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Abstract. We study some almost contact metric structures on the tangent
sphere bundles, induced from some almost Hermitian structures of natural
diagonal lift type on the tangent bundle of a Riemannian manifold (M, g).
The above almost contact metric structures are not automatically contact
metric structures. In order to get such properties we made some rescalings
of the metric, of the fundamental vector field, and of the 1-form. Then we
gave the characterization of the Sasakian structures on the tangent sphere
bundles. In this case, the base manifold must be of constant sectional
curvature. For the obtained Sasakian manifolds we got the condition under
which they are η - Einstein.
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1 Introduction

In the last years, many researchers have been exhibiting a great interest in investi-
gating the geometry of tangent sphere bundles of constant radius (see e. g. the papers
[1], [2], [4], [5], [7], [10], [13], [15]).

The tangent sphere bundles TrM of constant radius r are hypersurfaces of the
tangent bundles, obtained by considering only the tangent vectors which have the
norm equal to r. Every almost Hermitian structure from the tangent bundle induces
an almost contact structure on the tangent sphere bundle of constant radius r. In
papers such as [4], [5] and [15], the metric considered on the tangent bundle TM
was the Sasaki metric, but then E. Boeckx remarked that the unit tangent bundle
equipped with the induced Cheeger-Gromoll metric is isometric to the tangent sphere
bundle of radius 1√

2
, endowed with the metric induced by the Sasaki metric. This

suggested to O. Kowalski and M. Sekizawa the idea that the tangent sphere bundles
with different constant radii and with the metrics induced from the Sasaki metric
might possess different geometrical properties, and they showed how the geometry of
the tangent sphere bundles depends on the radius. All the important results obtained
by the two authors in the field of the Riemannian geometry of the tangent sphere
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bundles with arbitrary constant radius, done since 2000, may be found in the survey
[10] from 2008.

In the present paper we study some geometric properties of the tangent sphere
bundle of constant radius TrM , by considering on the tangent bundle TM of a Rie-
mannian manifold (M, g), a natural almost complex structure J and a natural metric
G, both of them obtained by the second author in [14] as diagonal lifts of the Rieman-
nian metric g from the base manifold. We determine the almost contact structure
on the tangent sphere bundles of constant radius r, induced by the almost Hermitian
structure of natural diagonal lift type from the tangent bundle, we get the conditions
under which these structures are Sasakian, then we find the conditions under which
the determined Sasakian tangent sphere bundles are η - Einstein. Extensive literature
concerning Einstein equations can be mentioned from different perspectives (e. g. see
[3], [8], [11]).

The manifolds, tensor fields and other geometric objects considered in this paper
are assumed to be differentiable of class C∞ (i.e. smooth). The Einstein summation
convention is used throughout this paper, the range of the indices h, i, j, k, l, m, r,
being always {1, . . . , n}.

2 Preliminary results

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent
bundle by τ : TM → M . The total space TM has a structure of a 2n-dimensional
smooth manifold, induced from the smooth manifold structure of M . This structure
is obtained by using local charts on TM induced from usual local charts on M .
If (U,ϕ) = (U, x1, . . . , xn) is a local chart on M , then the corresponding induced
local chart on TM is (τ−1(U),Φ) = (τ−1(U), x1, . . . , xn, y1, . . . , yn), where the local
coordinates xi, yj , i, j = 1, . . . , n, are defined as follows. The first n local coordinates
of a tangent vector y ∈ τ−1(U) are the local coordinates in the local chart (U,ϕ) of
its base point, i.e. xi = xi ◦ τ , by an abuse of notation. The last n local coordinates
yj , j = 1, . . . , n, of y ∈ τ−1(U) are the vector space coordinates of y with respect
to the natural basis in Tτ(y)M defined by the local chart (U,ϕ). Due to this special
structure of differentiable manifold for TM , it is possible to introduce the concept of
M -tensor field on it (see [12]).

Denote by ∇̇ the Levi Civita connection of the Riemannian metric g on M . Then
we have the direct sum decomposition

(2.1) TTM = V TM ⊕HTM

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗ and the
horizontal distribution HTM defined by ∇̇ (see [20]). The vertical and horizontal lifts
of a vector field X on M will be denoted by XV and XH respectively. The set of vector
fields { ∂

∂y1 , . . . , ∂
∂yn } on τ−1(U) defines a local frame field for V TM , and for HTM

we have the local frame field { δ
δx1 , . . . , δ

δxn }, where δ
δxi = ∂

∂xi −Γh
0i

∂
∂yh , Γh

0i = ykΓh
ki,

and Γh
ki(x) are the Christoffel symbols of g.

The set { ∂
∂yi ,

δ
δxj }i,j=1,n, denoted also by {∂i, δj}i,j=1,n, defines a local frame on

TM , adapted to the direct sum decomposition (2.1).
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Consider the energy density of the tangent vector y with respect to the Riemannian
metric g

(2.2) t =
1
2
‖y‖2 =

1
2
gτ(y)(y, y) =

1
2
gik(x)yiyk, y ∈ τ−1(U).

Obviously, we have t ∈ [0,∞) for every y ∈ TM .
There are many types of lifts of a metric from the base manifold to the tangent,

cotangent, or jet bundles (e.g. see [16]-[19]), the most general being the natural lifts
(in the sense of [9]), studied in a few recent papers, such as [1], [2], [6], [13].

The second author considered in [14] an (1,1)-tensor field J on the tangent bundle
TM , obtained as natural 1-st order lift of the metric g from the base manifold to the
tangent bundle TM :

JXH
y = a1(t)XV

y + b1(t)gτ(y)(X, y)yV
y ,

JXV
y = −a2(t)XH

y − b2(t)gτ(y)(X, y)yH
y ,

(2.3)

∀X ∈ T 1
0 (M), ∀y ∈ TM, a1, a2, b1, b2 being smooth functions of the energy density.

The above (1,1)-tensor field J defines an almost complex structure on the tangent
bundle if and only if

a2 =
1
a1

, b2 = − b1

a1(a1 + 2tb1)
.(2.4)

Then it was considered on TM a Riemannian metric G̃ of natural diagonal lift type:

G̃(XH
y , Y H

y ) = c1(t)gτ(y)(X,Y ) + d1(t)gτ(y)(X, y)gτ(y)(Y, y),
G̃(XV

y , Y V
y ) = c2(t)gτ(y)(X,Y ) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G̃(XV
y , Y H

y ) = G̃(XH
y , XV

y ) = 0,

(2.5)

∀X,Y ∈ T 1
0 (TM), ∀y ∈ TM, where c1, c2, d1, d2 are smooth functions of the energy

density on TM . The conditions for G̃ to be a Riemannian metric on TM (i.e. to be
positive definite) are c1 > 0, c2 > 0, c1 + 2td1 > 0, c2 + 2td2 > 0 for every t ≥ 0.

The Riemannian metric G̃ is almost Hermitian with respect to the almost complex
structure J if and only if

c1

a1
=

c2

a2
= λ,

c1 + 2td1

a1 + 2tb1
=

c2 + 2td2

a2 + 2tb2
= λ + 2tµ,(2.6)

where λ > 0, µ > 0 are functions of t.
The symmetric matrix of type 2n× 2n

(
G̃

(1)
ij 0
0 G̃

(2)
ij

)
=

(
c1(t)gij + d1(t)g0ig0j 0

0 c2(t)gij + d2(t)g0ig0j

)
,

associated to the metric G̃ in the adapted frame {δj , ∂i}i,j=1,n, has the inverse
(

H̃kl
(1) 0
0 H̃kl

(2)

)
=

(
p1(t)gkl + q1(t)ykyl 0

0 p2(t)gkl + q2(t)ykyl

)
,
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where gkl are the entries of the inverse matrix of (gij)i,j=1,n, and p1, q1, p2, q2,
are some real smooth functions of the energy density. More precisely, they may be
expressed as rational functions of c1, d1, c2, d2 :

p1 =
1
c1

, p2 =
1
c2

, q1 = − d1

c1(c1 + 2td1)
, q2 = − d2

c2(c2 + 2td2)
.(2.7)

Proposition 2.1. The Levi-Civita connection ∇̃ associated to the Riemannian metric
G̃ from the tangent bundle TM has the form





∇̃XV Y V = Q(XV , Y V ), ∇̃XH Y V = (∇̇XY )V + P (Y V , XH),

∇̃XV Y H = P (XV , Y H), ∇̃XH Y H = (∇̇XY )H + S(XH , Y H),
∀X,Y ∈ T 1

0 (M),

where the M -tensor fields Q, P, S, have the following components with respect to the
adapted frame {∂i, δj}i,j=1,n:

Qh
ij = 1

2 (∂iG̃
(2)
jk + ∂jG̃

(2)
ik − ∂kG̃

(2)
ij )H̃kh

(2),

Ph
ij = 1

2 (∂iG̃
(1)
jk + Rl

0jkG̃
(2)
li )H̃kh

(1), Sh
ij = − 1

2 (∂kG̃
(2)
ij + Rl

0ijG̃
(2)
lk )H̃kh

(2),

(2.8)

Rh
kij being the components of the curvature tensor field of the Levi Civita connection

∇̇ from the base manifold (M, g) and Rh
0ij = ykRh

kij. The vector fields Q(XV , Y V )
and S(XH , Y H) are vertically valued, while the vector field P (Y V , XH) is horizontally
valued.

Using the relations (2.8), we may easily prove that the M -tensor fields Q, P, S,
have invariant expressions of the forms

Q(XV , Y V ) = c′2
2c2

[g(y, X)Y V + g(y, Y )XV ]

− c′2−2d2
2(c2+2td2)

g(X, Y )yV + c2d′2−2c′2d2
2c2(c2+2td2)

g(y,X)g(y, Y )yV ,

P (XV , Y H) = c′1
2c1

g(y,X)Y H + d1
2c1

g(y, Y )XH + d1
2(c1+2td1)

g(X, Y )yH

+ c1d′1−c′1d1−d2
1

2c1(c1+2td1)
g(y, X)g(y, Y )yH − c2

2c1
(R(X, y)Y )H − c2d1

2c1(c1+2td1)
g(X,R(Y, y)y)yH ,

S(XH , Y H) = − d1
2c2

[g(y, X) Y V + g(y, Y ) XV ]

− c′1
2(c2+2td2)

g(X, Y ) yV − c2d′1−2d1d2
2c2(c2+2td2)

g(y, X)g(y, Y )yV − 1
2 (R(X, Y )y)V ,

for every vector fields X, Y ∈ T 1
0 (M) and every tangent vector y ∈ TM .

Since in the following sections we shall work on the subset TrM of TM consisting
of spheres of constant radius r, we shall consider only the tangent vectors y for which
the energy density t is equal to r2

2 , and the coefficients from the definition (2.5) of the
metric G̃ become constant. So we may consider them constant from the beginning.
Then the M -tensor fields involved in the expression of the Levi-Civita connection
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become simpler:
(2.9)

Q(XV , Y V ) = d2
c2+r2d2

g(X, Y )yV ,

P (XV , Y H) = d1
2c1

g(Y, y)XH + d1
2c1(c1+r2d1)

[c1g(X,Y )− d1g(X, y)g(Y, y)]yH

− c2
2c1

(R(X, y)Y )H − c2d1
2c1(c1+r2d1)

g(X, R(Y, y)y)yH ,

S(XH , Y H) = − d1
2c2

[g(X, y)Y V + g(Y, y)XV ]
+ d1d2

c2(c2+2td2)
g(y,X)g(y, Y )yV − 1

2 (R(X, Y )y)V .

3 Sasakian tangent sphere bundles of natural diag-
onal lifted type

Let TrM = {y ∈ TM : gτ(y)(y, y) = r2}, with r ∈ [0,∞), and the projection τ :
TrM → M , τ = τ ◦ i, where i is the inclusion map.

The horizontal lift of any vector field on M is tangent to TrM , but the vertical
lift is not always tangent to TrM . The tangential lift of a vector X to (p, y) ∈ TrM
is tangent to TrM and is defined by

XT
y = XV

y − 1
r2

gτ(y)(X, y)yV
y .

Remark that the tangential lift of the tangent vector y ∈ TrM , vanishes, i.e.
yT

y = 0.
The tangent bundle to TrM is spanned by δi and ∂T

j = ∂j− 1
r2 g0jy

k∂k, i, j, k = 1, n,

although {∂T
j }j=1,n are not independent. They fulfill the relation

(3.1) yj∂T
j = 0,

and in any point y ∈ TrM they span an (n− 1)-dimensional subspace of TyTrM .
Denote by G′ the metric on TrM induced by the metric G̃ from TM . Remark

that the functions c1, c2, d1, d2 become constant, since in the case of the tangent
sphere bundle of constant radius r, the energy density t becomes a constat equal to
r2

2 . It follows





G′(XH
y , Y H

y ) = c1gτ(y)(X,Y ) + d1gτ(y)(X, y)gτ(y)(Y, y),
G′(XT

y , Y T
y ) = c2[gτ(y)(X, Y )− 1

r2 gτ(y)(X, y)gτ(y)(Y, y)],
G′(XH

y , Y T
y ) = G′(Y T

y , XH
y ) = 0,

∀X,Y ∈ T 1
0 (M), ∀y ∈ TrM , where c1, d1, c2 are constants. The conditions for G′

to be positive are c1 > 0, c2 > 0, c1 + r2d1 > 0.
When the tangent bundle TM endowed with the metric G̃ and the almost complex

structure J defined respectively by the relations (2.3) and (2.5) is almost Hermitian,
we may construct an almost contact metric structure on the tangent sphere bundle
TrM .
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To this aim, we choose an appropriate normal (non unitary) vector field N to
TrM , given by

(3.2) N = (a1 + r2b1)yV .

Using the almost complex structure J on TM , we define a vector field ξ′, and a
1-form η′, on TrM as follows:

ξ′ = −JN, η′(X) = G′(X, ξ′), ∀X ∈ T 1
0 (TrM).

We may easily prove that

(3.3) ξ′ = yH , η′(XT ) = 0, η′(XH) = (c1 + r2d1)g(X, y), ∀X ∈ T 1
0 (M), y ∈ TrM.

The local coordinate expressions of ξ′ and η′ are

ξ′ = yiδi, η′ = (c1 + r2d1)g0idxi, ∀i = 1, n.

Since η′(ξ′) = r2(c1 + r2d1) 6= 1, we shall define another 1-form, η and an appro-
priate vector field ξ, given by

(3.4) η = βη′, ξ =
1

βr2(c1 + r2d1)
ξ′,

where β is an appropriate constant, whose value will be determined later. Obviously,
we have η(ξ) = 1.

Taking into account the relations (3.3) and (3.4), we obtain the invariant expres-
sions of η and ξ:

η(XT ) = 0, η(XH) = β(c1 + r2d1)g(X, y), ξ =
1

βr2(c1 + r2d1)
yH ,

for every vector field X tangent to M , and every tangent vector y from TrM .
The (1,1)-tensor field ϕ on TrM , obtained by eliminating the normal component

of the almost complex structure J from TM , will be expressed by

(3.5) ϕXH = a1X
T , ϕXT = −a2X

H +
a2

r2
g(X, y)yH , ∀X, Y ∈ T 1

0 (M), y ∈ TrM.

Since the (1,1)-tensor field ϕ given by (3.5) and ξ, η from (3.4) verify the relations

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1,

we have that (ϕ, ξ, η) is an almost contact structure on TrM .
The aim of this section is to find the Sasakian structures (ϕ, ξ, η, G) of natural

diagonal lifted type on TrM , i.e. the conditions under which the almost contact
structure (ϕ, ξ, η) is normal contact metric with respect to a certain metric G on
TrM , which we shall determine.

The obtained almost contact structure is not almost contact metric with respect
to the metric G′, since the relation G′(ϕX,ϕY ) = G′(X, Y ) − η(X)η(Y ), ∀X, Y ∈
T 1

0 (TrM) is not satisfied, i.e. the metric G′ is not compatible with the almost contact
structure (ϕ, ξ, η).
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Using (3.3) and (3.4) we obtain the exterior differential of η:

dη(XH , Y H) = dη(XT , Y T ) = 0,

dη(XT , Y H) = −dη(XH , Y T ) = β c1+r2d1
2 [g(X,Y )− 1

r2 g(X, y)g(Y, y)],

for every tangent vector fields X,Y on M and every tangent vector y ∈ TrM .
We have too that the condition G′(X,ϕY ) = dη(X, Y ), ∀X, Y ∈ T 1

0 (TrM), is
not satisfied, so the almost contact metric structure (ϕ, ξ, η) is not a contact metric
structure with respect to G′.

We shall change the metric G′, multiplying it by a scalar α. Thus, the new metric
G on TrM will have the form

G = αG′.

The scalars α, β may be determined from the conditions

G(ξ, ξ) = 1, G(XT , ϕY H) = dη(XT , Y H), G(XH , ϕY T ) = dη(XH , Y T ),

which, due to the proportionality relation (2.6), are equivalent to a simple system in
α and β: {

α = β2r2(c1 + r2d1),
αλ = β c1+r2d1

2 .

The solution of this system is

α =
c1 + r2d1

4r2λ2
, β =

1
2r2λ

.

Thus, the final expressions for ϕ, ξ, η and G are:

(3.6) ϕXH = a1X
T , ϕXT = −a2X

H +
a2

r2
g(X, y)yH ,

(3.7) ξ =
2λ

c1 + r2d1
yH , η(XT ) = 0, η(XH) =

c1 + r2d1

2r2λ
g(X, y),

(3.8)





G(XH
y , Y H

y ) = c1+r2d1
4r2λ2 [c1gτ(y)(X,Y ) + d1gτ(y)(X, y)gτ(y)(Y, y)],

G(XT
y , Y T

y ) = c2(c1+r2d1)
4r2λ2 [gτ(y)(X, Y )− 1

r2 gτ(y)(X, y)gτ(y)(Y, y)],

G(XH
y , Y T

y ) = G(Y T
y , XH

y ) = 0,

for every tangent vector fields X,Y ∈ T 1
0 (M), and every tangent vector y ∈ TrM .

The nonzero components of the metric G in the generator system {δi, ∂
T
j }i,j=1,n

are
{

G
(1)
ij = G(δi, δj) = c1+r2d1

4r2λ2 (c1gij + d1g0ig0j),
G

(2)
ij = G(∂T

i , ∂T
j ) = c1+r2d1

4r2λ2 c2(gij − 1
r2 g0ig0j).

(3.9)
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In the computations we shall use the following shorter equivalent expressions for
ξ, η, G:

(3.10) ξ =
1

2λr2α
yH , η(XT ) = 0, η(XH) = 2αλg(X, y), G = αG′,

where α = c1+r2d1
4r2λ2 .

Now we may prove the following result.

Theorem 3.1. The almost contact metric structure (ϕ, ξ, η, G) on TrM , with ϕ, ξ, η,
and G given by (3.6) and (3.10), is a contact metric structure, and it is Sasakian if
and only if the base manifold has constant sectional curvature c = a2

1
r2 .

Proof: Since the metricity and the contact conditions

G(ϕX,ϕY ) = G(X, Y )− η(X)η(Y ), G(X,ϕY ) = dη(X, Y ), ∀X, Y ∈ T 1
0 (TrM),

are fulfilled, it follows that the almost contact structure (ϕ, ξ, η, G) on TrM is a
contact metric structure.

The normality condition for the contact metric structure found on TrM is

(3.11) Nϕ(X, Y ) + 2dη(X, Y )ξ = 0, ∀X, Y ∈ T 1
0 (TrM),

where Nϕ is the Nijenhuis tensor field of the (1, 1)−tensor field ϕ, and it is given by

(3.12) Nϕ(X, Y ) = ϕ2[X, Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X, ϕY ].

When both X and Y are horizontal vector fields, δi, δj , the mentioned relation
becomes

(3.13) Rh
0ij +

a2
1

r2
(gi0δ

h
j − gj0δ

h
i ) = 0,

where Rh
0ij = Rh

kijy
k, gi0 = gikyk.

By differentiating (3.13) with respect to the tangential coordinates yk, we obtain
that the base manifold M has constant sectional curvature:

(3.14) Rh
kij =

a2
1

r2
(δh

i gjk − δh
j gik).

Next the relation (3.11) is identically fulfilled when we replace at least one of the
vector fields X, Y by ∂T

i . Thus (3.14) is the only condition for the contact metric
structure (ϕ, ξ, η, G) on TrM to be Sasakian (normal contact metric). Thus the
theorem is proved.

In the sequel we shall see that the Levi-Civita connection associated to the metric
G satisfies the necessary Sasaki condition

(3.15) (∇Xϕ)Y = G(X, Y )ξ − η(Y )X, ∀X, Y ∈ T 1
0 (TrM),

for the almost contact metric manifold (TrM, ϕ, ξ, η, G).
The explicit expression of ∇ is given in the following proposition.
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Proposition 3.2. The Levi-Civita connection ∇, associated to the Riemannian met-
ric G on the tangent sphere bundle TrM of constant radius r has the expression





∇∂T
i
∂T

j = Ah
ij∂

T
h , ∇δi

∂T
j = Γh

ij∂
T
h + Bh

jiδh,

∇∂T
i
δj = Bh

ijδh, ∇δi
δj = Γh

ijδh + Ch
ij∂

T
h ,

where the M -tensor fields involved as coefficients have the expressions:

Ah
ij = − 1

r2 g0jδ
h
i , Ch

ij = − d1
2c2

(δh
j g0i − δh

i g0j)− 1
2Rh

0ij ,

Bh
ij = Ph

ij − 1
r2 gi0P

h
0j = d1

2c1
δh
i g0j + d1

2(c1+r2d1)
(gij − 2c1+r2d1

r2c1
g0ig0j)yh

− c2
2c1

Rh
jikyk − c2d1

2c1(c1+r2d1)
Rikjly

hykyl,

(3.16)

where g0j = gj0 = yigij and Ph
0j = yiPh

ij.

We mention that A and C have these quite simple expressions, since they are
the coefficients of the tangential part of the Levi-Civita connection. All the terms
containing yh∂T

h = 0 have been cancelled.
The invariant form of the Levi-Civita connection from TrM is





∇XT Y T = − 1
r2 g(Y, y)XT ,

∇XT Y H = d1
2c1

g(Y, y) XH + d1
2(c1+d1r2)g(X, Y )yH

− d1(2c1+r2d1)
2r2c1(c1+r2d1)

g(X, y)g(Y, y)yH − c2
2c1

(R(X, y)Y )H − c2d1
2c1(c1+r2d1)

g(X, R(Y, y)y)yH ,

∇XH Y T = (∇̇XY )T + d1
2c1

g(X, y) Y H + d1
2(c1+r2d1)

g(X, Y )yH

− d1(2c1+r2d1)
2r2c1(c1+r2d1)

g(X, y)g(Y, y)yH − c2
2c1

(R(Y, y)X)H − c2d1
2c1(c1+r2d1)

g(Y, R(X, y)y)yH ,

∇XH Y H = (∇̇XY )H − d1
2c2

[g(X, y) Y T − g(Y, y) XT ]− 1
2 (R(X,Y )y)T .

The condition for (TrM, ϕ, η, ξ, G) to be a Sasakian manifold is given by (3.15).
When X and Y are both of them tangential vector fields, or horizontal vector fields,
respectively, (3.15) becomes

(∇∂T
i
ϕ)∂T

j −G
(2)
ij ξ = 0, (∇δiϕ)δj −G

(1)
ij ξ + η(δj)δi = 0.

After some quite long computations we get

1
r2

[g0jδ
h
i +

1
2
(gij − 3

r2
g0ig0j)yh] + (

1
r2

g0jy
l − δl

j)B
h
il − (

1
r2

g0ly
h − δh

l )Al
ij = 0,

a1B
h
ji − a2(

1
r2

g0lC
l
ijy

h − Ch
ij)−

1
2λr2α

G
(1)
ij yh + 2λαg0jδ

h
i = 0,

and it follows easily that these relations are identically fulfilled.
When X and Y are horizontal and tangential vector field, respectively, (3.15) takes

the forms
(∇∂T

i
ϕ)δj + η(δj)∂T

i = 0, (∇δiϕ)∂T
j = 0,
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which, after the computations, become

[a1(Ah
ij −Bh

ij) + 2αλg0jδ
h
i ]∂T

h = 0, [a2(
1
r2

g0jC
h
i0 − Ch

ij)− a1B
h
ji]∂

T
h = 0,

and they are satisfied, since the final values,

− 1
2r2

[
a1gij − b1λ + (a1 + r2b1)µ

λ
g0ig0j

]
yh∂T

h , − 1
2r2

(a1gij − a1

r2
g0ig0j)yh∂T

h ,

are zero due to the relation yh∂T
h = 0, fulfilled by the generators ∂T

h .

4 η−Einstein Sasakian tangent sphere bundles of
natural diagonal lifted type

In this section we shall find the condition under which the normal contact metric
manifold (TrM, ϕ, ξ, η, G), with ϕ, ξ, η, and G given respectively by (3.6), (3.7), and
(3.8), is η−Einstein, i.e. the corresponding Ricci tensor may be written as

(4.1) Ric = ρG + ση ⊗ η,

where ρ and σ are smooth real functions.
In the case where A, B,C are given by (3.16), it can be shown (see e.g. [7]) that

their covariant derivatives are:

(4.2)

{
∇̇kAh

ij = 0, ∇̇kCh
ij = − 1

2∇̇kRh
lijy

l,

∇̇kBh
ij = − c2

2c1
∇̇kRh

jily
l − c2d1

2c1(c1+r2d1)
∇̇kRiljry

lyryh,

where ∇̇kRh
kij , ∇̇kRhkij are the usual local coordinate expressions of the covariant

derivatives of the curvature tensor field and the Riemann-Christoffel tensor field of
the Levi Civita connection ∇̇ from the base manifold M . If the base manifold (M, g)
is locally symmetric then, obviously, ∇̇kAh

ij = 0, ∇̇kBh
ij = 0, ∇̇kCh

ij = 0.
In the paper [7] we obtained by a standard straightforward computation the hor-

izontal and tangential components of the curvature tensor field K, denoted by se-
quences of H and T , to indicate horizontal, or tangential argument on a certain
position. For example, we have

K(δi, δj)∂T
k = HHTHh

kijδh + HHTTh
kij∂

T
h .

The expressions of the non-zero M -tensor fields which appear as coefficients may be
found in [7].

Let us remark some facts concerning the obtaining of the Ricci tensor field for the
tangent bundle TM . We have the well known formula

Ric(Y, Z) = trace(X → K(X, Y )Z),

where X,Y, Z are vector fields on TM . Then we get easily the components of the
Ricci tensor field on TM
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R̃icHHjk = R̃ic(δj , δk) = HHHHh
khj + V HHV h

khj ,

R̃icV Vjk = R̃ic(∂j , ∂k) = V V V V h
khj − V HV Hh

kjh,

where the components V V V V h
kij , V HV Hh

kij , V HHV h
kij , are obtained from the cur-

vature tensor field on TM in a similar way as the components TTTTh
kij , THTHh

kij ,

THHTh
kij are obtained from the curvature tensor field on TrM . In the expression

of R̃icHVjk = R̃ic(δj , ∂k) = R̃icV Hjk = R̃ic(∂j , δk) there are involved the covari-
ant derivatives of the curvature tensor field R. If (M, g) is locally symmetric then
RicHVjk = RicV Hjk = 0. In particular we have RicHVjk = RicV Hjk = 0 in the
case where (M, g) has constant sectional curvature.

Equivalently, we may use an orthonormal frame (E1, . . . , E2n) on TM and we may
use the formula

R̃ic(Y, Z) =
2n∑

i=1

G(Ei,K(Ei, Y )Z).

We may choose the orthonormal frame (E1, . . . , E2n) such that the first n vectors
E1, . . . , En are the vectors of a (orthonormal) frame in HTM and the last n vectors
En+1, . . . E2n are the vectors of a (orthonormal) frame in V TM . Moreover, we may
assume that the last vector E2n is the unitary vector of the normal vector N = yi∂i

to TrM .
The components of the Ricci tensor field of TrM can be obtained in a similar

way by using the above traces. However the vector fields ∂T
1 , . . . , ∂T

n are not in-
dependent. On the open set from TrM , where yn 6= 0 we can consider the basis
{δ1, . . . , δn, ∂T

1 , . . . , ∂T
n−1} for TTrM . The last vector ∂T

n is expressed as

(4.3) ∂T
n = − 1

yn

n−1∑

i=1

yi∂T
i .

Remark that the basis {δ1, . . . , δn, ∂T
1 , . . . , ∂T

n−1} can be completed with the normal
vector N = yV = yh∂h.

Using the relation (4.3), we obtained in [7] the components of the Ricci tensor on
TrM :

RicHHjk = Ric(δj , δk) = HHHHh
khj + THHTh

khj −
d1(4c1 + r2d1)

4c1c2r2
g0jg0k.

RicTTjk = Ric(∂T
j , ∂T

k ) = HTTHh
khj + TTTTh

khj −
1
r2

gjk +
1
r4

g0jg0k.

Taking into account the above relations and the η−Einstein condition (4.1), we
obtain that

RicTTjk − ρG
(2)
jk = − c2

2
4c2

1
Ri

hj0R
h
ik0 − c2

2d1

2c2
1(c1+r2d1)

Rh0j0R
h
0k0

+ 2c2
1(n−2)−2c1[ρc1c2−d1(n−2)]r2−d1(2ρc1c2+d1)r

4

2c1r2(c1+r2d1)
(gjk − 1

r2 g0jg0k),
(4.4)



Tangent sphere bundles which are η−Einstein 59

RicHHjk − ρG
(1)
jk − ση(δj)η(δk) = 2c1(ρc1c2+d1)+d1(2ρc1c2+d1)r

2

2c2(c1+r2d1)
gjk

+Ricjk +
{

d1{2c2
1n+c1[3d1n−2(ρc1c2+d1)]r

2+d1[d1(n−1)−2ρc1c2]r
4}

2c1c2r2(c1+r2d1)

−σ(c1+d1r2)2

λ2r4

}
g0jg0k + c2

2c1
Rl

kh0R
h
0jl + c2d1

2c1(c1+d1r2)Rh0k0R
h
0j0.

(4.5)

In the sequel we shall prove the main theorem of this paper.

Theorem 4.1. The Sasakian manifold (TrM, ϕ, ξ, η, G), with ϕ, ξ, η, and G given
respectively by (3.6), (3.7), and (3.8), is η−Einstein if and only if

Case I) c1 = cc2r
2, ρ = cc2(2n− 3)− d1

2cc2
2r

2
, σ = λ2 d1n− cc2(n− 2)

2cc2
2(cc2 + d1)r2

;

CaseII) d1 =
cc2r

2 − c1(n− 2)
(n− 1)r2

, ρ =
n(n− 2)(c1 + cc2r

2)
2c1c2(n− 1)r2

,

σ = λ2 2r2cc1c2{n[n(n− 4) + 6]− 2} − n2(n− 2)(c2
1 + c2c2

2r
4)

2c1c2(c1 + cc2r2)2
,

where c = a2
1

r2 is the constant sectional curvature of the base manifold M .
Replacing c by the the mentioned value, the cases become

Case I) c1 = a2
1c2, ρ = −

d1
a2
1

+ c2(3−2n)
r2

2c2
2

, σ = λ2 d1nr2 − a2
1c2(n− 2)

2a2
1c

2
2(a

2
1c2 + d1r2)

;

Case II) d1 =
a2
1c2 − c1(n− 2)

(n− 1)r2
, ρ =

(c1 + a2
1c2)(n− 2)n

2c1c2(n− 1)r2
,

σ = −λ2 n2(n− 2)(c2
1 + a4

1c
2
2)− 2a2

1c1c2{n[n(n− 4) + 6]− 2}
2c1c2(c1 + a2

1c2)2
.

Proof: If (TrM, ϕ, ξ, η,G), is Sasakian, the base manifold has constant sectional
curvature c, so the relation (4.4) becomes

RicTTjk − ρG
(2)
jk =

2c1(n− 2− ρr2c2)(c1 + r2d1) + r4(c2c2
2 − d2

1)
2c1c2r2(c1 + r2d1)

(gjk − 1
r2

g0jg0k).

The above quantity vanishes if and only if the function ρ has the expression

ρ =
2c1(n− 2)(c1 + r2d1) + r4(c2c2

2 − d2
1)

2c1c2r2(c1 + r2d1)
.

Replacing this value into (4.5), and taking into account that the base manifold
has constant sectional curvature c, we obtain

RicHHjk − ρG
(1)
jk − ση(δj)η(δk) = − (c1−cc2r2)[c1(n−2)+d1r2(n−1)−cc2r2]

r2c2(c1+r2d1)
gjk

+λ2r2{4c2
1d1−c1[c

2c2
2(n−2)−d2

1(n+2)]r2−r4d1(c
2c2

2−d2
1)n}−2σc1c2(c1+r2d1)

3

2r4λ2c1c2(c1+r2d1)
g0jg0k.

(4.6)
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From the relation (4.6), we have that

RicHHjk = ρG
(1)
jk + ση(δj)η(δk)

if and only if the coefficients of gjk and g0jg0k vanish.
From the vanishing condition of the first coefficient in (4.6), we obtain two cases:
I) c1 = cc2r

2, and II) d1 = cc2r2−c1(n−2)
(n−1)r2 .

In the first case the numerator of the second coefficient in (4.6) becomes

−(cc2 + d1)2r6{λ2[cc2(n− 2)− d1n] + 2σcc2
2(cc2 + d1)r2},

and it vanishes if and only if I.1) d1 = −cc2, or I.2) σ = λ2 d1n−cc2(n−2)
2cc2

2(cc2+d1)r2 . The subcase
d1 = −cc2 reduces to c1 + r2d1 = 0, which should be excluded, since the constant ρ,
some components of K, as well as the Levi Civita connection are not defined. Thus,
case I reduces to the subcase I.2, and the values of c1, ρ, σ are those presented in
the theorem.

In the second case the coefficient of g0jg0k in (4.6) has the numerator equal to

−(c1+cc2r
2)

{
2σc1c2(c1+cc2r

2)2+λ2
[
n2(n−2)(c2

1+r4c2c2
2)−2cc1c2

[
n[6+(n−4)n]−2

]
r2

]}
.

Thus the subcases are
II.1) c1 = −cc2r

2,

II.2) σ = λ2 2r2cc1c2{n[n(n− 4) + 6]− 2} − n2(n− 2)(c2
1 + c2c2

2r
4)

2c1c2(c1 + cc2r2)2
.

The first subcase reduces again to c1 +r2d1 = 0, which should be excluded. Hence
the case II presented in the theorem is practically the subcase II.2.

Thus the theorem is proved.
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Bd. Carol I, No. 11, RO-700506 Iaşi, Romania;
Institute of Mathematics ”O. Mayer”, Romanian Academy,
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