→ Rn×d

and, for simplicity, we denote x (t, ω), respectively u (t, ω), by xt and ut. Here and
in the whole paper we use Einstein summation convention. For a new viewpoint
regarding the stochastic ODE, see [3], [4]. We assume:

(H1) µ, σ, and f are continuous in their arguments and continuously differentiable
in (x, u);

(H2) the derivatives of µ and σ in (x, u) are bounded;
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(H3) the derivatives of f in (x, u) are bounded by C (1 + |x|+ |u|) and the deriva-
tive of h in x is bounded by C (1 + |x|).

The process u (·, ω) is called control (vector-valued) variable. We assume that
u (t, ω) has values in a given closed set in Rk and that u (t, ω) is satisfying the
hypothesis RL. In addition we require that u (t, ω) gives rise to a unique solution
x (t) = x(u) (t) of (3.1) for t ∈ Ω0T . This control is taken from the set

A =
{
u (·, ω) | u (·, ω) ∈M2

(
Ω0T ,Rk

)}
.

Any u (·) ∈ A is called a feasible control.

Definition 3.1. Let
(
Ω,F , (Ft)t∈R+

,P
)

be given, satisfying the usual conditions and

let W (t) be a given standard (Ft)t∈R+
−Wiener process with values in Rd. A control

u (·, ω) is called admissible, and the pair (x (·, ω) , u (·, ω)) is called admissible, if

1. u (·, ω) ∈ A;

2. x (·, ω) is the unique solution of system (3.1);

3. some additional convex constraint on the terminal state variable are satisfied,
e.g.

x (T, ω) ∈ K,

where K is a given nonempty convex subset in Rn;

4. f (·, x (·, ω) , u (·, ω)) ∈ L1
F (Ω0T ;Rn) and h (x (T, ω)) ∈ L1

F (Ω;R).

The set of all admissible controls is denoted by Aad.
Taking into account hypothesis (H1)-(H3), for a given u (·, ω) ∈ Aad, there exists

a unique solution
x (·, ω) ∈M2 (Ω0T ,Rn)

of the system (3.1) (see [8] or [20]).

3.1 Itô product formula

In order to prove the single-time stochastic maximum principle using the ideas rising
from the papers [15], [14], [17], [16], we need the following auxiliary result, which is
a special case of the Itô formula ([2, Theorem 3.5.2, p. 265]). To prove this Lemma,
one uses Itô stochastic calculus rules: dW a

t dW b
t = δabdt, dW a

t dt = dt dW a
t = 0,

respectively dt2 = 0, for any a, b = 1, d, where the Kronecker symbol δab represents
the correlation coefficient.

Lemma 3.1. (Itô product formula) Suppose the processes
(
xi(t)

)
t∈Ω0T

and (pi (t))t∈Ω0T

are solutions of the Itô stochastic systems
{

dxi(t) = µi (t, x (t, ω) , u (t, ω)) dt + σi
a (t, x (t, ω) , u (t, ω)) dW a

t ,
x (0, ω) = x0 ∈ Rn,

respectively,
{

dpi (t) = ai (t, x (t, ω) , u (t, ω)) dt + qia (t, x (t, ω) , u (t, ω)) dW a
t ,

p (0, ω) = p0 ∈ Rn,



Simplified single-time stochastic maximum principle 159

where the coefficients in both evolutions are predictable processes. Then

d
(
pi (t)xi (t)

)
= pidxi + xidpi + qibσ

i
aδabdt, i = 1, n,

where the operator d is the stochastic differential.

3.2 Adjoint stochastic system

Definition 3.2. (Variational stochastic system) Let u (·, ω) be an admissible control.
Let

dxi
t = µi (t, xt, ut) dt + σi

a (t, xt, ut) dW a
t

be a stochastic evolution whose coefficients µi and σi
a are of class C1 in the second

argument. Denote µi
xj = ∂µi

∂xj , σi
axj = ∂σi

a

∂xj . The linear stochastic system

(3.2) dξi
t =

(
µi

xj (t, xt, ut) dt + σi
axj (t, xt, ut) dW a

t

)
ξj
t

is called variational stochastic system with control u (·, ω).

Definition 3.3. (Adjoint stochastic system) Consider the stochastic evolution (3.2).
A linear stochastic system of the form

(3.3) dpj (t) =
(
ai

j (t, xt, ut) dt + qi
bj (t, xt, ut) dW b

)
pi (t) , b = 1, d, i, j = 1, n

is called the adjoint (dual) stochastic system of (3.2) if the scalar product pk (t) ξk (t)
is a global stochastic first integral, i.e., d(pi(t)ξi(t)) = 0.

Theorem 3.2. The stochastic system

dpj (t) = [
(−µi

xj (t, xt, ut) + σi
axk (t, xt, ut)σk

bxj (t, xt, ut) δab
)
dt−

−σi
axj (t, xt, ut) dW a

t ] pi (t)

is the adjoint stochastic system with respect to the variational stochastic system (3.2).

Proof. For simplicity, we will omit ω as argument of processes. Let

dξi
t =

(
µi

xj (t, xt, ut) dt + σi
axj (t, xt, ut) dW a

)
ξj
t , i, j = 1, n,

be the linear variational stochastic system. Denote the adjoint stochastic system by

dpj (t) =
(
ai

j (t, xt, ut) dt + qi
bj (t, xt, ut) dW b

)
pi (t) , i, j = 1, n.

We determine the coefficients ai
j (t, xt, ut) and qi

bj (t, xt, ut) such that pk (t) ξk (t) be
a stochastic first integral, i.e.,

d
(
pk (t) ξk (t)

)
= 0,

where d is the stochastic differential. Imposing the identity,

pi (t) ξi (t) = pi (0) ξi (0) , for any t ∈ Ω0T ,
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or
0 = d

(
pk (t) ξk (t)

)
= pi (t) ξj (t) (µi

xj (t, xt, ut) + ai
j (t, xt, ut)+

+qi
ak (t, xt, ut)σk

bxj (t, xt, ut) δab)dt + pi (t) ξj (t)
(
σi

axj (t, xt, ut) + qi
aj (t, xt, ut)

)
dW a

t ,

we obtain

ai
j (t, xt, ut) = −µi

xj (t, xt, ut)− qi
ak (t, xt, ut) σk

bxj (t, xt, ut) δab,

qi
aj (t, xt, ut) = −σi

axj (t, xt, ut) .

¤

4 Optimization problems with
stochastic integral functionals

Stochastic optimal control problems have some common features: there is a constraint
diffusion system, which is described by an Itô stochastic differential system; there are
some other constraints that the decisions and/or the state are subject to; there is
a criterion that measures the performance of the decisions. The goal is to optimize
the criterion by selecting a nonanticipative decision among the ones satisfying all the
constraints.

Next, we introduce the cost functional as follows

(4.1) J (u (·)) = E
[∫

Ω0T

f (t, x (t, ω) , u (t, ω)) dt + Ψ (x (T, ω))
]

,

where the running cost 1-form f (t, x (t, ω) , u (t, ω)) dt has the coefficient

f (·, x (·, ω) , u (·, ω)) : R× Rn × Rk −→ R

and Ψ (x (·, ω)) : Rn −→ R. The simplest stochastic optimal control problem (under
strong formulation) can be stated as follows: Find

(4.2) max J (u (·, ω)) over Aad,

constrained by

(4.3)
{

dxi
t = µi (t, xt, ut) dt + σi

a (t, xt, ut) dW a
t ,

x (0) = x0 ∈ Rn, a = 1, d, i = 1, n.

The goal is to find u∗ (·) (if it ever exists), such that

J (u∗ (·, ω)) = max
u(·,ω)

J (u (·, ω)) .
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4.1 Simplified stochastic maximum principle

Let Ω0T be the closed interval 0 ≤ t ≤ T , in R+ and t ∈ Ω0T be an arbitrary time
in Ω0T . Let (Ω,F ,P) be a probability space. The information structure is given
by a filtration (Ft)t∈Ω0T

, satisfying the usual conditions, which is generated by a Ft-
Wiener process with values in Rd, W (·) = (W1 (·) , ..., Wd (·)) and augmented by all
the P−null sets. Sometimes, for simplicity, we will omit ω as argument of processes.

In order to solve the problem (4.2), with state constraints (4.3), we introduce the
stochastic Lagrange multiplier

p (t, ω) ∈ L2
F (Ω0T ,Rn) ,

where L2
F (Ω0T ,Rn) is the space of all Rn−valued adapted processes such that

E
∫

Ω0T

|φ (t, ω)|2 dt < ∞.

To extend the methods of the first author ([15], [17]) to the stochastic control theory,
let us suppose (pt)t∈Ω0T

as a stochastic Itô-process:

dpi (t) = ai (t, xt, ut) dt + qia (t, xt, ut) dW a
t ,

where (ai (t, xt, ut))t∈Ω0T
, respectively, (qia (t, xt, ut))t∈Ω0T

are predictable processes
of the form (see (3.3))

ai (t, xt, ut) = aj
i (t, xt, ut) pj (t) ,

qia (t, xt, ut) = qj
ia (t, xt, ut) pj (t) , i, j = 1, n, a = 1, d.

Now, we use the Lagrangian stochastic 1−form

L (t, xt, ut, pt) = f (t, xt, ut) dt+

+pi (t)
[
µi (t, xt, ut) dt + σi

a (t, xt, ut) dW a
t − dxi

t

]
.

The adjoint process p (t, ω) is required to be (Ft)t∈Ω0T
−adapted, for any t ∈ Ω0T .

The contact distribution with stochastic perturbations constrained optimization
problem (4.2)-(4.3) can be changed into another free stochastic optimization problem

(4.4) max
u(·,ω)∈Aad

E
[∫

Ω0T

L (t, xt, ut, pt) + Ψ (x (T, ω))
]

,

subject to

p (t, ω) ∈ P, ∀t ∈ Ω0T , x (0, ω) = x0 ∈ Rn,

where the set P will be defined as the set of adjoint stochastic processes. The problem
(4.4) can be rewritten as

(4.5) max
u(·,ω)∈Aad

E
{∫

Ω0T

[
f (t, xt, ut) + pi (t, ω) µi (t, xt, ut)

]
dt+
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+
∫

Ω0T

pi (t, ω)σi
a (t, xt, ut) dW a

t −
∫

Ω0T

pi (t, ω) dxi
t + Ψ (x (T, ω))

}
,

subject to

p (t, ω) ∈ P, ∀t ∈ Ω0T , x (0, ω) = x0 ∈ Rn, i = 1, n.

Due to properties of stochastic integrals [12], we have

E
(∫

Ω0T

pi (t, ω) σi
a (t, xt, ut) dW a

t

)
= 0.

Evaluating ∫

Ω0T

pi (t, ω) dxi
t

via stochastic integration by parts, it appears the control Hamiltonian stochastic
1−form

H (t, xt, ut, pt, qt) = f (t, xt, ut) dt+

(4.6) +
[
pi (t)µi (t, xt, ut)− pi (t) σi

axj (t, xt, ut) σj
b (t, xt, ut) δab

]
dt.

It verifies

H = L+pi (t) dxi
t − pi (t)σi

axj (t, xt, ut)σj
b (t, xt, ut) δabdt− pi (t) σi

a (t, xt, ut) dW a
t ,

(modified stochastic Legendrian duality).

Theorem 4.1. (Simplified stochastic maximum principle) We assume (H1)-(H3).
Suppose that the problem of maximizing the functional (4.1) constrained by (4.3) over
Aad has an interior optimal solution u∗ (t), which determines the stochastic optimal
evolution x (t). Let H be the Hamiltonian stochastic 1−form (4.6). Then there exists
an adapted processes (p (t, ω))t∈Ω0T

(adjoint process) satisfying:
(i) the initial stochastic differential system,

dxi (t) =
∂H
∂pi

(t, xt, u
∗
t , pt) + σi

axj (t, xt, u
∗
t )σj

b (t, xt, u
∗
t ) δabdt + σi

a (t, xt, u
∗
t ) dW a

t ;

(ii) the adjoint linear stochastic differential system,

dpi (t, ω) = −Hxi (t, xt, u
∗
t , pt)− pj (t)σj

axi (t, xt, u
∗
t ) dW a

t ,

pi (T, ω) = Ψxi (xT ) , i ∈ 1, n;

(iii) the critical point condition,

Huc (t, xt, u
∗
t , pt) = 0, c = 1, k.

Proof. In the whole this proof, we will omit ω as argument of processes. Suppose that
there exists a continuous control u∗ (t) over the admissible controls in Aad, which is
an optimum point in the previous problem. Consider a variation

u (t, ε) = u∗ (t) + εh (t) ,
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where, by hypothesis, h (t) is an arbitrary continuous function. Since u∗ (t) ∈ Aad

and a continuous function over a compact set Ω0T is bounded, there exists a number
εh > 0 such that

u (t, ε) = u∗ (t) + εh (t) ∈ Aad, ∀ |ε| < εh.

This ε is used in our variational arguments.
Now, let us define the contact distribution with stochastic perturbations, corre-

sponding to the control variable u (t, ε), i.e.,

dxi (t, ε) = µi (t, x (t, ε) , u (t, ε)) dt + σi
a (t, x (t, ε) , u (t, ε)) dW a

t ,

for i ∈ 1, n, or,

xi (t, ε) = xi (0, ε) +
∫

Ω0t

µi (s, x (s, ε) , u (s, ε)) ds+

+
∫

Ω0t

σi
a (s, x (s, ε) , u (s, ε)) dW a

s , ∀t ∈ Ω0T , ∀i ∈ 1, n

and x (0, ε) = x0 ∈ Rn. For |ε| < εh, we define the function

J (ε) = E
[∫

Ω0T

f (t, x (t, ε) , u (t, ε)) dt + Ψ (x (T, ε))
]

.

For any adapted process (pt)t∈Ω0T
we have

∫

Ω0T

pi (t)
[
µi (t, x (t, ε) , u (t, ε)) dt− dxi (t, ε)

]
+

+
∫

Ω0T

pi (t) σi
a (t, x(t, ε), u(t, ε)) dW a

t = 0, i = 1, n,

To solve the foregoing constrained optimization problem, we transform it into a free
optimization problem ([17]). For this, we use the Lagrange stochastic 1−form which
includes the variations

L (t, x (t, ε) , u (t, ε) , pt) = f (t, x (t, ε) , u (t, ε)) dt+

+pi (t)
[
µi (t, x (t, ε) , u (t, ε)) dt + σi

a (t, x (t, ε) , u (t, ε)) dW a
t − dxi (t, ε)

]
,

where i = 1, n. We have to optimize now the function

J̃ (ε) = E
[∫

Ω0T

L (t, x (t, ε) , u (t, ε) , pt) + Ψ (x (T, ε))
]

,

with doubt any constraints. If the control u∗ (t) is optimal, then

J̃ (ε) ≤ J̃ (0) ,∀ |ε| < εh.

Explicitly,

J̃ (ε) = E
∫

Ω0T

[
f (t, x (t, ε) , u (t, ε)) + pi (t) µi (t, x (t, ε) , u (t, ε))

]
dt−
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−E
[∫

Ω0T

pi (t) dxi (t, ε) + Ψ (x (T, ε))
]

, i = 1, n.

To evaluate the integral ∫

Ω0T

pi (t) dxi (t, ε) ,

we integrate by stochastic parts, via Lemma (3.1). Taking into account that (pt)t∈Ω0T

is an Itô process, we obtain

J̃ (ε) = E
∫

Ω0T

[
f (t, x (t, ε) , u (t, ε)) + pi (t) µi (t, x (t, ε) , u (t, ε))

]
dt−

−E
[
pi (t) xi (t, ε)

∣∣T
0
−

∫

Ω0T

xi (t, ε) dpi (t)
]

+

+E
∫

Ω0T

pj (t)σj
axi (t, x (t, ε) , u (t, ε)) σi

b (t, x (t, ε) , u (t, ε)) δab dt + EΨ(x (T, ε)) ,

with σj
axi (t, x (t, ε) , u (t, ε)) |ε=0≡ σj

axi (t, xt, ut). Then,

J̃ (ε) = E
[∫

Ω0T

f (t, x (t, ε) , u (t, ε)) dt

]
+

+E
∫

Ω0T

[pi (t) µi (t, x (t, ε) , u (t, ε))−

−pj (t) σj
axi (t, x (t, ε) , u (t, ε))σi

b (t, x (t, ε) , u (t, ε)) δab] dt+

+E
[∫

Ω0T

xi (t, ε) dpi (t)− pi (t) xi (t, ε)
∣∣T
0

]
+ EΨ(x (T, ε)) .

Differentiating with respect to ε (and this is possible, because the derivative with
respect to ε, for ε = 0, exists in mean square; see, for example, [6] or [19]) it follows

J̃ ′ (ε) = E
∫

Ω0T

{[fxk (t, x (t, ε) , u (t, ε)) + pi (t)µi
xk (t, x (t, ε) , u (t, ε))−

−pj (t)σj
axixk (t, x (t, ε) , u (t, ε))σi

b (t, x (t, ε) , u (t, ε)) δab−
−pj (t)σj

axi (t, x (t, ε) , u (t, ε)) σi
bxk (t, x (t, ε) , u (t, ε)) δab] dt + dpk (t)} xk

ε (t, ε)+

+E
∫

Ω0T

[fuc (t, x (t, ε) , u (t, ε)) + pi (t)µi
uc (t, x (t, ε) , u (t, ε))−

−pj (t) σj
axiuc (t, x (t, ε) , u (t, ε)) σi

b (t, x (t, ε) , u (t, ε)) δab−
−pj (t)σj

axi (t, x (t, ε) , u (t, ε))σi
buc (t, x (t, ε) , u (t, ε)) δab] hc (t) dt+

+EΨxj (x (T, ε)) xj
ε (T, ε) , c = 1, d.

Evaluating at ε = 0, we find

J̃ ′ (0) = E
∫

Ω0T

{[(fxk (t, xt, ut) + pi (t)µi
xk (t, xt, ut)−
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−pj (t)σj
axixk (t, xt, ut)σi

b (t, xt, ut) δab−
−pj (t) σj

axi (t, xt, ut)σi
bxk (t, xt, ut) δab]dt + dpk (t)} xk

ε (t, 0)+

+EΨxk (xT )xk
ε (T ) + E

∫

Ω0T

[fuc (t, xt, u
∗
t ) + pi (t)µi

uc (t, xt, u
∗
t )−

−pj (t)σj
axiuc (t, xt, u

∗
t )σi

b (t, xt, u
∗
t ) δab−

−pj (t) σj
axi (t, xt, u

∗
t )σi

buc (t, xt, u
∗
t ) δab] hc (t) dt,

where x (t) is the state variable corresponding to the optimal control u∗ (t).
We need J̃ ′ (0) = 0 for all h (t) = (hc (t))c=1,k. On the other hand, the functions

xi
ε (t, 0) are involved in the Cauchy problem

dxi
ε (t, 0) =

(
µi

xj (t, x (t, 0) , u (t, 0)) dt + σi
axj (t, xt, ut) dW a

t

)
xj

ε (t, 0)

+
(
µi

ua (t, x (t, 0) , u (t, 0)) dt + σi
bua (t, xt, ut) dW b

t

)
ha (t) , t ∈ Ω0T , xε (0, 0) = 0 ∈ Rn

and hence they depend on h (t). The functions xi
ε (t, 0) are eliminated by selecting P

as the adjoint contact distribution

dpk (t) = −[fxk (t, xt, ut) + pi (t) µi
xk (t, xt, ut)− pj (t)σj

axixk (t, xt, ut)σi
b (t, xt, ut) δab

(4.7) −pj (t)σj
axi (t, xt, ut) σi

bxk (t, xt, ut) δab]dt− σj
axk (t, xt, ut) pj (t) dW a

t ,

for any ∀t ∈ Ω0T , with stochastic perturbations terminal value problem [13]

pk (T ) = Ψxk (xT ) , k = 1, n.

The relation (4.7) shows that

ak (t, xt, ut) = −fxk (t, xt, ut)− pi (t)µi
xk (t, xt, ut) +

+
[
pj (t)σj

axixk (t, xt, ut) σi
b (t, xt, ut) + pj (t) σj

axi (t, xt, ut)σi
bxk (t, xt, ut)

]
δab.

It follows

(4.8) dpk (t) = −Hxk (t, xt, u
∗
t , pt)− pj (t)σj

axk (t, xt, ut) dW a
t , k = 1, n.

and

(4.9) Hub (t, xt, u
∗
t , pt) = 0, ∀t ∈ Ω0T , for all b = 1, k.

Moreover,
(4.10)

dxi (t) =
∂H
∂pi

(t, xt, u
∗
t , pt, qt) + σi

axj (t, xt, u
∗
t )σj

b (t, xt, u
∗
t ) δabdt + σi

a (t, xt, ut) dW a
t ,

∀t ∈ Ω0T , x (0) = x0, ∀i = 1, n.

¤
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Remark 4.2. 1) The relations (4.8), (4.9) and (4.10) suggest Itô (stochastic Euler-
Lagrange) equations associated to the Hamiltonian stochastic 1-form H. The Itô sys-
tem (4.9) describes the critical points of the Hamiltonian stochastic 1−form H with
respect to the control variable.

2) If the control variables enter the Hamiltonian stochastic 1−form H linearly
affine, either via the objective function or the stochastic evolution or both, then the
problem is called linear stochastic optimal control problem. In this case the control
must be bounded, the coefficients of u(t) determines the switching function, and it
appear the idea of stochastic bang-bang optimal control.

Example Let t ∈ Ω01 and the standard Wiener process W = (Wt)t∈Ω01
. We

consider the following controlled system

dxt = utdt + dWt, t ∈ Ω01, x0 = x0 = 0, x (1) = x1, free,

with the control domain beingAad ⊂ R. Denote by J (u (·)) = −E
(∫

Ω01

(
xt + u2

t

)
dt

)
.

the cost functional. This problem means to find an optimal control u∗ to bring the
Itô dynamical system from the origin x0 at time t to a terminal point x1, which is
unspecified, time t = 1 such as to maximize the objective functional J .

The control Hamiltonian 1−form is

H (t, xt, ut, pt, qt) =
(− (

xt + u2
t

)
+ ptut

)
dt.

Since
∂H
∂ut

= (−2ut + pt) dt = 0,
∂2H
∂u2

t

= −2dt,

the critical point ut = pt

2 , for the coefficient function of dt, is a maximum point. On
the other hand, the adjoint system dpt = − ∂H

∂xt
+ ptdWt becomes dpt = −dt + ptdWt.

Also, since the point x1 is unspecified, the transversality condition implies p (1) = 0.
It follows the costate pt = e−

t
2+Wt

(
p0 −

∫ t

0
e

s
2−Wsds

)
, the optimal control u∗t = pt

2

with the corresponding evolution dxs = 1
2psds + dWs, s ∈ Ω01. Integrating on Ω0t,

we find xt =
∫ t

0

(
e−

τ
2 +Wτ

(
p0 −

∫ τ

0
e

s
2−Wsds

))
dτ + Wt.

The numerical simulation can be done using the Euler method for the following
equation of evolution dx(t) = (p(t)/2)dt + dW (t) and the adjoint equation dp(t) =
−dt + p(t)dW (t). We obtain the orbits: (t, p(t, ω)), (t, x(t, ω)), (t, u(t, ω)).

Fig. 1 (t, p(t, ω)) Fig. 2 (t, x(t, ω))
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Fig. 3 (t, u(t, ω))

5 Optimal feedback control of a
continuously monitored spin

The dynamics of the continuously monitored spin system is described by the SDEs [7]

drt =
1
2
(
η

rt
− rt) sin2 θt dt +

√
η (1− r2

t ) cos θt dWt

dθt =
(
−ut + (

η

r2
t

− η − 1
2
) sin2 θt cos θt

)
dt +

√
η

sin θt

rt
dWt,

where the polar coordinates (r, θ) represent the state space, the parameter η ∈ [0, 1]
is the detection efficiency of the photodetectors and ut is the amplitude of the mag-
netic field applied in the y-direction. The special case η = 1 means perfect detector
efficiency.

Remark. Letting the initial value of r equal to 1 (r0 = 1) we see that dr0 = 0
and hence rt = 1, ∀t ≥ 0. Hence, r = 1 is a forward invariant set of the foregoing
stochastic dynamics. Physically, this means that if the detection is perfect, a pure
state of the system will remain pure for all time.

We pose now the following optimization problem: Suppose that at time t the
state of the system is (r, θ). Let us, s ∈ [0, T ] (T is the time at which the experiment
terminates) be a square integrable function. We define the following expected cost-
to-go

J(u(·)) = E
[∫

Ω0T

(
−1

2
u2

t − U(rt, θt)
)

dt

]
,

where the expectation value is taken with respect to every possible sample path that
starts at (r, θ) at time t. The function U is a measure of the distance of the state from
the desired target state (r, θ) = (1, 0). For well-posedness we require that U(1, 0) = 0
and U(r, θ) > 0,∀(r, θ) 6= (1, 0). For example, U = 1 − r cos θ. We seek the control
law u that maximizes J .

The control Hamiltonian 1−form is

H =
(
−1

2
u2

t − U(rt, θt)
)

dt
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+p1

(
1
2
(
η

rt
− rt) sin2 θt + 2

√
η (1− r2

t )rt cos2 θt + η
1− r2

t

rt
sin2 θt

)
dt

+p2

(
−ut + (

η

r2
t

− η − 1
2
) sin2 θt cos θt + η

1− r2
t

r2
t

sin θt cos θt − η
1
r2
t

sin θt cos θt

)
dt.

6 Ramsey and Uzawa-Lucas stochastic models

Ramsey stochastic models We suppose that an investor is able to invest his wealth
to do some products and he can get profit from this activity. Let x(t) be the capital
of investor, a(t) the labor and c(t) > 0 the rate of consumption, at time t. Since
there must be some risk in the investment, the Ramsey deterministic model [11]
dx(t) = (f(x(t), a(t))− c(t)) dt can be changed into a stochastic model

dx(t) = (f(x(t), a(t))− c(t)) dt + σ(x(t))dW (t),

where W (t) is a 1-dimensional standard Wiener process and σ is a C1 function. For
simplicity, we introduce the following assumptions: (1) the function f is given by the
Cobb-Douglas formula f(x, a) = kxαaβ , where k, α, β are some constants; (2) during
a relatively short period we can take a(t) = a = constant. If β = 1, then the stochastic
evolution is

dx(t) = (kaxα(t)− c(t)) dt + σ(x(t))dW (t), x(0) = x0.

We propose to maximize the performance function

J(c(·)) = E
(∫

Ω0T

e−rt cγ(t)
γ

dt + x(T )
)

,

where r is the bond rate, and γ ∈ (0, 1) determines the relative risk aversion 1− γ of
the investor.

In this case, the control Hamiltonian stochastic 1-form is

H(t, xt, ct, pt) = e−rt cγ(t)
γ

dt + pt (kaxα(t)− c(t)− σ′(x(t))σ(x(t))) dt.

Applying the Theorem 4.1, it follows

dx(t) = (kaxα(t)− c(t)) dt + σ(x(t))dW (t), x(0) = x0;

dp(t) = −p(t)
(
αkax(t)α−1 − σ′′(x(t))σ(x(t))− σ′(x(t))2

)
dt

−p(t)σ′(x(t))dW (t),

p(T ) = 1;

Hc(t) =
(
e−rt cγ−1(t)− p(t)

)
dt = 0.

The optimal control
c∗(t) = e

−rt
γ−1 p(t)

1
γ−1
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fixes the optimal stochastic state evolution

dx(t) =
(
kaxα(t)− e

−rt
γ−1 p(t)

1
γ−1

)
dt + σ(x(t))dW (t)

and the optimal stochastic costate evolution

dp(t) = −p(t)
(
αkax(t)α−1 − σ′′(x(t))σ(x(t))− σ′(x(t))2

)
dt

−p(t)σ′(x(t))dW (t).

The simulations refer to

σ(x) =
1
2
x2; k = 0.005; a = 1000; γ = 0.8; r = 0.3; α = 0.5.

The figures 4 and 5 represent the orbits: (t, x(t, ω)) and (t, p(t, ω)), respectively.

Fig. 4 (t, x(t, ω)) Fig. 5 (t, p(t, ω))

Uzawa-Lucas stochastic models The Uzawa-Lucas deterministic model [5]
(first published in 1965 by Uzawa [18] and reconsidered in 1988 by Lucas [9]), refers
to a two sector economy: (1) a good sector that produces consumable and gross in-
vestment in physical capital; (2) an education sector that produces human capital.
Both are subject to maunder conditions of constant returns to scale. All the variables
are also accepted as per capita quantities. Let introduce the following data: k is the
physical capital, h is a human capital, c is the real per capita consumption, u is the
fraction of labor allocated to the production of physical capital, β is the elasticity of
output with respect to physical capital, ρ > 0 is a positive discount factor, γ > 0 is
the constant technological level in the good sector, δ > 0 is the constant technological
level in the education sector, n is the exogenous growth rate of labor, σ−1 is the con-
stant of the elasticity of intertemporal substitution, and σ 6= β. Given the importance
of the sustainable development process, a modern economic approach regarding the
role of human capital in economic growth in the case of the Romanian economy, using
deterministic Uzawa-Lucas model, is done in [1].

The Uzawa-Lucas deterministic problem:

max
u,c

J(u(·), c(·)) =
∫

Ω0T

e−ρt c(t)1−σ − 1
1− σ

dt + k(T ),
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subject to
dk(t) =

(
γk(t)βu(t)1−β − nk(t)− c(t)

)
dt, k(0) = k0,

dh(t) = δ(1− u(t))h(t)dt, h(0) = h0

can be extended to the stochastic problem:

max
u,c

J(u(·), c(·)) = E
(∫

Ω0T

e−ρt c(t)1−σ − 1
1− σ

dt + k(T )
)

,

subject to

dk(t) =
(
γk(t)βu(t)1−β − nk(t)− c(t)

)
dt + σ1(k(t))dW (t), k(0) = k0,

dh(t) = δ(1− u(t))h(t)dt + σ2(h(t))dW (t), h(0) = h0.

In this case, the control Hamiltonian stochastic 1-form is

H(t, xt, ct, pt, qt) = e−ρt c(t)1−σ − 1
1− σ

dt

+pt

(
γk(t)βu(t)1−β − nk(t)− c(t)− σ′1(k(t))σ1(k(t))

)
dt

+qt (δ(1− u(t))h(t))− σ′2(h(t))σ2(h(t))) dt

Applying the Theorem 4.1, it follows

dk(t) =
(
γk(t)βu(t)1−βh(t)1−β − nk(t)− c(t)

)
dt + σ1(k(t))dW (t)

dh(t) = δ(1− u(t))h(t)dt + σ2(h(t))dW (t)

dp(t) = −p(t)
(
γβ − k(t)1−βh(t)1−β − n− σ′′1 (k(t))σ1(k(t))− σ′1(k(t))2

)
dt

−p(t)σ′1(k(t))dW (t)

dq(t) = −q(t)
((

δ(1− u(t))− σ′′2 (h(t))σ2(h(t))− σ′2(h(t))2
)
dt + σ′2(h(t))dW (t)

)

Hu(t) =
(
p(t)γ(1− β)k(t)βu(t)−βh(t)1−β − q(t)δh(t)

)
dt = 0

Hc(t) =
(−p(t) + e−ρt c(t)−σ

)
dt = 0.

It follows the optimal control

c∗(t) = e
−ρt

σ p(t)
−1
σ , u∗(t) =

(
γ(1− β)

δ

p(t)
q(t)

) 1
β k(t)

h(t)

which fixes the optimal stochastic state evolution

dk(t) =

(
γk(t)

(
γ(1− β)

δ

p(t)
q(t)

) 1−β
β

− nk(t)− e
−ρt

σ p(t)
−1
σ

)
dt + σ1(k(t))dW (t)

dh(t) = δ

(
h(t)

(
γ(1− β)

δ

p(t)
q(t)

) 1
β

k(t)

)
dt + σ2(h(t))dW (t)
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and the optimal stochastic costate evolution

dp(t) = −p(t)
(
γβ − k(t)1−βh(t)1−β − n− σ′′1 (k(t))σ1(k(t))− σ′1(k(t))2

)
dt

−p(t)σ′1(k(t))dW (t)

dq(t) = −q(t)
((

δ(1− u(t))− σ′′2 (h(t))σ2(h(t))− σ′2(h(t))2
)
dt + σ′2(h(t))dW (t)

)

The simulations refer to

σ1(x) = σ2(x) = x; β = 0.25; γ = 1.05;

δ = 0.005; n = 0.01; ρ = 0.04; σ = 1.5, h0 = 10; k0 = 80.

The figures 6, 7, 8, 9, 10 and 11 represent the orbits: (t, k(t, ω)), (t, h(t, ω)),
(t, p(t, ω)), (t, q(t, ω)), (t, c(t, ω)), (t, u(t, ω)).

Fig. 6 (t, k(t, ω)) Fig. 7 (t, h(t, ω))

Fig. 8 (t, p(t, ω)) Fig. 9 (t, q(t, ω))
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Fig. 10 (t, c(t, ω)) Fig. 11 (t, u(t, ω))

7 Conclusions

Alternatively to the classical stochastic control literature (e.g., [2], [10]), we start from
a non-linear Itô differential system and we build a stochastic variational system and
also an adjoint stochastic system. Both systems (variational and adjoint) are created
considering a fixed control function. In order to prove the Theorem 4.1, regarding
the single-time simplified stochastic maximum principle, we variate the control func-
tion. Our approach is different from those existing in the classical literature. We
also apply a geometrical formalism, using the integrand 1-form, in order to offer a
way of changing the single-time problems into multitime problems (objective func-
tionals given by curvilinear integrals or multiple integrals, constrained by multitime
Itô evolution equations).
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