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Abstract. In this paper we generalize the linear contravariant connection
on Poisson manifolds to Lie algebroids and study its tensors of torsion
and curvature. A Poisson connection which depends only on the Poisson
bivector and structural functions of the Lie algebroid is given. The notions
of complete and horizontal lifts are introduced and their compatibility
conditions are pointed out.
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1 Introduction

Poisson manifolds were introduced by A. Lichnerowicz in his famous paper [11] and
their properties were later investigated by A. Weinstein [19]. The Poisson manifolds
are the smooth manifolds equipped with a Poisson bracket on their ring of functions.
The Lie algebroid [12] is a generalization of a Lie algebra and integrable distribution.
In fact, a Lie algebroid is a vector bundle with a Lie bracket on his space of sections
whose properties are very similar to those of a tangent bundle. We remark that the
cotangent bundle of a Poisson manifold has a natural structure of a Lie algebroid
[18]. In the last years the various aspects of these subjects have been studied in the
different directions of research ([18], [15], [3], [4] [13], [10], [1], [9], [2]). In [16] the
author has investigated the properties of connections on a Lie algebroid and together
with D. Hrimiuc [8] studied the nonlinear connections of its dual. In [3] the linear
contravariant Poisson connections on vector bundle are pointed out.
The purpose of this paper is to study some aspects of the geometry of the Lie alge-
broids endowed with a Poisson structure, which generalize some results on Poisson
manifolds to Lie algebroids. The paper is organized as follows. In the section 2 we
recall the Cartan calculus and the Schouten-Nijenhuis bracket to the level of a Lie
algebroids and introduce the Poisson structure on Lie algebroid. We investigate the
properties of linear contravariant connection and its tensors of torsion and curvature.
In the last part of this section we find a Poisson connection which depends only on
the Poisson bivector and structural functions of Lie algebroid which generalize the
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results of R. Fernandes from [3].
The section 3 deals with the prolongation of Lie algebroid [7] over the vector bundle
projection. We study the properties of the complete lift of a Poisson bivector and
introduce the notion of horizontal lift. The compatibility conditions of these bivec-
tors are investigated. We remark that in the particular case of the Lie algebroid
(E = TM, σ = Id) some results of G. Mitric and I. Vaisman [15] are obtained.

2 Lie algebroids

Let us consider a differentiable, n-dimensional manifold M and (TM, πM ,M) its
tangent bundle. A Lie algebroid over the manifold M is the triple (E, [·, ·], σ) where
π : E → M is a vector bundle of rank m over M, whose C∞(M)-module of sections
Γ(E) is equipped with a Lie algebra structure [·, ·] and σ : E → TM is a bundle map
(called the anchor) which induces a Lie algebra homomorphism (also denoted σ) from
Γ(E) to χ(M), satisfying the Leibnitz rule

[s1, fs2] = f [s1, s2] + (σ(s1)f)s2,

for every f ∈ C∞(M) and s1, s2 ∈ Γ(E). Therefore, we get

[σ(s1), σ(s2)] = σ[s1, s2], [s1, [s2, s3]] + [s2, [s3, s1]] + [s3, [s1, s2]] = 0.

If ω ∈ ∧k(E∗) then the exterior derivative dEω ∈ ∧k+1(E∗) is given by the formula

dEω(s1, ..., sk+1) =
k+1∑

i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1) +

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ], s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

where si ∈ Γ(E), i = 1, k + 1, and it results that (dE)2 = 0. Also, for ξ ∈ Γ(E) one
can define the Lie derivative with respect to ξ by

Lξ = iξ ◦ dE + dE ◦ iξ,

where iξ is the contraction with ξ.
If we take the local coordinates (xi) on an open U ⊂M , a local basis {sα} of sections of
the bundle π−1(U) → U generates local coordinates (xi, yα) on E. The local functions
σi

α(x), Lγ
αβ(x) on M given by

σ(sα) = σi
α

∂

∂xi
, [sα, sβ ] = Lγ

αβsγ , i = 1, n, α, β, γ = 1, m,

are called the structure functions of the Lie algebroid and satisfy the structure equa-
tions on Lie algebroid

σj
α

∂σi
β

∂xj
− σj

β

∂σi
α

∂xj
= σi

γLγ
αβ ,

∑

(α,β,γ)

(
σi

α

∂Lδ
βγ

∂xi
+ Lδ

αηLη
βγ

)
= 0.
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Locally, if f ∈ C∞(M) then dEf = ∂f
∂xi σ

i
αsα, where {sα} is the dual basis of {sα}

and if θ ∈ Γ(E∗), θ = θαsα then

dEθ = (σi
α

∂θβ

∂xi
− 1

2
θγLγ

αβ)sα ∧ sβ ,

Particularly, we get

dExi = σi
αsα, dEsα = −1

2
Lα

βγsβ ∧ sγ .

The Schouten-Nijenhuis bracket on E is given by [18]

[X1 ∧ ... ∧Xp, Y1 ∧ ... ∧ Yq] = (−1)p+1

p∑

i=1

q∑

j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ ... ∧

ˆ

Xi ∧ ... ∧Xp ∧ ∧Y1 ∧ ... ∧
ˆ

Y j ∧ ... ∧ Yq

where Xi, Yj ∈ Γ(E).

2.1 Poisson structures on Lie algebroids

Let us consider the bivector (i.e. contravariant, skew-symmetric, 2-section) Π ∈
Γ(∧2E) given by the expression

(2.1) Π =
1
2
παβ(x)sα ∧ sβ .

Definition 2.1 The bivector Π is a Poisson bivector on E if and only if the relation

[Π, Π] = 0,

is fulfilled.
Proposition 2.1 Locally, the condition [Π, Π] = 0 is expressed as

(2.2)
∑

(α,ε,δ)

(παβσi
β

∂πεδ

∂xi
+ παβπγδLε

βγ) = 0

If Π is a Poisson bivector then the pair (E, Π) is called a Lie algebroid with Poisson
structure. A corresponding Poisson bracket on M is given by

{f1, f2} = Π(dEf1, d
Ef2), f1, f2 ∈ C∞(M).

We also have the bundle map π# : E∗ → E defined by

π#ρ = iρΠ, ρ ∈ Γ(E∗).

Let us consider the bracket

[ρ, θ]π = Lπ#ρθ − Lπ#θρ− dE(Π(ρ, θ)),
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where L is Lie derivative and ρ, θ ∈ Γ(E∗). With respect to this bracket and the usual
Lie bracket on vector fields, the map σ̃ : E∗ → TM given by

σ̃ = σ ◦ π#,

is a Lie algebra homomorphism

σ̃[ρ, θ]π = [σ̃ρ, σ̃θ].

The bracket [., .]π satisfies also the Leibnitz rule

[ρ, fθ]π = f [ρ, θ]π + σ̃(ρ)(f)θ,

and it results that (E∗, [., .]π, σ̃) is a Lie algebroid [13]. Next, we can define the con-
travariant exterior differential dπ :

∧k(E∗) → ∧k+1(E∗) by

dπω(s1, ..., sk+1) =
k+1∑

i=1

(−1)i+1σ̃(si)ω(s1, ...,
ˆ
si, ..., sk+1) +

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ]π, s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

Accordingly, we get the cohomology of Lie algebroid E∗ with the anchor σ̃ and the
bracket [., .]π which generalize the Poisson cohomology of Lichnerowicz for Poisson
manifolds [11].
In the following we deal with the notion of contravariant connection on Lie algebroids,
which generalize the similar notion on Poisson manifolds [18], [3].

Definition 2.2 If ρ, θ ∈ Γ(E∗) and Φ,Ψ ∈ Γ(E) then the linear contravariant
connection on a Lie algebroid is an application D : Γ(E∗) × Γ(E) → Γ(E) which
satisfies the relations:
i) Dρ+θΦ = DρΦ + DθΦ,
ii) Dρ(Φ + Ψ) = DρΦ + DρΨ,
iii) DfρΦ = fDρΦ,
iv) Dρ(fΦ) = fDρΦ + σ̃(ρ)(f)Φ, f ∈ C∞(M).

Definition 2.3 The torsion and curvature of the linear contravariant connection
are given by

T (ρ, θ) = Dρθ −Dθρ− [ρ, θ]π,

R(ρ, θ)µ = DρDθµ−DθDρµ−D[ρ,θ]πθ,

where ρ, θ, µ ∈ Γ(E∗).

In the local coordinates we define the Christoffel symbols Γαβ
γ considering

Dsαsβ = Γαβ
γ sγ ,

and under a change of coordinates xi′ = xi′(xi), i, i′ = 1, n on M , and yα′ = Aα′
α yα,

α, α′ = 1,m on E, corresponding to a new base sα′ = Aα′
α sα, these symbols transform

according to
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(2.3) Γα′β′

γ′ = Aα′
α Aβ′

β Aγ
γ′Γ

αβ
γ + Aα′

α Aγ
γ′σ

i
ε

∂Aβ′
γ

∂xi
παε.

Proposition 2.2 The local components of the torsion and curvature of the linear
contravariant connection on a Lie algebroid have the expressions

Tαβ
ε = Γαβ

ε − Γβα
ε − παγLβ

γε + πβγLα
γε − σi

ε

∂παβ

∂xi
,

Rαβγ
δ = Γαε

δ Γβγ
ε −Γβε

δ Γαγ
ε +παεσi

ε

∂Γβγ
δ

∂xi
−πβεσi

ε

∂Γαγ
δ

∂xi
+(πβνLα

νε−πανLβ
νε−σi

ε

∂παβ

∂xi
)Γεγ

δ .

The contravariant connection induces a contravariant derivative Dα : Γ(E) → Γ(E)
such that the following relations are fulfilled

Df1α1+f2α2 = f1Dα1 + f2Dα2 , fi ∈ C∞(M), αi ∈ Γ(E∗),

Dρ(fΦ) = fDρΦ + σ̃(ρ)(f)Φ, f ∈ C∞(M), ρ, θ ∈ Γ(E∗).

Let T be a tensor of type (r, s) with the components T i1...ir
j1...js

and θ = θαsα a section
of E∗. The local coordinates expression of the contravariant derivative is given by

DθT = θαT i1...ir
j1...js

/αsi1 ⊗ · · · ⊗ sir ⊗ sj1 ⊗ · · · ⊗ sjs ,

where

T i1...ir
j1...js

/α = παεσi
ε

∂T i1...ir
j1...js

∂xi
+

r∑
a=1

(
Γiaα

ε T i1...ε...ir
j1...js

)−
s∑

b=1

(
Γεα

jb
T i1...ir

j1...ε...js

)
,

and / denote the contravariat derivative operator.
We recall that a tensor field T on E is called parallel if and only if DT = 0.

Definition 2.4 A contravariant connection D is called a Poisson connection if
the Poisson bivector is parallel with respect to D.

Let us consider a contravariant connection D with the Cristoffel symbols Γαβ
γ and

associated contravariant derivative. We obtain:

Proposition 2.3 The contravariant connection D with the coefficients given by

(2.4) Γ
αβ

γ = Γαβ
γ − 1

2
πγεπ

αε/β ,

is a Poisson connection.

Proof. Considering / the contravariant derivative operator with respect to the
contravariant connection D, we get

πβγ/
α

= παεσi
ε

∂πβγ

∂xi
+ Γ

βα

ε πεγ + Γ
γα

ε πβε =
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= παεσi
ε

∂πβγ

∂xi
+

(
Γβα

ε − 1
2
πετπβτ/α

)
πεγ +

(
Γγα

ε − 1
2
πετπγτ/α

)
πβε = 0,

which concludes the proof. ut

Remark 2.1 Considering the expression

(2.5) Γαβ
γ = σi

γ

∂παβ

∂xi
,

in (2.4) we obtain a Poisson connection D with the coefficients

Γ
αβ

γ = σi
γ

∂παβ

∂xi
− 1

2
πγεπ

αε/β ,

which depends only on the Poisson bivector and structural functions of the Lie alge-
broid.

Proof. Under a change of coordinates, the structure functions σi
α change by the

rule [17], [14]

σi′
α′A

α′
α =

∂xi′

∂xi
σi

α,

and, by direct computation, follows that the coefficients (2.5) satisfy the transforma-
tion law (2.3). ut

Theorem 2.1 If the following relation
∑

(α,ε,δ)

παβπγδLε
βγ = 0,

is true, then the connection D with the coefficients

Γαβ
γ = σi

γ

∂παβ

∂xi
,

is a Poisson connection on Lie algebroid.

Proof. Using relation (2.2) we obtain that πβγ/α = 0 if and only if the required
relation is fulfilled. ut

Proposition 2.4 The set of Poisson connections on Lie algebroid is given by

Γ
αβ

γ = Γαβ
γ + Ωαε

γνXνβ
ε ,

where
Ωαε

γν =
1
2

(
δα
ν δε

γ − πγνπαε
)
,

and D(Γαβ
γ ) is a Poisson connection with Xδβ

ε an arbitrary tensor.

Proof. By straightforward computation it results
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πβγ/
α

= παεσi
ε

∂πβγ

∂xi
+ Γ

βα

ε πεγ + Γ
γα

ε πβε =

πβγ/α +
1
2
πεγ(δβ

ν δθ
ε − πενπβθ)Xνα

θ +
1
2
πβε(δγ

ν δθ
ε − πενπγθ)Xνα

θ =

πβγ/α +
1
2
πθγXβα

θ − 1
2
πβθXγα

θ +
1
2
πβθXγα

θ − 1
2
πθγXβα

θ = 0,

because πβγ/α = 0, which ends the proof. ut

3 The prolongation of Lie algebroid over the vector
bundle projection

Let (E, π, M) be a vector bundle. For the projection π : E → M we can construct the
prolongation of E (see [7], [14], [10], [16]). The associated vector bundle is (T E, π2, E)
where T E = ∪w∈ETwE with

TwE = {(ux, vw) ∈ Ex × TwE | σ(ux) = Twπ(vw), π(w) = x ∈ M},

and the projection π2(ux, vw) = πE(vw) = w, where πE : TE → E is the tangent
projection. The canonical projection π1 : T E → E is given by π1(u, v) = u. The
projection onto the second factor σ1 : T E → TE, σ1(u, v) = v will be the anchor of a
new Lie algebroid over manifold E. An element of T E is said to be vertical if it is in
the kernel of the projection π1. We will denote (V T E, π2|V TE

, E) the vertical bundle
of (T E, π2, E). If f ∈ C∞(M) we will denote by fc and fv the complete and vertical
lift to E of f defined by

f c(u) = σ(u)(f), fv(u) = f(π(u)), u ∈ E.

For s ∈ Γ(E) we can consider the vertical lift of s given by sv(u) = ϕ(s(π(u))), for
u ∈ E, where ϕ : Eπ(u) → Tu(Eπ(u)) is the canonical isomorphism. There exists
a unique vector field sc on E, the complete lift of s satisfying the two following
conditions:
i) sc is π-projectable on σ(s),
ii) sc(

∧
α) = L̂sα,

for all α ∈ Γ(E∗), where
∧
α(u) = α(π(u))(u), u ∈ E (see [5] [6]).

Considering the prolongation T E of E over the projection π, we may introduce the
vertical lift sv and the complete lift sc of a section s ∈ Γ(E) as the sections of
T E → E given by (see [14])

sv(u) = (0, sv(u)), sc(u) = (s(π(u)), sc(u)), u ∈ E.

Another canonical object on T E is the Euler section C, which is the section of T E →
E defined by C(u) = (0, ϕ(u)) for all u ∈ E.
The local basis of Γ(T E) is given by {Xα,Vα}, where

Xα(u) =
(

sα(π(u)), σi
α

∂

∂xi

∣∣∣∣
u

)
, Vα(u) =

(
0,

∂

∂yα

∣∣∣∣
u

)
,
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and (∂/∂xi, ∂/∂yα) is the local basis on TE. The structure functions of T E are given
by the following formulas

σ1(Xα) = σi
α

∂

∂xi
, σ1(Vα) =

∂

∂yα
,

[Xα,Xβ ] = Lγ
αβXγ , [Xα,Vβ ] = 0, [Vα,Vβ ] = 0.

The vertical lift of a section ρ = ραsα and the corresponding vector field are ρv = ραVα

and σ1(ρv) = ρα ∂
∂yα . The expression of the complete lift of a section ρ is

ρc = ραXα + (
·

ρα − Lα
βγρβyγ)Vα,

and therefore
σ1(ρc) = ρασi

α

∂

∂xi
+ (σi

γ

∂ρα

∂xi
− Lα

βγρβ)yγ ∂

∂yα
.

In particular
sv

α = Vα, sc
α = Xα − Lβ

αγyγVβ .

The coordinate expressions of C and σ1(C) are

C = yαVα, σ1(C) = yα ∂

∂yα
.

The local expression of the differential of a function L on T E is dEL = σi
α

∂L
∂xiXα +

∂L
∂yαVα, where{Xα,Vα} denotes the corresponding dual basis of {Xα,Vα} and there-
fore, we have dExi = σi

αXα and dEyα = Vα. The differential of sections of (T E)∗ is
determined by

dEXα = −1
2
Lα

βγX β ∧ X γ , dEVα = 0.

A nonlinear connection N on T E [17] is an m−dimensional distribution (called
horizontal distribution) N : u ∈ E → HTuE ⊂ T E that is supplementary to
the vertical distribution. This means that we have the following decomposition
TuE = HTuE ⊕ V TuE, for u ∈ E. A connection N on T E induces two projec-
tors h, v : T E → T E such that h(ρ) = ρh and v(ρ) = ρv for every ρ ∈ Γ(T E). We
have

h =
1
2
(id + N), v =

1
2
(id−N).

The sections
δα = (Xα)h = Xα −Nβ

αVβ ,

generate a basis of HT E, where Nβ
α are the coefficients of nonlinear connection.

The frame {δα,Vα} is a local basis of T E called adapted. The dual adapted basis is
{Xα, δVα} where δVα = Vα−Nα

β X β . The Lie brackets of the adapted basis {δα,Vα}
are [16]

[δα, δβ ] = Lγ
αβδγ +Rγ

αβVγ , [δα,Vβ ] =
∂N γ

α

∂yβ
Vγ , [Vα,Vβ ] = 0,

where
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(3.1) Rγ
αβ = δβ(N γ

α )− δα(N γ
β ) + Lε

αβN γ
ε .

The curvature of a connection N on T E is given by Ω = −Nh where h is horizontal
projector and Nh is the Nijenhuis tensor of h. In the local coordinates we have

Ω = −1
2
Rγ

αβXα ∧ X β ⊗ Vγ ,

where Rγ
αβ are given by (3.1) and represent the local coordinate functions of the

curvature tensor Ω in the frame
∧2 T E∗ ⊗ T E induced by {Xα,Vα}.

3.1 Compatible Poisson structures

Let us consider the Poisson bivector on Lie algebroid given by relation (2.1). We ob-
tain:

Proposition 3.1 The complete lift of Π on T E is given by

(3.2) Πc = παβXα ∧ Vβ +
(

1
2
σi

γ

∂παβ

∂xi
− πδβLα

δγ

)
yγVα ∧ Vβ .

Proof. Using the properties of vertical and complete lifts we obtain

Πc = ( 1
2παβsα ∧ sβ)c = ( 1

2παβ)c(sα ∧ sβ)v + ( 1
2παβ)v(sα ∧ sβ)c =

= 1
2

·
π

αβ
sv

α ∧ sv
β + 1

2παβ(sc
α ∧ sv

β + sv
α ∧ sc

β) = 1
2

·
π

αβVα ∧ Vβ+

+ 1
2παβ

(
(Xα − Lδ

αγyγVδ) ∧ Vβ + Vα ∧ (Xβ − Lδ
βγyγ)Vδ

)
=

= παβXα ∧ Vβ +
(

1
2σi

γ
∂παβ

∂xi − πδβLα
δγ

)
yγVα ∧ Vβ .

ut
Proposition 3.2 The complete lift Πc is a Poisson bivector on T E.

Proof. Using the relations (3.2) and (2.2), by straightforward computation, we
obtain that [Πc, Πc] = 0, which ends the proof. ut

Proposition 3.3 The Poisson structure Πc has the following property

Πc = −LCΠc,

which means that (T E, Πc) is a homogeneous Poisson manifold.

Proof. A direct computation in local coordinates yields

LCΠc = LyεVε

(
παβXα ∧ Vβ + ( 1

2σi
γ

∂παβ

∂xi − πδβLα
δγ)yγVα ∧ Vβ

)

= LyεVε(π
αβXα) ∧ Vβ − παβXα ∧ Vβ + LyεVε(

1
2σi

γ
∂παβ

∂xi yγVα) ∧ Vβ

− 1
2σi

γ
∂παβ

∂xi yγVα ∧ Vβ − (LyεVεπ
δβLα

δγyγVα) ∧ Vβ + πδβLα
δγyγVα ∧ Vβ

= −παβXα ∧ Vβ − 1
2σi

γ
∂παβ

∂xi yγVα ∧ Vβ + πδβLα
δγyγVα ∧ Vβ

= −Πc
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ut
Definition 3.1 Let us consider a Poisson bivector on E given by (2.1) then the

horizontal lift of Π to T E is the bivector defined by

ΠH =
1
2
παβ(x)δα ∧ δβ .

Proposition 3.4 The horizontal lift ΠH is a Poisson bivector if and only if Π is
a Poisson bivector on E and the following relation

παβπγδRε
βγ = 0,

is fulfilled.

Proof. The Poisson condition [Π, Π] = 0 leads to the relation (2.2) and equation
[ΠH , ΠH ] = 0 yields

∑

(ε,δ,α)

(
παβπγδLε

βγ + παβσi
β

∂πεδ

∂xi

)
δε ∧ δα ∧ δδ + παβπγδRε

βγVε ∧ δα ∧ δγ = 0,

which ends the proof. ut
We recall that two Poisson structures are called compatible if the bivectors ω1 and
ω2 satisfy the condition

[ω1, ω2] = 0.

By straightforward computation in local coordinates we get:

Proposition 3.5 The Poisson bivector ΠH is compatible with the complete lift
Πc if and only if the following relations hold

πrβπαs(
∂N γ

r

∂ys
− ∂N γ

s

∂yr
)− πrγπsαLβ

sr = 0,

πrs

(
δr(aαβ)− alα ∂Nβ

r

∂yl
+ alβ ∂Nα

r

∂yl
−

−πθβRα
rθ + (πεβLθ

εγ − πεθLβ
εγ)yγ ∂Nα

r

∂yθ
+

+ σi
r

∂πεβ

∂xi
yγLα

εγ + πεβLα
εγNγ

r − πεβσi
r

∂Lα
εγ

∂xi
yγ

)
= 0.

where we have denoted

aαβ = σi
ε

∂παβ

∂xi
yε + Nα

ε πεβ −Nβ
ε πεα.
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