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Abstract. This paper joins some concepts that appear in Mechanics,
Field Theory, Differential Geometry and Control Theory in order to solve
multitime optimal control problems with area integral costs on boundary.
Section 1 recalls the multitime maximum principle in the sense of the first
author. The main results in Section 2 include the needle-shaped control
variations, the adjoint PDEs, the behavior of infinitesimal deformations
and other ingredients needed for the multitime maximum principle in case
of no running cost and in case of running cost. Section 3 solves the previ-
ous multitime control problems based on techniques of variational calculus.
Section 4 shows that concavity is a sufficient condition in multitime opti-
mal control theory. Section 5 contains an example illustrating the utility
of such a multitime optimal control theory.
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1 Multitime maximum principle

Let N = Rm with global coordinates (t1, ..., tm), M = Rn with global coordinates
(x1, ..., xn) and Rk having global coordinates (u1, ..., uk). We consider the hyper-
parallelepiped T = Ω0t0 ⊂ Rm defined by the opposite diagonal points 0 = (0, ..., 0)
and t0 = (t10, ..., t

m
0 ) and a subset U ⊂ Rk. For the multi-times s = (s1, ..., sm)

and t = (t1, ..., tm) we denote s ≤ (<) t if and only if sα ≤ (<) tα, α = 1, ...,m
(product order). We also consider the L - type set [s] = {t ∈ Rm

+ | t ≤ s and ∃ α =
1,m such that tα = sα}. We shall use the following L - type intervals:

([s], [t]] = Ω0,t \ Ω0,s; [[s], [t]] = ([s], [t]] ∪ [s]; ([s], [t]) = ([s], [t]] \ [t].

Let Xα = (Xi
α) : T × M × U → Rn be C1 vector fields. For a given control

function u : T → Rk, suppose the evolution PDEs system (controlled m-flow)

(PDE)
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .
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has solution. As it is wellknown, this PDEs system has solutions if and only if the
complete integrability conditions

(CIC)
∂Xi

α

∂tβ
+

∂Xi
α

∂xj
Xj

β +
∂Xi

α

∂ua

∂ua

∂tβ
=

∂Xi
β

∂tα
+

∂Xi
β

∂xj
Xj

α +
∂Xi

β

∂ua

∂ua

∂tα

are satisfied. The relations CIC define the set of admissible controls

U = {u(·) : Rm
+ → U | u(·) is constrained by (CIC)}.

The multitime evolution system (PDE) is used as a constraint when we want to
optimize a multitime cost functional

(J) J [u(·)] =
∫

Ω0t0

X(t, x(t), u(t))dt +
∫

∂Ω0t0

g(t, x(t))dσ,

where the running cost X : N × M × U → R is a C2 function (nonautonomous
Lagrangian), and g : ∂N ×M → R is a C1 boundary cost.

Multitime optimal control problem. Find

max
u(·)

J [u(·)] =
∫

Ω0t0

X(t, x(t), u(t))dt +
∫

∂Ω0t0

g(t, x(t))dσ

subject to
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n, α = 1, ..., m,

u(t) ∈ U , t ∈ Ω0t0 , x(0) = x0.

The multitime maximum principle (necessary condition) asserts that the existence of
an optimal control u∗(·) implies the existence of costate vector functions (p∗0, p

∗)(·) =
(p∗0(·), p∗αi (·)), which together with the optimal m-sheet x∗(·) satisfy a suitable PDEs
system. Similar to single-time theory, this multitime maximum principle involves an
appropriate control Hamiltonian

H(t, x, p0, p, u) = p0X(t, x, u) + pα
i Xi

α(t, x, u).

Theorem 1.1. (multitime maximum principle) Suppose u∗(·) is optimal for
(PDE), (J) and that x∗(·) is the corresponding optimal m-sheet. Then there exists a
map (p∗0, p

∗) = (p∗0, p∗i) : Ω0t0 → Rmn+1 such that

(PDE)
∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗0(t), p
∗(t), u∗(t)),

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗0(t), p

∗(t), u∗(t))

and

(M)
∂H

∂ua
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)) = 0, ∀t ∈ Ω0t0 .
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Finally, the boundary conditions

(t0) nαp∗αi |∂Ω0t0
=

∂g

∂xi
|∂Ω0t0

are satisfied, where, for each multi-time s, n denotes the covector corresponding to
the unit normal vector on ∂Ω0s, that is n = (nα), where

nα(t) =





1, if tα = sα;
−1, if tα = 0;
0, otherwise.

We call x∗(·) the state of the optimally controlled system and (p∗0, p
∗(·)) the costate

map. Even more, we can consider p∗0 = 1.

Remark 1.2. 1) Explicitly, (PDE) means the identities

∂x∗i

∂tβ
(t) = Xi

β(t, x∗(t), u∗(t)), β = 1, . . . ,m; i = 1, . . . , n,

and (ADJ) means the identities

∂p∗αi

∂tα
(t) = −

(
p∗0(t)

∂X

∂xi
+ p∗αj (t)

∂Xj
α

∂xi

)
(t, x∗(t), u∗(t)).

2) The identities (PDE) reveal the controlled evolution PDEs, the identities (ADJ)
suggest the adjoint PDEs, the relation (M) represents the multitime maximum prin-
ciple and the relation (t0) means the transversability (boundary) condition.

3) The multitime maximum principle states necessary conditions that must hold
on an optimal m-sheet of evolution.

2 Needle-shaped control variations and
adjoint PDEs

The general proofs of multitime maximum principle rely on a special type of variations,
called needle-shaped control variations.

Suppose u∗(·) is a candidate optimal control and that x∗(·) is the corresponding
m-sheet. Fixing a multitime s ∈ ([0], [t0]) and u(·) ∈ U , an m-needle variation is a
family of controls uε obtained replacing u∗ with u on ([s − ε], [s]]. In other words,
given the multitime s ∈ ([0], [t0]) and an admissible control u(t), we set ε ∈ [[0], [s]]
and define the modified control

uε(t) =
{

u(t) if t ∈ ([s− ε], [s]]
u∗(t) otherwise.

We also denote xε(·) the corresponding response of our system, i.e.

∂xi
ε

∂tα
(t) = Xi

α(t, xε(t), uε(t)), xε(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

Let then yi
α(t) =

∂xi
ε(t)

∂εα
|ε=0 be the infinitesimal gradient deformation of the m-sheet

x∗(t) induced by the previous control variation.
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Lemma 2.1. Let ϕ : Ω0,s×(−δ, δ)m → R, ϕ = ϕ(t, ε) be a differentiable parametrized
function. Then

∂

∂εα

∫

[[s−ε],[s]]

ϕ(t, ε)dt|ε=0 =
∫

[s]

ϕ(t, 0)nα(t)dσ.

Proof. Successively, we can write

∂

∂εα

∫

[[s−ε],[s]]

ϕ(t, ε)dt|ε=0 =
∂

∂εα

[∫

Ω0s

ϕ(t, ε)dt−
∫

Ω0s−ε

ϕ(t, ε)dt

]
|ε=0

=
∂

∂εα

[∫

Ω0s

ϕ(t, ε)dt−
∫ sm−εm

0

...

∫ s1−ε1

0

ϕ(t, ε)dt1...dtm

]
|ε=0

=
∫

Ω0s

∂ϕ

∂εα
(t, 0)dt−

∫

Ω0s−ε

∂ϕ

∂εα
(t, ε)dt|ε=0

+
∫ sm−εm

0

...

∫ sα+1−εα+1

0

∫ sα−1−εα−1

0

...

∫ s1−ε1

0

ϕ(t1, ..., sα − εα, ...tm, ε)dtα|ε=0

=
∫

[s]

ϕ(t, 0)nα(t)dσ.

¤

Lemma 2.2. The infinitesimal deformation y induced by the needle-shaped control
variation satisfies the following relations:

yi
α(t) = 0, if t ∈ [[0], [s]),

∫

[s]

yi
β(t)nα(t)dσ =

∫

[s]

[Xi
α(t, x∗(t), u(t))−Xi

α(t, x∗(t), u∗(t))]nβ(t)dσ,

∂yi
β

∂tα
(t) =

∂Xi
α

∂xj
(t, x∗(t), u∗(t))yj

β(t), if t ∈ ([s], [t0]],

∀α, β = 1, ..., m, ∀i = 1, ..., n.

Proof. We recall yi
α(ε, t) =

∂xi
ε

∂εα
(t). Since xε(t) = x∗(t), ∀t ∈ [[0], [s − ε]], we have

yα(ε, t) = 0, ∀t ∈ [[0], [s− ε]]. Let us consider t ∈ ([s− ε], [s]) a fixed multi-time. The

PDE
∂xi

ε

∂tα
(t) = Xi

α(t, xε(t), u(t)) generates the variational PDE

∂yi
β

∂tα
(ε, t) =

∂Xi
α

∂xj
(t, xε(t), u(t))yj

β(ε, t).

Since we are interested on what it happens starting with the multi-time s, we can
chose yα(ε, t) = 0, ∀t ∈ ([s − ε], [s]). Therefore yα(ε, t) = 0, ∀t ∈ [[0], [s]) and, when
making ε = 0, we obtain yα(t) = 0, ∀t ∈ [[0], [s]).
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In the following, we take t = s. Successively, we have
∫

[[s−ε],[s]]

[Xi
α(t, xε(t), u(t))−Xi

α(t, x∗(t), u∗(t))]dt

=
∫

[[s−ε],[s]]

(
∂xi

ε

∂tα
− ∂x∗i

∂tα

)
dt =

∫

∂[[s−ε],[s]]

(xi
ε − x∗i)nα(t)dσ

=
∫

[s]

(xi
ε − x∗i)nα(t)dσ

and, by applying Lemma 2.1, it follows
∫

[s]

yi
β(t)nα(t)dσ =

∫

[s]

[Xi
α(t, x∗(t), u(t))−Xi

α(t, x∗(t), u∗(t))]nβ(t)dσ.

On ([s], [t0]], we have again

∂yi
β

∂tα
(t) =

∂Xi
α

∂xj
(t, x∗(t), u∗(t))yj

β(t).

On the other hand, the m-dimensional flow of the infinitesimal deformation,

∂yi
α

∂tβ
(t) = yj

β(t)
∂Xi

α

∂xj
(x(t)) or

∂yi
α

∂tβ
(t) = yj

α(t)
∂Xi

β

∂xj
(x(t)),

on the jet bundle of order one J1(T, M), determines a dual m-flow

(ADJ)
∂pα

i

∂tα
(t) = −pα

j (t)
∂Xj

α

∂xi
(x(t))

on the dual space J1∗(T, M). These PDEs systems are adjoint in the sense of zero total
divergence of the tensor field Qα

β = pα
i yi

β produced by their solutions. The adjoint
system (ADJ) has solutions since it contains n PDEs with nm unknown functions pα

i .
¤

2.1 Free boundary problem, no running cost

The basic problem here is to find

max
u(·)

J [u(·)] =
∫

∂Ω0t0

g(t, x(t))dσ

subject to
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n, α = 1, ..., m,

u(t) ∈ U , t ∈ Ω0t0 , x(0) = x0.

We denote by u∗(·) respectively x∗(·) the optimal control and the optimal m-sheet
of this problem and we consider the control Hamiltonian

(H) H(t, x, p, u) = pα
i Xi

α(t, x, u), p = (pα
i ).
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Lemma 2.3. (fundamental inequality) Let ϕ : Ω0t0 → R be a continuous (mea-
surable) function. If ∫

[s]

ϕ(t)nα(t)dσ ≥ 0, ∀s ∈ Ω0t0 ,

then ∫

Ω0s

ϕ(t)dt ≥ 0, ∀s ∈ Ω0t0 .

Proof. Since we can write

∫

[s]

ϕ(t)nα(t)dσ =
∂

∂sα

(∫

[[0],[s]]

ϕ(t)dt

)
=

∂

∂sα

(∫

Ω0s

ϕ(t)dt

)
,

the hypotheses ensure us that s →
∫

Ω0s

ϕ(t)dt is a partial increasing function. There-

fore ∫

Ω0s

ϕ(t)dt ≥ 0, ∀s ∈ Ω0t0 .

¤

Theorem 2.4. (multitime maximum principle, no running cost) Suppose u∗(·)
is optimal for (PDE), (J) and that x∗(·) is the corresponding optimal m-sheet. Then
there exists the dual functions p∗αi : Ω0t0 → R such that

(PDE)
∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗(t), u∗(t)),

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗(t), u∗(t)),

(M)
∂H

∂ua
(t, x∗(t), p∗(t), u∗(t)) = 0, ∀t ∈ Ω0t0

and satisfy the boundary conditions

(t0) nαp∗αi |∂Ω0t0
=

∂g

∂xi
|∂Ω0t0

.

Proof. For each map p, the control Hamiltonian H(t, x, p, u) = pα
i Xi

α satisfies

(1) H(t, x∗(t), p(t), u∗(t)) +
∂pα

i

∂tα
(t)x∗i(t) =

∂(pα
i x∗i)

∂tα
, ∀t ∈ [[0], [t0]];

(2) H(t, xε(t), p(t), u(t)) +
∂pα

i

∂tα
(t)xi

ε(t) =
∂(pα

i xi
ε)

∂tα
, ∀t ∈ ([s− ε], [s]];

(3) H(t, xε(t), p(t), u∗(t)) +
∂pα

i

∂tα
(t)xi

ε(t) =
∂(pα

i xi
ε)

∂tα
, ∀t ∈ ([s], [t0]].
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Therefore, by taking the difference (2)− (1) on ([s− ε], [s]] and integrating after-
wards, we obtain

∫

[s]

(xi
ε − x∗i)pα

i nαdσ =
∫

[[s−ε],[s]]

[H(t, xε(t), p(t), u(t))

− H(t, x∗(t), p(t), u∗(t)) +
∂pα

i

∂tα
(t)(xi

ε − x∗i)]dσ.

Computing the partial derivative with respect to εβ (see Lemma 2.1), we obtain
∫

[s]

yi
βpα

i nαdσ =
∫

[s]

[H(t, x∗(t), p(t), u(t))−H(t, x∗(t), p(t), u∗(t))]nβdσ.

If the costate vector p∗ is the solution for the adjoint system (ADJ) with boundary

conditions (t0), then, on ([s], [t0]], we have
∂(p∗αi yi

β)
∂tα

= 0. Denoting by n the normal
vector field on ∂Ω0t0 , respectively on ∂Ω0s, we obtain

0 =
∫

([s],[t0])

∂(p∗αi yi
β)

∂tα
dt =

∫

∂Ω0t0

yi
βp∗αi nαdσ −

∫

[s]

yi
βp∗αi nαdσ

=
∫

∂Ω0t0

∂g

∂xi
yi

βdσ −
∫

[s]

yi
βp∗αi nαdσ.

Since u∗ is an optimal control, it follows that ε = 0 is a maximum point for the

function ε →
∫

∂Ω0t0

(g ◦ xi
ε)dσ and, therefore,

∫

∂Ω0t0

∂g

∂xi
yi

βdσ ≤ 0. We find

∫

[s]

[H(t, x∗(t), p∗(t), u(t))−H(t, x∗(t), p∗(t), u∗(t))]nβdσ ≤ 0.

Applying Lemma 2.3, we obtain the maximum principle inequality in functional in-
tegral form. Consequently, using the Euler-Lagrange relation, it appears the critical
point condition. ¤

2.2 Free boundary problem, with running cost

We suppose that the functional includes a running cost, i.e.,

(J) J [u(·)] =
∫

Ω0t0

X(t, x(t), u(t))dt +
∫

∂Ω0t0

(g(t, x(t))dσ.

In this case, the control Hamiltonian has the following expression:

(H) H(t, x, p0, p, u) = p0X(t, x, u) + pα
i Xi

α(t, x, u).

Theorem 2.5. (Multitime maximum principle with running cost) Suppose
u∗(·) is optimal for (PDE), (J) and that x∗(·) is the corresponding optimal m-sheet.
Then there exist some functions p∗0, p

∗α
i : Ω0t0 → R such that
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(PDE)
∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗0(t), p
∗(t), u∗(t)),

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗0(t), p

∗(t), u∗(t))

and

(M)
∂H

∂ua
(t, x∗(t), p∗(t), u∗(t)) = 0, ∀t ∈ Ω0t0

Finally, the boundary conditions

(t0) nαp∗αi |∂Ω0t0
=

∂g

∂xi
|∂Ω0t0

are satisfied.

Proof. We begin by adding new variables in order to transform the running cost into
a terminal cost. We introduce some supplementary state-variables x(α) : Ω0t0 → R,
solutions for the PDE system

(4)
∂x(α)

∂tβ
(t) =

1
m

δα
β X(t, x(t), u(t)), x(α)(0) = 0, t ∈ Ω0t0 .

We also consider

x = (x(α), xi); x0 = (0, x0); x(·) = (x(α)(·), xi(·))

and

Xα(t, x, u) =
1
m

δβ
αX(t, x, u)

∂

∂x(β)
+ Xi

α(t, x, u)
∂

∂xi
; g(t, x) = nβ(t)x(β) + g(t, x).

Then (PDE) and relation (4) give the dynamics

PDE
∂x

∂tα
= Xα(t, x(t), u(t)), x(0) = x0, t ∈ Ω0t0 .

Consequently, the initial control problem transforms into a new control problem with
boundary cost functional

(J) J [u(·)] =
∫

∂Ω0t0

g(t, x(t))dσ.

The control Hamiltonian associated to this new problem is

H(t, x, p, u) =
1
m

pα
βδβ

αX(t, x, u) + pα
i Xi

α(t, x, u) = H(t, x, p0, p, u),

where p0 = 1
mTr(pα

β).
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We apply the multitime maximum principle with no running cost and we obtain
a costate vector p∗ = (p∗αβ , p∗αi ) such that H satisfyes (PDE), (ADJ), (M) and (t0).
Let p∗0 = 1

mTr(p∗αβ ). Relation (PDE) can be rewritten as

∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗0(t), p
∗(t), u∗(t))

and

∂x∗(β)

∂tα
(t) =

∂H

∂pα
β

(t, x∗(t), p∗(t), u∗(t)) =
1
m

δα
β

∂H

∂p0
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)).

The immediate consequence of the previous relation is

∂x∗(α)

∂tα
(t) =

∂H

∂p0
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)).

We analyze next the adjoint equation (ADJ). We obtain

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗0(t), p

∗(t), u∗(t))

and
∂p∗αβ

∂tα
(t) = 0.

The maximization principle can be rewritten

(M)
∂H

∂ua
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)) = 0, ∀t ∈ Ω0t0

and the boundary conditions are

(t0). nαp∗αi |∂Ωt0
=

∂g

∂xi
|∂Ωt0

; nαp∗αβ |∂Ωt0
= nβ

Gathering together the restrictions related to p∗αβ ,

p∗0 =
1
m

tr(p∗αβ );
∂p∗αβ

∂tα
(t) = 0; nαp∗αβ |∂Ωt0

= nβ ,

the immediate consequence is that we can choose p∗αβ = δα
β and p∗0 = 1. ¤

3 Optimal control theory based on techniques of
variational calculus

We consider a smooth vector field v = (va) : Ω0t0 → Rk satisfying va(0) = 0, ∀a =
1, ..., k. Let u∗(·) ∈ U denote the optimal control. Moreover, we suppose that u∗(t) ∈
IntU . Then, we consider the control variation

uδ(t) = u∗(t) + δv(t).
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Since u∗(t) ∈ IntU , there is δ0 > 0 such that uδ(t) ∈ IntU, ∀ |δ| < δ0. Let xδ(t) be
the state variable corresponding to the control variable uδ(t), that is xδ(t) is solution
for the following PDEs system

(PDE)
∂xi

δ

∂tα
(t) = Xi

α(t, xδ(t), uδ(t)), xδ(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

If y =
∂x

∂δ
|δ=0 is the infinitesimal deformation induced by the previous control varia-

tion, then

∂yi

∂tβ
(t) =

∂Xi
β

∂xj
(t)yj(t) +

∂Xi
β

∂ua
(t)va(t), yi(0) = 0, t ∈ Ω0t0 .

3.1 Free boundary problem, no running cost

In this subsection, we consider again the boundary cost functional

(J) J [u(·)] =
∫

∂Ω0t0

g(t, x(t))dσ,

restricted by (PDE). We use again the control Hamiltonian

(H) H(t, x, p, u) = pα
i Xi

α(t, x, u).

We also introduce the control tensor field

Tα
β (t, x, p, u) = pα

i Xi
β(t, x, u)

and we prove next a simplified maximum principle.

Theorem 3.1. (simplified multitime maximum principle, no running cost)
Suppose u∗(·) is an interior optimal control for (PDE), (J) and that x∗(·) is the
corresponding optimal m-sheet. Then there exist the dual functions p∗αi : Ω0t0 → R
such that

(PDE)
∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗(t), u∗(t)),

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗(t), u∗(t)),

(M)
∂H

∂ua
(t, x∗(t), p∗(t), u∗(t)) = 0

and satisfy the boundary conditions

(t0) nαp∗αi |∂Ω0t0
=

∂g

∂xi
|∂Ω0t0

.

Moreover
Dα[Tα

β (t, x∗(t), p∗(t), u∗(t))] =
∂H

∂tβ
(t, x∗(t), p∗(t), u∗(t)),

where Dα denotes the total derivative with respect to tα.
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Proof. From (H) and (PDE) we have

H(t, xδ(t), p(t), uδ(t)) +
∂pα

i

∂tα
(t)xi

δ(t) =
∂(pα

i xi
δ)

∂tα
(t),

therefore

∂(pα
i yi)

∂tα
(t) = [

∂H

∂xi
(t, x∗(t), p(t), u∗(t)) +

∂pα
i

∂tα
(t)]yi(t)

+
∂H

∂ua
(t, x∗(t), p(t), u∗(t))va(t).

We choose p∗ solution for (ADJ), (t0). When integrating on Ω0t0 , we obtain

∫

Ω0t0

∂H

∂ua
(t, x∗(t), p∗(t), u∗(t))va(t)dt =

∫

Ω0t0

∂(p∗αi yi)
∂tα

(t)

=
∫

∂Ω0t0

yi(t)p∗αi (t)nα(t)dσ =
∫

∂Ω0t0

∂g

∂xi
(t, x∗(t))yi(t)dσ.

Since u∗(·) is an optimal control, it follows that δ = 0 is a critical point for the

function
∫

Ω0t0

g(xδ(t))dσ and, therefore

∫

∂Ω0t0

∂g

∂xi
(t, x∗(t))yi(t)dσ = 0.

It follows that ∫

Ω0t0

∂H

∂ua
(t, x∗(t), p∗(t), u∗(t))va(t)dt = 0

and, since v is an arbitrary vector field, we conclude that

∂H

∂ua
(t, x∗(t), p∗(t), u∗(t)) = 0, ∀t ∈ Ω0t0 .

Let us compute next the divergence of the control tensor field,

DαTα
β =

∂pα
i

∂tα
Xi

β + pα
i DαXi

β =
∂pα

i

∂tα
Xi

β + pα
i DβXi

α

= −∂H

∂xi
Xi

β +
∂H

∂xi
Xi

β +
∂H

∂ua

∂ua

∂tβ
+

∂H

∂tβ
=

∂H

∂tβ
.

¤

Remark 3.2. If the control Hamiltonian is autonomous, that is H doesn’t depend
explicitly on t, then we obtain a conservation law asserting that the control tensor has
null divergence.
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3.2 Free boundary problem, with running cost

We suppose the functional includes a running cost:

(J) J [u(·)] =
∫

Ω0t0

X(t, x(t), u(t))dt +
∫

∂Ω0t0

g(t, x(t))dσ.

In this case, the control Hamiltonian has the following expression:

(H) H(t, x, p0, p, u) = p0X(t, x, u) + pα
i Xi

α(t, x, u).

Theorem 3.3. (simplified multitime maximum principle with running cost)
Suppose u∗(·) is an interior optimal control for (PDE), (J) and that x∗(·) is the
corresponding optimal m-sheet. Then there exist some costate functions p∗0, p

∗α
i :

Ω0t0 → R such that

(PDE)
∂x∗i

∂tα
(t) =

∂H

∂pα
i

(t, x∗(t), p∗0(t), p
∗(t), u∗(t)),

(ADJ)
∂p∗αi

∂tα
(t) = −∂H

∂xi
(t, x∗(t), p∗0(t), p

∗(t), u∗(t))

and

(M)
∂H

∂ua
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)) = 0.

Finally, the boundary conditions

(t0) nαp∗αi |∂Ω0t0
=

∂g

∂xi
|∂Ω0t0

are satisfied. Moreover, the control tensor field

Tα
β (t, x, p0, p, u) = p0δ

α
β X(t, x, u) + pα

i Xi
β(t, x, u)

satisfies the relation

Dα[Tα
β (t, x∗(t), p∗0(t), p

∗(t), u∗(t))] =
∂H

∂tβ
(t, x∗(t), p∗0(t), p

∗(t), u∗(t)).

Proof. Same arguments as in the proof of Theorem 2.5. ¤

4 Sufficient conditions in multitime optimal control
theory

If we add some concavity restrictions to the components of the control tensor, to
the boundary cost and the constrained set, then we can prove the sufficiency of the
conditions of multitime maximum principle.

Definition 4.1. A function f : Rn → R is called concave if its Hessian matrix is
negative definite at each point.
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A concave function satisfies the inequality

f(y)− f(x) ≤ dfx(y − x).

We consider the more general optimal control problem with running cost and we shall
use the control Hamiltonian

H(t, x, p0, p, u) = p0X(t, x, u) + pα
i Xi

α(t, x, u).

Moreover, we can suppose that p0 = 1.

Theorem 4.1. (sufficient condition in multitime optimal control) If (x∗, p∗, u∗)
satisfies the conditions of simplified multitime maximum principle and the control
Hamiltonian evaluated at p = p∗ is (strictly) concave in the pair (x∗, u∗) and the
boundary cost g is (strictly) concave at x∗, then (x∗, p∗, u∗) is the (unique) solution
of the control problem.

Proof. We must maximize the functional

J(u(·)) =
∫

Ω0t0

X(t, x(t), u(t))dt +
∫

∂Ω0t0

g(t, x(t))dσ.

subject to the evolution PDEs system. We fix a pair (x∗, u∗), where u∗ is a candidate
optimal m-sheet of the controls and x∗ is a candidate optimal m-sheet of the states.
Calling J∗ the value of the functional for (x∗, u∗), let us prove that

J∗ − J =
∫

Ω0t0

(X∗ −X)dt +
∫

∂Ω0t0

(g∗ − g)dσ ≥ 0,

where the strict inequality holds under strict concavity. Denoting H∗ = H(t, x∗, p∗, u∗)
and H = H(t, x, p∗, u), we find

J∗ − J =
∫

Ω0t0

(X∗ −X)dt +
∫

∂Ω0t0

(g∗ − g)dσ

=
∫

Ω0t0

(
(H∗ − p∗αi

∂x∗i

∂tα
)− (H − p∗αi

∂xi

∂tα
)
)

dt +
∫

∂Ω0t0

(g∗ − g)dσ.

Integrating by parts, we obtain

J∗ − J =
∫

Ω0t0

(
(H∗ + x∗i

∂p∗αi

∂tα
)− (H + xi ∂p∗αi

∂tα
)
)

dt

+
∫

∂Ω0t0

(
(g∗ − g)− (x∗i − xi)p∗αi nα

)
dσ.

Taking into account that p∗ satisfyes the boundary condition (t0), we infer

J∗−J =
∫

Ω0t0

(
(H∗ −H) +

∂p∗αi

∂tα
(x∗i − xi)

)
dt+

∫

∂Ω0t0

(
(g∗ − g)− ∂g∗

∂xi
(x∗i − xi)

)
dσ.
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The definition of concavity implies
∫

∂Ω0t0

(
(g∗ − g)− ∂g∗

∂xi
(x∗i − xi)

)
dσ ≥ 0

and ∫

Ω0t0

(
(H∗ −H) +

∂p∗αi

∂tα
(x∗i − xi)

)
dt

≥
∫

Ω0t0

(
(x∗i − xi)(

∂H∗

∂xi
+

∂p∗αi

∂tα
) + (u∗a − ua)

∂H∗

∂ua
dt

)
= 0.

This last equality follows from the fact that all ” ∗ ” variables satisfy the conditions
of the multi-time maximum principle. In this way, J∗ − J ≥ 0. ¤

5 Example of optimal control problem with area
integral cost on boundary

In the previous sections, we considered the parallelepiped Ω0t0 to be the domain of
multitimes. Next, we give an idea of how to extend our theory for arbitrary compact
domains from Rm. Let Ω ⊂ Rm be a connected and compact subset, with a piecewise
smooth (m − 1)-dimensional boundary U = ∂Ω. The new optimal control problem
with area integral boundary costs asks for finding

max
u(·)

J [u(·)] =
∫

Ω

X(t, x(t), u(t))dt +
∫

U

g(t, x(t))dσ

subject to
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n, α = 1, ..., m,

u(t) ∈ U , t ∈ Ω, x(0) = x0.

Solving this problem using needle-shaped control variations requires the introduc-
tion of a temporal orientation on Ω. In order to do so, we consider a fixed point
t0 ∈ Ω. Moreover, for simplicity, we assume t0 = 0. For each point t ∈ Ω, we de-
note by αt : [0, 1] → Ω the line segment starting from 0, passing through t, such
that αt(1) ∈ U . We also consider the function τ : Ω → [0, 1] satisfying the relation
αt(τ(t)) = t. For two multitimes s and t in Ω, we denote s < (≤)t if τ(s) < (≤)τ(t).
Using the function τ , we can also define the ∂-type set

[s] = {t ∈ Ω| τ(t) = τ(s)}

and the ∂-type intervals

[[0], [s]] = {t ∈ Ω| 0 ≤ τ(t) ≤ τ(s)}; ([s], [t]] = [[0], [t]]− [[0], [s]].

By considering needle-shaped control variations relative to the above intervals, we
regain the multitime maximum principle.

There is some time now since we look for a variational proof of the fact that,
amongst all the bodies of constant surface, the sphere maximizes the volume. Recently,
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we have solved this problem, using multitime calculus of variations and taking the
normal vector field as state variable. In our opinion, this is an important example
since it emphasis’s the utility of considering and studying a multitime variational
theory. We reconsider this problem now, using multitime optimal control theory.

If D is a compact set of Rm = {(t1, ..., tm)} with a piecewise smooth (m − 1)-

dimensional boundary ∂D, we can write the volume
∫

D

dt1...dtm of the domain D

using the position vector t = (tα) and the exterior unit normal vector field N = (Nβ)
on ∂D, via Gauss-Ostragradski formula, as

m

∫

D

dt1...dtm =
∫

∂D

δαβtαNβ dσ.

Moreover, the area of ∂D is
∫

∂D

dσ. Introducing a parametrization on D, whose

domain is Ω ⊂ Rm and denoting U = ∂Ω, we have dσ = ||N ||dη, where N = ||N ||N
and η is a differential (m− 1)-form.

Let us show next, that of all solids having a given surface area, the sphere is the
one having the greatest volume. To prove this statement, we formulate the multitime
optimal control problem with isoperimetric constraint

max
N

∫

U

δαβtαN β(t) dη subject to
∫

U

√
δαβNα(t)N β(t) dη = const.

In order to solve this problem, we also add the evolution system

∂Nα

∂tβ
(t) = uα

β (t), ∀t ∈ Ω,

which does not interfere with the quality of the solutions on the boundary. Using the
Hamiltonian

H = pβ
αuα

β

and the boundary cost g(t,N ) = δαβtαN β − p
√

δαβNαN β , p = const., the critical
point condition, in the multitime maximum principle, gives

∂H

∂uα
β

= pβ
α(t) = 0, ∀t ∈ Ω

and the boundary condition writes

0 = pα
βNβ =

∂g

∂Nα
= tα − pNα, ∀t ∈ U.

Since the boundary cost g is a concave function of N , the critical point is a
maximum point. This confirms that D is the sphere ||t||2 ≤ p2 in Rm.
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[13] C. Udrişte, Finsler Optimal Control and Geometric Dynamics, Mathematics and

Computers In Science and Engineering, Proc. of the American Conf. on Applied
Mathematics, Cambridge, Massachusetts, 2008, 33-38;
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[19] C. Udrişte, Multitime stochastic control theory, Selected Topics on Circuits, Sys-
tems, Electronics, Control and Signal Processing, Proc. of the 6-th WSEAS
Int. Conf. on Circuits, Systems, Electronics, Control and Signal Processing
(CSECS’07), Cairo, Egypt, December 29-31, 2007, 171-176.
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[23] C. Udrişte, I. Ţevy, Multitime Euler-Lagrange dynamics, Proc. of the 7th WSEAS
Int. Conf. on Systems Theory and Scientific Computation (ISTASC’07), Vouliag-
meni Beach, Athens, Greece, August 24-26, 2007, 66-71.
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