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Abstract. In this work, the authors study Bonnet Problems using Cartan
moving frames and associated structure equations. The Cartan structural
forms are written in terms of the first and second fundamental forms,
and the Lax system is consequently reinterpreted; orthonormal moving
frames are obtained solutions to this Bonnet-Lax system, via numerical
integration. Certain classifications of families of surfaces are provided in
terms of the first and second fundamental forms, given certain prescribed
invariants. Numerical applications (an improved Runge Kutta method)
applied to this theoretical framework produced a fast way to visualize
families of surfaces under investigation. We provide a few examples and
visual models.
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1 Introduction

Pierre Bonnet (1819-1892) had numerous and significant contributions to the field
of Differential Geometry, including three famous results: the Gauss-Bonnet theorem
(computing the path integral of the geodesic curvature along a closed curve); an up-
per bound result for the diameter of a complete Riemannian manifold when the Ricci
curvature is bounded from below (what is known today as the Bonnet-Myers theo-
rem proved in 1941); and ultimately what the geometric community called Bonnet’s
Theorem, a fundamental result proved by Bonnet around 1860, whose statement is
as short as all the major philosophical statements, namely:
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Theorem 1.1. (Bonnet’s Theorem) The first and second fundamental forms deter-
mine an immersed surface up to rigid motions1.

Solving a Bonnet problem usually means obtaining an explicit formula for the
immersion of a surface, starting from given first and second fundamental forms. The
problem is considered open, as impossible to achieve in general, even for the case of a
regular immersion in the 3-d Euclidean space. However, Cartan’s theory on structure
equations, together with solving a Lax system numerically by an improved Runge-
Kutta method, provides us with a consistent method of achieving this goal to its best
extent. This represents the first part of our research note.

The second part of this work focuses on families of surfaces which naturally arise
in the study of Bonnet problems, by considering certain invariants (such as mean
curvature H, or Gauss curvature K, or both). One of the families that we obtain
as a bi-product of this procedure is the family of associate surface which preserve
both mean curvature and Gauss curvature (i.e., preserve the principal curvatures).
However, several other families occur in the process, of which, to our knowledge, some
were never classified or named before.

Several classics (e.g., works of Cartan and Chern) brought contributions to the
topic of studying Bonnet problems from specific view points.

In the past few decades, several authors brought new insights and significant
progress to the general study of Bonnet problems (such as, George Kamberov in [7]
and Alexander Bobenko in [3] and other related papers).

Our research meshes well with the preexisting work in this field, without significant
overlaps and without any contradictions.

2 Bonnet’s Theorem

Consider an immersed surface in Euclidean 3-space parametrized via the map

f : D ⊂ R2 → R3, f(u, v) = (f1(u, v), f2(u, v), f3(u, v)),

where D represents an open simply connected domain in plane. The first and second
fundamental forms corresponding to this immersion can be expressed as:

I = 〈df, df〉 = Edu2 + 2Fdudv + Gdv2(2.1)
II = −〈df, dN〉 = ldu2 + 2mdudv + ndv2,(2.2)

where E = 〈fu, fu〉, F = 〈fu, fv〉 and G = 〈fv, fv〉, l = 〈fuu, N〉, m = 〈fuv, N〉 and
n = 〈fvv, N〉 represent the coefficients of the first and second fundamental forms,
respectively. The shape operator can be expressed in terms of the first and second
fundamental forms in matrix form as follows:

S =
(

E F
F G

)−1 (
l m
m n

)

The principal curvatures k1, k2 represent the eigenvalues of the shape operator. One
can express the Gaussian and mean curvatures in terms of the coefficients of the first

1Euclidean motions, roto-translations
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and second fundamental forms,

H =
k1 + k2

2
=

1
2

En− 2Fm + Gl

EG− F 2
(2.3)

K = k1k2 =
ln−m2

EG− F 2
.(2.4)

Theorem 2.1. (Bonnet Theorem) The first and second fundamental forms determine
an immersed surface up to rigid motions2.

The most natural context in which Bonnet’s problem can be studied is that of
Cartan’s: Moving Frames, Equivalence Method and Structure Equations. We are
recalling the following important result, which can be found in [4].

We apply the method of moving frames to the special case of surfaces in R3. Let
x : M2 → R3 be an immersion of a two-dimensional differentiable manifold in R3.
For each point p ∈ M , an inner product 〈, 〉p is defined in TpM by the rule:

(2.5)
〈
v1, v2

〉
p

=
〈
dxp(v1), dxp(v2)

〉
x(p)

,

where the inner product in the right hand side is the canonical inner product of R3. It
is straightforward to check that 〈, 〉p is differentiable and defines a Riemannian metric
in M2, called the metric induced by the immersion x.

We will study the local geometry of M around a point p ∈ M . Let U ⊂ M be a
neighborhood of p such that the restriction x|U is an embedding. Let V ⊂ R3 be a
neighborhood of p in R3 such that V ∩ x(M) = x(U) and such that we can choose in
V an adapted moving frame e1, e2, e3. Therefore, when restricted to x(U), e1 and e2

span the tangent bundle to x(U).
Each vector field ei is a differentiable map into R3. The differential at p ∈ D,

(dei)p : R3 → R3, is a linear map. Thus, for each p and each v ∈ Rn we can write

(dei)p(v) =
∑

j

(ωi
j)p(v)ej .

The expressions (ωi
j)p(v), above defined, depend linearly on v. Thus (ωi

j)p is a linear
form in R3 and, since ei is a differentiable vector field, ωi

j is a differential 1-form. So,
we write the above as

(2.6) dei =
∑

j

ωi
je

j .

The forms ωi
j so defined are called connection forms corresponding to the moving

frame ei.
The map x : U → V induces forms x∗(ωi), x∗(ωi

j) on U . Since x∗ commutes with
d and ∧, such forms satisfy Cartan’s equations. For all q ∈ U and all v ∈ TqM , it
follows that

x∗(ω3)(v) = ω3(dx(v)) = 0.

2Euclidean motions, roto-translations
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Following [4], by a well-motivated abuse of notation, we identify x∗(ωi) = ωi, and
x∗(ωi

j) = ωi
j . x|U represents an embedding and these restricted forms satisfy Cartan’s

structure equations, where ω3 = 0.
In V we have, associated to the frame ei, the coframe forms ωi and the connection

forms ωi
j = −ωj

i , i, j = 1, 2, 3 which satisfy the structure equations:

dω1 = ω2 ∧ ω2
1 , dω2 = ω1 ∧ ω1

2 , dω3 = ω1 ∧ ω1
3 + ω2 ∧ ω2

3 ,

dω1
2 = ω1

3 ∧ ω3
2 , dω1

3 = ω1
2 ∧ ω2

3 , dω2
3 = ω2

1 ∧ ω1
3 .

The fourth listed equation among these structure equations is called the Gauss equa-
tion. The fifth and the sixth (last two) equations are called the Codazzi-Mainardi-
Peterson equations.

Now, let f : D ⊂ R2 → R3 be a parametrization of an immersed surface such
that (u, v) ∈ D are orthogonal, E = 〈fu, fu〉, F = 0 and G = 〈fv, fv〉. Then, we can
choose an orthonormal frame e1 = fu

||fu|| , e2 = fv

||fv|| in D and given the moving frame
ei we will define differential 1-forms ωi which is the associated coframe to ei by the
conditions ωi(ej) = δij . The following expressions are an immediate consequence of
the coframe conditions:

ω1 =
√

Edu, ω2 =
√

Gdv.

Next,
dω3 = ω1 ∧ ω1

3 + ω2 ∧ ω2
3 = 0,

hence, by Cartan’s lemma,

ω1
3 = h11ω1 + h12ω2,(2.7)

ω2
3 = h21ω1 + h22ω2,(2.8)

where hij = hji are differentiable functions in U . Remark that the matrix h can
be reinterpreted as a shape operator, and it corresponds to the Weingarten operator
−dN(v) = S(v). It is very important to remark (see [8]) that the shape operator
S is related to both the first and second fundamental forms through the formula
II(v, w) = 〈S(v), w〉g, where the inner product is considered with respect to the first
fundamental form I ≡ g, and so S = I−1II.

It is known that this matrix in general is not symmetric, even though the shape
operator is symmetric with respect to the inner products on the tangent spaces ([8, p.
177]). On the other hand, Cartan’s Lemma yields a matrix h which is symmetric,
and represents a symmetrization of the matrix S. This aspect, among others, shows
how natural, and much more convenient, it is to work with Cartan forms instead of
the classical approach to differential geometry.

In matrix form, the (similar) matrices S and h can be represented as (in the case
when the parametrization is orthogonal, F = 0) as follows:

S =
(

l
E

m
E

m
G

n
G

)
, h =

(
l
E

m√
EG

m√
EG

n
G

)
.

Remark that matrices S and h have the same eigenvalues, namely the principal cur-
vatures k1 and k2. Consequently, H and K are invariants with respect to this sym-
metrization.
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This allows us to rewrite equations (2.7), (2.8) for any parametrized surface where fu

and fv are orthogonal:

ω1
3 =

l√
E

du +
m√
E

dv,(2.9)

ω2
3 =

m√
G

du +
n√
G

dv(2.10)

One more connection form needs to be determined, namely ω1
2 = −ω2

1 , which can
be obtained from the Theorem of Levi-Civita.

Lemma 2.2. In isothermal coordinates, the Levi-Civita connection has the following
expression:

ω1
2 = − (

√
E)v√
G

du +
(
√

G)u√
E

dv.(2.11)

Proof of the Lemma. The Theorem of Levi-Civita states that on any 2-dimensional
manifold M , for any open set U in M where a moving frame e1, e2 is defined, together
with its associated frame ω1, ω2, there exists a unique one-form ω2

1 = −ω1
2 which

satisfies the following conditions:

ω2
1 ∧ ω2 = dω1, ω1

2 ∧ ω1 = dω2.

On the other hand, by definition, for any differential 1-form ω =
∑

i aidxi, we have:

dω =
∑

i

dai ∧ dxi.

The previously-stated expressions of dω1 and dω2, together with the expressions of
the coframe ω1 =

√
Edu, and respectively, ω2 =

√
Gdv, lead us to the following

expression of the Levi-Civita connection form ω1
2 :

ω1
2 = − (

√
E)v√
G

du +
(
√

G)u√
E

dv.

This concludes the proof. ¤
Hence, by the equation (2.6) we can construct a system of equations (classically

called Lax System of equations):

(2.12) dF = FΩ,

where F =< e1, e2, e3 > represents the orthonormal frame matrix whose vectors ei

are ordered as column vectors, and Ω represents the transposed Cartan matrix. The
matrix Ω is written in standard matrix notation as: Ω = (Ωij) = (ωj

i ), i, j = 1, 2, 3,
where i represents the row index and j represents the column index.

The Maurer-Cartan form Ω is valued in the Lie algebra so(3, R) and so ωi
j = −ωj

i .
This form, corresponding to a smooth immersion of prescribed first fundamental form
and second fundamental form, can be explicitly written Ω = F−1 · dF writes as:

Ω =




0 (
√

E)v√
G

− l√
E

− (
√

E)v√
G

0 − m√
G

l√
E

m√
G

0


 du +




0 − (
√

G)u√
E

− m√
E

(
√

G)u√
E

0 − n√
G

m√
E

n√
G

0


 dv.
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and

Fu = F




0 (
√

E)v√
G

− l√
E

− (
√

E)v√
G

0 − m√
G

l√
E

m√
G

0


(2.13)

Fv = F




0 − (
√

G)u√
E

− m√
E

(
√

G)u√
E

0 − n√
G

m√
E

n√
G

0


(2.14)

where E, F, G and l,m, n represent the coefficient functions of the first and second
fundamental forms, respectively.

Further, we can write the following explicit formulas:

Fu =

〈
fuu

√
E − fu(

√
E)u

E
,
fvu

√
G− fv(

√
G)u

G
, (

fu√
E
× fv√

G
)u

〉
,

Fv =

〈
fuv

√
E − fu(

√
E)v

E
,
fvv

√
G− fv(

√
G)v

G
, (

fu√
E
× fv√

G
)v

〉
.

On the Lax system of differential equations, one needs to ask: Are there any solutions,
if so how many?

The answer is given by Picard in case of a single ordinary differential equation
(ODE) which is classically known as Picard’s Theorem.

Let’s consider our system of PDE:

Fu = FA(u, v)
Fv = FB(u, v)(2.15)

where A(u, v), B(u, v) ∈ so(3), Adu + Bdv = Ω.
We can attempt to solve the Lax system in a neighborhood of (0, 0) by solving

a succession of ODE’s. In each step, Picard’s Theorem implies the existence and
uniqueness of a solution to the corresponding ODE system, depending only on the
initial value. At every step, the compatibility condition for the Lax system is verified,
namely Fuv = Fvu; this condition reduces to:

(2.16) BA + Av = AB + Bu

which can be rewritten as Av −Bu − [A,B] = 0.
In the following theorem, we will show that the compatibility condition for the

Lax system is equivalent to the Gauss-Codazzi Mainardi equations.

Theorem 2.3. Let Edu2 + Gdv2 represent a positive definite bilinear form, called
metric tensor (I) , and ldu2 + 2mdudv + ndv2 represent a symmetric and positive
definite bilinear form denoted as (II). Assume that all coefficients of these forms are
at least class C2. Assume that together, these coefficients satisfy the Gauss-Codazzi
Mainardi equations in a simply connected open subset of R2 . Then, there exists a
unique solution of the system

(2.17) Fu = FA(u, v), Fv = FB(u, v),



76 Z. Kose, M. Toda, E. Aulisa

where A(u, v), B(u, v) ∈ so(3)

A =




0 (
√

E)v√
G

− l√
E

− (
√

E)v√
G

0 − m√
G

l√
E

m√
G

0


 ; B =




0 − (
√

G)u√
E

− m√
E

(
√

G)u√
E

0 − n√
G

m√
E

n√
G

0


 ,

depending only on the choice of the initial value. This solution represents the or-
thonormal moving frame of a surface immersion in R3 that admits (I) and (II) as
first and second fundamental forms, respectively. This surface is unique up to a rigid
motion in space.

Conversely, if this Lax system admits a solution F , then it corresponds to a sur-
face immersion whose Gauss-Codazzi-Mainardi equations represent the compatibility
conditions of the Lax system.

Proof. We know that the existence and uniqueness of the system depends on the
compatibility condition. Let’s recall the compatibility condition

AB −BA = Av −Bu(2.18)

Here after some computations, we will have the right and left hand side of the equation
(2.18) as

AB −BA =




0 − ln−m2√
EG

− (
√

E)vn
G − (

√
G)um√
EG

ln−m2√
EG

0 (
√

E)vm√
EG

+ (
√

G)un
E

(
√

E)vn
G + (

√
G)um√
EG

− (
√

E)vm√
EG

− (
√

G)un
E 0




Av −Bu =




0 ( (
√

E)v√
G

)v + ( (
√

G)u√
E

)u (− l√
E

)v + ( m√
E

)u

−( (
√

E)v√
G

)v − ( (
√

G)u√
E

)u 0 −( m√
G

)v + ( n√
G

)u

( l√
E

)v − ( m√
E

)u ( m√
G

)v − ( n√
G

)u 0




Since both matrices are skew-symmetric, then we will have the following equations in
order to satisfy the compatibility condition:

ln−m2 =
−Evv −Guu

2
+

GuEu

4E
+

E2
v

4E
+

G2
u

4G
+

EvGv

4G
(2.19)

lv −mu =
lEv

2E
+ m

(
Gu

2G
− Eu

2E

)
+

nEv

2G
(2.20)

mv − nu = − lGu

2E
+ m

(
Gv

2G
− Ev

2G

)
− nGu

2G
(2.21)

which represent one of the many equivalent forms of the Gauss-Codazzi-Mainardi
equations. In this group of three equations, the first equation is called Gauss equation,
while the second and third are known as Codazzi-Mainardi. Through the classical
literature, the Gauss-Codazzi-Mainardi equations are usually expressed in terms of
Riemann-Christoffel symbols, thus making their expression extremely sophisticated.
However, one can easily verify, after some heavy computation by hand or using math-
ematical software, that the expressions above are equivalent to the Gauss-Codazzi-
Mainardi equations given in terms of Riemann-Christoffel symbols. ¤
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Remark A. It follows from the above equation and Bonnet theorem that if we
prescribe the smooth functions E, F,G, l,m, n which satisfy the required compatibility
equations, as coefficients of the first and second fundamental forms of an immersion,
then a solution to the above Lax system is found. It represents a moving orthonormal
frame F corresponding to a smooth surface that is unique, up to roto-translations.

Remark B.
An important particular case is that of curvature line coordinates, which exist on

all differentiable 2-manifolds, away from singularities. This means that the first and
the second fundamental forms, (I) and (II), are diagonalizable simultaneously. In this
case, the Gauss-Codazzi-Mainardi equations reduce to the following equations:

lv =
Ev

2

(
l

E
+

n

G

)
, nu =

Gu

2

(
l

E
+

n

G

)
.

It is important to note that the expression
(

l
E + n

G

)
= H actually represents the

mean curvature function.

Remark C.
An important particular subcase of the curvature line coordinate parameterization

is that of (surfaces which) admit isothermic coordinates. Isothermic coordinates mean
isothermal (conformal) coordinates which also represents curvature lines ( E = G,
F = 0 and m = 0 ). Known surfaces that admit isothermic coordinates include all
constant mean curvature (CMC) surfaces, Bonnet surfaces, quadrics, and a few other
special families.

3 Families of isometric surfaces in curvature line
coordinates

In the previous section, we formulated the Bonnet Problem in terms of coefficients of
the first and second fundamental forms. An important geometric application consists
in studying families of surfaces corresponding to prescribed invariants. We will char-
acterize surfaces via the coefficients of their fundamental forms. We remark that these
coefficients are not independent: namely, they need to satisfy compatibility conditions
coming from the Gauss-Codazzi-Mainardi equations.

Consider an isometric family of smooth surfaces in conformal coordinates, im-
mersed into the Euclidean 3-space (all members of the family having the same first
fundamental form given by I := E(du2 +dv2)). The formula that expresses the Gauss
curvature K is provided by Gauss’ ‘Theorema Egregium’ (the Remarkable Theorem),
that is actually the same with the Gauss Equation.

Of course, the expression K = ln−m2

detI is the most common expression of the Gauss
curvature, and it was adopted due to its simplicity, but this formula makes us often
forget that ln−m2 (and hence K) can be exclusively written in terms of E, F and G,
which is a rephrasing of Gauss’ Remarkable Theorem which states that the Gaussian
curvature is preserved by isometries.

The following result is easy to prove in conformal coordinates, but it is valid in
any surface coordinates:
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Lemma 3.1. Consider an isometric family of surfaces as defined above, in Rieman-
nian metric E(u, v)(du2 + dv2), with the same mean curvature H function (that is,
the surface transformation preserves the metric and the mean curvature). Then, the
modulus of Hopf differential |Q| will be invariant.

Proof. In writing down the expressions for H,K (2.3),(2.4), which are direct conse-
quences of the Gauss-Codazzi-Mainardi equations, we will get

l = 2HE − n(3.1)
m2 = −n2 + 2HEn−KE2(3.2)

Considering the modulus of the Hopf coefficient, we have by definition |Q| = (l−n)2+
4m2. Further, substituting (3.1) and (3.2) into |Q|, we obtain |Q| = (l−n)2 +4m2 =
4E2(H2 −K). Since E, H,K are invariant, so is |Q|. ¤

Remark that k1 and k2, the principal curvatures, are also invariant as solutions of
the equation

(3.3) k2 − 2Hk + K = 0

Note the discriminant is ∆ = H2 − 4K ≥ 0, which appears in the expression of the
Hopf coefficient |Q|.

Note that we obtained a well-known family of associate surfaces with respect to
the following rotational transformation on the Hopf differential: Q → eitQ. Due
to the parameter eit on S1, this is also called a 1-parameter family of associate
surfaces.

Remark. The isometric family of surfaces which preserves the mean curvature
function coincides with the family of associate surfaces, which by definition preserves
the Hopf differential.

This family is classically well-studied [5], but not from a constructional view point.
Our constructional approach involves solving a Bonnet-type problem for the following
invariants: given metric, and mean curvature.

Construction algorithm for an associate family of isometric surfaces in
curvature line coordinates on an open, simply connected domain

a) Choose a smooth surface of Riemannian metric E(du2 +dv2) and differentiable
mean curvature function H(u, v). Compute K determined by the metric, from the
Gauss equation. H and K determine k1 and k2, the principal curvatures, at every
point.

b) Choose an appropriate smooth function n(u, v) within the range3

[min(k1E, k2E), max(k1E, k2E)] ⊂ R.

c) Based on equation l = 2HE − n, compute the function l(u, v).
d) Compute m(u, v) from equation 3.2, considering both possible solutions.

A straightforward computation shows that the obtained functions E, l, m, n verify
the Gauss-Codazzi-Mainardi equations.

e) Plug the functions E = G, l, m, n into the Lax matrices from 2.15, and solve
the Lax system numerically, with appropriate initial conditions.

3This condition is imposed by equation (3.2).
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f) Use the solution obtained above (moving frame) in order to obtain the explicit
immersion formula, either using Sym’s formula for associated surfaces, or with direct
numerical integration using Picard’s theorem.

Remark 1. The same procedure can be used in order to construct isometric
families whose mean curvature represents an explicit function of the Gauss curvature
H = H(K) or viceversa. One particular example is that of Weingarten surfaces,
that is, smooth surfaces in the Euclidean space whose curvatures verify a linearity
condition of the type aH + bK + c = 0, where a, b, c represent given real numbers.
One would indeed start again from the Riemannian metric, which determines the
Gauss curvature K at every point, which in turn determines the mean curvature
H = H(K) at every point; the rest of the construction remains the same as in the
previous algorithm.

Remark 2. Observe that for the case of isothermic coordinates (e.g., for the
case of CMC surfaces), one can obtain the functions l, n,m at the same time, by
solving the Gauss-Codazzi-Mainardi equations simultaneously, as they are easy to
solve compared to the general ones:

ln =
−Evv − Euu

2
+

(Eu)2 + (Ev)2

2E
lv = Ev ·H, nu = Eu ·H.

In particular, if H is constant, one immediately obtains l = HE + α(u) and n =
HE + β(v), and the rest of the conditions subsequently follow.

4 Visual examples

We are concluding this report with a few numerical/visual examples of associate sur-
faces that were obtained using previously-stated Construction Algorithm for Families
of Associate Surfaces.

Fig.1. Associated family of cylinder
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Fig.2. Associated family of unduloid
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