A note on Poisson-Lie algebroids ()
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Abstract. In this paper we generalize the linear contravariant connection
on Poisson manifolds to Lie algebroids and study its tensors of torsion
and curvature. A Poisson connection which depends only on the Poisson
bivector and structural functions of the Lie algebroid is given. The notions
of complete and horizontal lifts are introduced and their compatibility
conditions are pointed out.

M.S.C. 2000: 53D17, 17B66, 53C05.
Key words: Poisson manifolds, Lie algebroids, contravariant connection, complete
and horizontal lifts.

1 Introduction

Poisson manifolds were introduced by A. Lichnerowicz in his famous paper [11] and
their properties were later investigated by A. Weinstein [19]. The Poisson manifolds
are the smooth manifolds equipped with a Poisson bracket on their ring of functions.
The Lie algebroid [12] is a generalization of a Lie algebra and integrable distribution.
In fact, a Lie algebroid is a vector bundle with a Lie bracket on his space of sections
whose properties are very similar to those of a tangent bundle. We remark that the
cotangent bundle of a Poisson manifold has a natural structure of a Lie algebroid
[18]. In the last years the various aspects of these subjects have been studied in the
different directions of research ([18], [15], [3], [4] [13], [10], [1], [9], [2])- In [16] the
author has investigated the properties of connections on a Lie algebroid and together
with D. Hrimiuc [8] studied the nonlinear connections of its dual. In [3] the linear
contravariant Poisson connections on vector bundle are pointed out.

The purpose of this paper is to study some aspects of the geometry of the Lie alge-
broids endowed with a Poisson structure, which generalize some results on Poisson
manifolds to Lie algebroids. The paper is organized as follows. In the section 2 we
recall the Cartan calculus and the Schouten-Nijenhuis bracket to the level of a Lie
algebroids and introduce the Poisson structure on Lie algebroid. We investigate the
properties of linear contravariant connection and its tensors of torsion and curvature.
In the last part of this section we find a Poisson connection which depends only on
the Poisson bivector and structural functions of Lie algebroid which generalize the
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results of R. Fernandes from [3].

The section 3 deals with the prolongation of Lie algebroid [7] over the vector bundle
projection. We study the properties of the complete lift of a Poisson bivector and
introduce the notion of horizontal lift. The compatibility conditions of these bivec-
tors are investigated. We remark that in the particular case of the Lie algebroid
(E =TM,o = Id) some results of G. Mitric and I. Vaisman [15] are obtained.

2 Lie algebroids

Let us consider a differentiable, n-dimensional manifold M and (TM,7pr, M) its
tangent bundle. A Lie algebroid over the manifold M is the triple (E, [+, ], o) where
7w : E — M is a vector bundle of rank m over M, whose C'*°(M)-module of sections
I'(E) is equipped with a Lie algebra structure [-, ] and o : E — T'M is a bundle map
(called the anchor) which induces a Lie algebra homomorphism (also denoted o) from
I'(E) to x(M), satisfying the Leibnitz rule

1, fs2] = f[s1,82] + (o(s1) )52,

for every f € C°(M) and s1, sg € I'(E). Therefore, we get
[0(s1),0(s2)] = o[s1,82], [s1,[52, 83]] + [s2, [s3, s1]] + [s3, [s1, 82]] = 0.

If w € A\"(E*) then the exterior derivative dfw € \*"'(E*) is given by the formula

k+1 A
dfw(sy, .., spp1) = Z(—l)”’la(si)w(sl,...,si,...,skﬂ)+

i=1

+ Z (—l)iﬂw([si,sj],sh...,si,...,sj7...sk+1).
1<i<j<k+1

where s; € T'(E), i = 1,k + 1, and it results that (d¥)%? = 0. Also, for ¢ € I'(E) one
can define the Lie derivative with respect to & by

,Cg:igodE+dEOi§,

where i¢ is the contraction with &.

If we take the local coordinates (z%) on an open U C M, a local basis {s, } of sections of
the bundle 771 (U) — U generates local coordinates (z%, y) on E. The local functions
o (x), L g(x) on M given by

[0

0(8a) = [Sa, s8] = Lgﬁs,y, i=T,n, ofB,v=1m,

Lot

are called the structure functions of the Lie algebroid and satisfy the structure equa-

tions on Lie algebroid

Jot . ot ) oL¢

B § 9% _ ¥ By I/

Ué@ T %805 oy Lag: Z (fo O’ + LanLlsy | =0
(a,8,7)
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Locally, if f € C™°(M) then d” f = 2Lo? s, where {s°} is the dual basis of {s,}
and if 6 € T'(E*), 0 = 0,5* then

; 00 1
Ep _ 8 _ = ¥ B
d“0 = (o, B 29vLaﬂ)5a A sP,
Particularly, we get
) . 1
dfat = ol s, dPs® = _§Lg73ﬁ NS

The Schouten-Nijenhuis bracket on E is given by [18]

P q
Xi A AXp YA LAY = (1PN ()X YA X A A
i=1 j=1

XiA e AXp ANYIA LAY A LAY,

where X;,Y; € I'(E).

2.1 Poisson structures on Lie algebroids

Let us consider the bivector (i.e. contravariant, skew-symmetric, 2-section) II €
I'(A%E) given by the expression

1
(2.1) = iﬂo‘ﬁ(m)sa A sg.
Definition 2.1 The bivector II is a Poisson bivector on E if and only if the relation
[IL,II] = 0,

is fulfilled.
Proposition 2.1 Locally, the condition [I1,1I] = 0 is expressed as
) 87r65 s
(2.2) > (o + 7 LE,) = 0
(ev,e,0)

If TI is a Poisson bivector then the pair (E,II) is called a Lie algebroid with Poisson
structure. A corresponding Poisson bracket on M is given by

{f1, f2} =T(d" f1,d" f2),  f1, f2 € CF(M).
We also have the bundle map 7% : E* — E defined by

e

p=1,II, pel(E").
Let us consider the bracket

[P, 9]7\' = Lﬂ#pe - Ew#eﬂ - dE(H(p, 9));
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where L is Lie derivative and p, 8 € T'(E*). With respect to this bracket and the usual
Lie bracket on vector fields, the map ¢ : E* — T'M given by

F=ocon”,
is a Lie algebra homomorphism
olp,0]x = [op,d0).
The bracket [.,.], satisfies also the Leibnitz rule

[pv fa]ﬂ' = f[p7 9]71' + 3(p)(f)9,

and it results that (E*,[.,.]r,0) is a Lie algebroid [13]. Next, we can define the con-
travariant exterior differential d” : /\k(E*) — /\k'H(E*) by

k+1

d"w(s1, ..., Sk+1) = Z(—l)i+15(si)w(sl,...,si,...,skﬂ)+
i=1

+ Z (71)i+jw([si,sj]ﬂaslv"'781'3-"78]'3'~~sk+l)'
1<i<j<k+1

Accordingly, we get the cohomology of Lie algebroid E* with the anchor o and the
bracket [.,.]r which generalize the Poisson cohomology of Lichnerowicz for Poisson
manifolds [11].

In the following we deal with the notion of contravariant connection on Lie algebroids,
which generalize the similar notion on Poisson manifolds [18], [3].

Definition 2.2 If p,0 € T'(E*) and ®,¥ € T'(E) then the linear contravariant
connection on a Lie algebroid is an application D : T'(E*) x I'(E) — T'(E) which
satisfies the relations:

i) Dpye® =D,2+ Dy,
i) D)(®+¥)=D, 2+ D,V,
ili) Dy, ® = fD,®,
iv) D,(f®) = [D,® +5(p)(N)®, [ C=(M).
Definition 2.3 The torsion and curvature of the linear contravariant connection

are given by
T(p,0) = Dyt — Dop — [p, 0],

R(p,0)pu = DyDgp — DgDyp — Dy 0,0,
where p, 0, € T(E*).

In the local coordinates we define the Christoffel symbols I‘?fﬁ considering
DSOLSB = F,(jﬂs’y,
and under a change of coordinates = = z%' (x), i,i’ = T,n on M, and y® = A% y*,

— . ’ !
a,o/ =1,m on E, corresponding to a new base s* = A% s®, these symbols transform
according to
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DAY
(2.3) = AY AT AL TSP 1 AY Aol o X goe,

Proposition 2.2 The local components of the torsion and curvature of the linear
contravariant connection on a Lie algebroid have the expressions

;O

TP =TeP — TP — a7 LE_ + 77 LS, — 0! o

orér or 0‘ O
R?B’Y Fasl—wﬁ'y FBEFO"Y—F ae z el ﬁso,z +( [-}uLa _ﬂ,auLgE 7 )sty

700 " 7 o e 0w
The contravariant connection induces a contravariant derivative D, : I'(E) — I'(E)
such that the following relations are fulfilled

Df1a1+f2a2 :leOtl +f2D0627 flECOO(M)a aiEF(E*)7

D,(f®) = fD,® +5(p)(f)®, fe€C®(M), p,6eT(E").

Let T be a tensor of type (r,s) with the components Tz1 ” and 0 = 0,s% a section
of E*. The local coordinates expression of the contravarlant derivative is given by

DQT—QT“ Zr/as“®"'®Sir®8jl®"'®8js,
where
a ll S
@ a z Js Qg ...Eu.zr ot
/ = %o B:ﬁ +Z F T;) )_ (FET1 ~~~~~~ Js)’
b=1

and / denote the contravariat derivative operator.
We recall that a tensor field T on F is called parallel if and only if DT = 0.

Definition 2.4 A contravariant connection D is called a Poisson connection if
the Poisson bivector is parallel with respect to D.

Let us consider a contravariant connection D with the Cristoffel symbols I‘gﬁ and
associated contravariant derivative. We obtain:

Proposition 2.3 The contravariant connection D with the coefficients given by

=B «a 1 «a
(2.4) " =r— 37T /8,

is a Poisson connection.

Proof. Considering 7 the contravariant derivative operator with respect to the
contravariant connection D, we get

_ oY
ﬂﬁ’Y/o‘:ﬂ.azeo,z ﬂ-l +Ff

« =y
v 77 + T, e =
oxt
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.0 By 1 1
= waEU;% + <Ff”‘ — 27r577rﬁ'r/°‘> 7+ <F;a — 27T577r””/”‘) e = 0,
which concludes the proof. O

Remark 2.1 Considering the expression

; onP
T opt

af _
(2.5) e’ =g

in (2.4) we obtain a Poisson connection D with the coefficients

B
b =0~

TyeT

which depends only on the Poisson bivector and structural functions of the Lie alge-
broid.

Proof. Under a change of coordinates, the structure functions ¢!, change by the
rule [17], [14]

’

ox’

o AS = I oy,
and, by direct computation, follows that the coefficients (2.5) satisfy the transforma-
tion law (2.3). O

Theorem 2.1 If the following relation

> L, =0,
(a,e,9)

is true, then the connection D with the coefficients

ref =gt 871-0(?
Y T Oxt ’

is a Poisson connection on Lie algebroid.

Proof. Using relation (2.2) we obtain that 797/ = 0 if and only if the required
relation is fulfilled. a

Proposition 2.4 The set of Poisson connections on Lie algebroid is given by

iaﬁ o

B B
T =T + QX0

where

1
gy = 3 (53‘6§ — Ty ™)
and D(Fiﬂ) is a Poisson connection with X°% an arbitrary tensor.

Proof. By straightforward computation it results
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—a ; 37r37 =B« =ya
ﬂﬁv/ — WQEJ; o +1—w€ 7Y +Fe 7T’86 _

1 1
e 4 5#“(5555 — o, P XY + §7T'8€(5355 — o, ) XY =

1 1 1 1
/> 4 §7T‘97X50‘ - iwﬁnga + iﬁﬁeXga — §7T0’YX§Q =0,

because 777 /% = 0, which ends the proof. O

3 The prolongation of Lie algebroid over the vector
bundle projection

Let (E,m, M) be a vector bundle. For the projection 7 : E — M we can construct the
prolongation of F (see [7], [14], [10], [16]). The associated vector bundle is (T E, w2, E)
where 7FE = Uy e g7 F with

TwE = {(ug,vy) € Eyx x Ty E | 0(uy) = Tym(vy), 7w(w)=1z¢€ M},

and the projection ma(uy,vyw) = TE(vy) = w, where 7 : TE — E is the tangent
projection. The canonical projection m : 7E — FE is given by m(u,v) = u. The
projection onto the second factor o' : TE — TE, o' (u,v) = v will be the anchor of a
new Lie algebroid over manifold F. An element of 7 E is said to be vertical if it is in
the kernel of the projection 7. We will denote (V7 E, ., E) the vertical bundle
of (TE,my, E). If f € C°°(M) we will denote by f¢ and f¥ the complete and vertical
lift to E of f defined by

few)=o)(f), f'(u)=f(r(u), u€E.

For s € I'(E) we can consider the vertical lift of s given by s”(u) = ¢(s(w(w))), for
u € E, where ¢ : Er) — Tu(Eru)) is the canonical isomorphism. There exists
a unique vector field s¢ on E, the complete lift of s satisfying the two following
conditions:

i) s¢ is m-projectable on o(s),

ii) s°(a) = Laa,

for all & € T'(E*), where Sz(u) = a(m(u))(u), u € E (see [5] [6]).

Considering the prolongation 7 F of E over the projection m, we may introduce the

vertical lift s¥ and the complete lift s€ of a section s € I'(E) as the sections of
TE — E given by (see [14])

sV(u) = (0,8%(w)), s°(u) = (s(m(u)),s(u)), weE.

Another canonical object on 7 F is the Fuler section C', which is the section of 7FE —
E defined by C(u) = (0, p(u)) for all u € E.
The local basis of I'(7 E) is given by {X,, Va}, where

0 0
=055

Xo(u) = <sa(7f(U))’ T4 ri
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and (9/0x%,0/0y®) is the local basis on TE. The structure functions of 7 E are given
by the following formulas

9
Oye’

ol (X,) = o’ 0

1 —
aamiv g (Va) -

[Xo, Xs] = ng')(w (X0 V3] =0, [Va,Vs] =0.

The vertical lift of a section p = p“s, and the corresponding vector field are p¥ = p*V,
and ot(p¥) = p® ay . The expression of the complete lift of a section p is

P° = p X+ (p° — L3, 0%y Va,

and therefore
op~ 0
Lﬁyl) )y @

) .
o) = o + (0

In particular
sy, =Va, s&=2Xoa— L5y Vs

[e3 [0}

The coordinate expressions of C' and o'(C) are

o 0

C =y*V,, 01(0) =y @

The local expression of the differential of a function L on TE is d¥L = o, gij X«

(%L Ve, where{ X, V*} denotes the corresponding dual basis of {X,,V,} and there—

fore, we have d¥z' = ¢! X* and dPy® = V. The differential of sections of (7 E)* is
determined by

dFxe = —%Lgvxﬂ AXY, dPVr =0

A nonlinear connection N on TE [17] is an m—dimensional distribution (called
horizontal distribution) N : w € E — HT,E C TE that is supplementary to
the vertical distribution. This means that we have the following decomposition
T.F = HILE & VT, E, for v € E. A connection N on 7FE induces two projec-
tors h,v : TE — TFE such that h(p) = p® and v(p) = p" for every p € I'(TE). We
have

h= %(id—kN), v = %(id— N).

The sections
6o = (X)) = X, — NBVg,

generate a basis of HT E, where NP are the coefficients of nonlinear connection.
The frame {04, V,} is a local basis of TFE called adapted. The dual adapted basis is
{X,6V*} where 6V =V — Ng‘Xﬁ. The Lie brackets of the adapted basis {dq, Vo }
are [16]

005 = L35, + R2Vor [asVsl = Ay i vsl =0
ay0p a7y aB ¥ ay V3 aﬁ ay V3 9

where
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(3.1) Rl = 0p(NT) = 0a(NG) + Lo gN7 .

The curvature of a connection N on TFE is given by Q = —Ny, where h is horizontal
projector and Ny, is the Nijenhuis tensor of h. In the local coordinates we have

1
_ _ Y el B
0= QRaﬁX NXZRYV,,

where R ; are given by (3.1) and represent the local coordinate functions of the
curvature tensor  in the frame A> 7 E* ® TE induced by {X,, Va}.

3.1 Compatible Poisson structures

Let us consider the Poisson bivector on Lie algebroid given by relation (2.1). We ob-
tain:

Proposition 3.1 The complete lift of Il on TE is given by

1 37r
276

(3.2) I = 7P X, AV + ( ﬁéﬁL(?V) Y Vo A V.

Proof. Using the properties of vertical and complete lifts we obtain

¢ = (%W“isa/\sﬁ)c = (379P) (50 A 55)¥ + (370)Y (sa Asg)e =
=1ir sy A sl + 5T (s8N sh 4 8% A sG) = 27r V A Vs+
+1gos ((X — L3,y Vs) AVs + Va A (X5 — LY, yvms) _

= 70X AV + (508 55— 7L ) 47V AV,

Proposition 3.2 The complete lift 11° is a Poisson bivector on TE.

Proof. Using the relations (3.2) and (2.2), by straightforward computation, we
obtain that [II°,TI°] = 0, which ends the proof. O

Proposition 3.3 The Poisson structure I1° has the following property
I1° = —LII1°,
which means that (T E,11°) is a homogeneous Poisson manifold.

Proof. A direct computation in local coordinates yields

Ll =Ly, ( ﬂx AV + (3ol 2250 _ pdBLa Yy, /\Vg)

2 ’Y oxt
_LEV( Xo) NV — 18X ANV + Lyey, (308 2247V,) A Vg
—Lgiom vy, Avﬁ - (L, evayréﬁngywa) A Vg +7PLE 4"V A Vg
= Xy ANV — 308 B2y Vo AV + 190 LE Ve A Vg

= —Hc
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O
Definition 3.1 Let us consider a Poisson bivector on F given by (2.1) then the
horizontal lift of II to 7 F is the bivector defined by

A = %waﬁ(x)aa A B

Proposition 3.4 The horizontal lift 117 is a Poisson bivector if and only if II is
a Poisson bivector on E and the following relation

sl W”éR,%w =
18 fulfilled.

Proof. The Poisson condition [II,II] = 0 leads to the relation (2.2) and equation
[IH T1H] = 0 yields

on ed
> < PrLG, + 7ol o )6 Ao A s + TP TRE. Ve Abo NSy =0,
(e,6,c)
which ends the proof. O
We recall that two Poisson structures are called compatible if the bivectors w; and

wo satisfy the condition
[wl,wg] = 0

By straightforward computation in local coordinates we get:

Proposition 3.5 The Poisson bivector IIH is compatible with the complete lift
I1¢ if and only if the following relations hold

ON)Y  ONY
ﬂ_rBﬂ.aS((;\y[; _ é/\/-y: ) _ ﬂ_r'yﬂ_saLfr =0,
ONP ONZ
TS af la r 156} r
T (67»((1 ) —Qa Tyl—‘ra 3yl .
. JONS
—nPRe, + (71'55[/2V —70Lp Y7 v +

+ raaﬂsf YLe, + 7P LE N — 7P iaaLEfyO =0,

where we have denoted
af

0
a® = ot gz y© + NonP — NPree,
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