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Abstract. Many science and engineering problems can be formulated as
optimization problems that are governed by m-flow type PDEs (multi-
time evolution systems) and by cost functionals expressed as multiple in-
tegrals or curvilinear integrals. Our paper discuss the m-flow type PDE-
constrained optimization problems, focussing on a simplified multitime
maximum principle. This extends the simplified single-time maximum
principle of Pontryaguin in the ODEs case (curves) to include the case of
PDEs (submanifolds).

In Section 1 the idea of multitime is motivated. In Section 2 a multi-
time maximum principle, for the case of multiple integral functionals, is
stated and proved. A version of multitime maximum principle, for the case
of curvilinear integral functionals, is formulated in Section 3. Though a
multiple integral functional is mathematically equivalent to a curvilinear
integral functional (Section 4), their meaning is totally different in real life
problems. A multitime maximum principle approach of variational calcu-
lus is presented in Section 5.
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Key words: PDE-constrained optimal control, multitime maximum principle, mul-
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1 Multitime concept

The adjective multitime was introduced in Physics by Dirac (1932), and later was
used in Mathematics by [4], [6], [8], [12]-[16], [19], [20], [22], etc. To underline the
sense of this adjective, we collect the following remarks.

1) A space coordinate is merely an index numbering freedom degrees, and the time
coordinate is usual the physical time in which the systems evolves. Such classical
theory is satisfactory unless we turn our attention to relativistic problems (chiral
fields, sine-Gordon PDE, etc). Moreover, in some physical problems we use a two-
time t = (t1, t2), where t1 means the intrinsic time and t2 is the observer time. Also
there are a lot of problems where is no reason to prefer one coordinate to another. In
this sense, we refer to multitime geometric evolutions and multitime optimal control
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problems, where multitime means a vector parameter of evolution. Here we can include
the description of torsion of prismatic bars, the maximization of the area surface for
given width and diameter etc.

2) Multitime wave functions were first considered by Dirac in 1932 via m-time

evolution equations i ~
∂ψ

∂tα
= Hαψ. The Dirac PDE system is consistent (completely

integrable) if and only if [Hα,Hβ ] = 0 for α 6= β. The consistency condition is easy
to achieve for non-interacting particles and tricky in the presence of interaction. But,
until now, nobody attempted to write down consistent multitime equations for many
interacting particles, although this would seem an immediate and highly relevant
problem if one desires a manifestly covariant formulation of relativistic quantum me-
chanics.

3) The oscillators are very important in engineering and communications. For ex-
ample, voltage-controlled oscillators, phase-locked loops, lasers, etc., abound in wire-
less and optical systems. A new approach for analyzing frequency and amplitude
modulation in oscillators was realized recently using a novel concept, warped time,
within a multitime PDE framework. To explain this idea from our point of view, we
start with a single-time wave front y(t) = sin ( 2π

T1
t) sin ( 2π

T2
t), T1 = 0.02 s; T2 = 1 s,

where the two tones are at frequencies f1 =
1
T1

= 50Hz and f2 =
1
T2

= 1 Hz. Here

there are 50 times faster varying sinusoids of period T1 modulated by a slowly-varying
sinusoid of period T2. Then we build a ”two-variable representation” of y(t), obtained
by the rules: for the ”fast-varying” parts of y(t), the time t is replaced by a new vari-
able t1; for the ”slowly-varying” parts, by t2. It appears a new periodic function of
two variables, ŷ(t1, t2) = sin ( 2π

T1
t1) sin ( 2π

T2
t2), motivated by the wide separated time

scales. Inspection of the two-time (two-variable) wavefront ŷ(t1, t2) directly provides
information about the slow and fast variations of y(t) more naturally and conveniently
than y(t) itself.

4) The known evolution laws in physical theories are single-time evolution laws
(ODEs) or multitime evolution laws (PDEs). To change a single-time evolution into
a multitime evolution it is enough to change the ODEs into PDEs accepting that
the time t is a C∞ function of certain parameters, let say t = t(s1, ..., sm).

The PDE constraints often present significant challenges for optimization princi-
ples [2]-[6], [8], [9]. The multivariable maximum principle was studied in the presence
of PDE constraints, starting with the papers [12]-[22]. This approach extends the
single-time Pontryaguin’s model [1], [7], [10], [11].

In this paper, we are looking for a multitime maximum principle, i.e., for necessary
conditions of optimality. Our formulation and a proof mimic those that were applied
to single-time maximum principle. A simplified version of this problem, obtained after
years of debates in my research group and in conferences, is presented in this paper.

2 m-Flow type constrained optimization problem
with multiple integral functional

Let us analyze a multitime optimal control problem based on a multiple integral cost
functional and m-flow type PDE constraints:
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max
u(·),xt0

I(u(·)) =
∫

Ω0,t0

X(t, x(t), u(t))dt (1)

subject to

∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n; α = 1, ...,m, (2)

u(t) ∈ U , t ∈ Ω0,t0 ; x(0) = x0, x(t0) = xt0 . (3)

Ingredients: t = (tα) = (t1, ..., tm) ∈ Rm
+ is the multitime (multi-parameter of evolu-

tion); dt = dt1 · · · dtm is the volume element in Rm
+ ; Ω0,t0 is the parallelepiped fixed

by the diagonal opposite points 0 = (0, ..., 0) and t0 = (t10, ..., t
m
0 ) which is equivalent

to the closed interval 0 ≤ t ≤ t0 via the product order on Rm
+ ; x : Ω0,t0 → Rn, x(t) =

(xi(t)) is a C2 state vector; u : Ω0,t0 → U ⊂ Rk, u(t) = (ua(t)), a = 1, ..., k is a C1

control vector; the running cost X(t, x(t), u(t)) is a C1 nonautonomous Lagrangian;
Xα(t, x(t), u(t)) = (Xi

α(t, x(t), u(t))) are C1 vector fields satisfying the complete in-
tegrability conditions (m-flow type problem), i.e., DβXα = DαXβ (Dα is the total
derivative operator) or

(
∂Xα

∂ua
δγ
β −

∂Xβ

∂ua
δγ
α

)
∂ua

∂tγ
= [Xα, Xβ ] +

∂Xβ

∂tα
− ∂Xα

∂tβ
,

where [Xα, Xβ ] means the bracket of vector fields. This hypothesis selects the set of
all admissible controls (satisfying the complete integrability conditions)

U =
{

u : Rm
+ → U

∣∣ DβXα = DαXβ

}

and the admissible states.
We introduce a costate variable or Lagrange multiplier matrix p = (pα

i ) and a new
Lagrangian

L(t, x(t), u(t), p(t)) = X(t, x(t), u(t)) + pα
i (t)[Xi

α(t, x(t), u(t))− ∂xi

∂tα
(t)].

The PDE-constrained optimization problem (1)-(3) is changed into another optimiza-
tion problem

max
u(·),xt0

∫

Ω0,t0

L(t, x(t), u(t), p(t))dt

subject to

u(t) ∈ U , p(t) ∈ P, t ∈ Ω0,t0 , x(0) = x0, x(t0) = xt0 ,

where the set P will be defined later. The control Hamiltonian

H(t, x(t), u(t), p(t)) = X(t, x(t), u(t)) + pα
i (t)Xi

α(t, x(t), u(t)),

i.e.,

H = L + pα
i

∂xi

∂tα
(modified Legendrian duality),

allows to rewrite this new problem as
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max
u(·),xt0

∫

Ω0,t0

[H(t, x(t), u(t), p(t))− pα
i (t)

∂xi

∂tα
(t)]dt

subject to

u(t) ∈ U , p(t) ∈ P, t ∈ Ω0,t0 , x(0) = x0, x(t0) = xt0 .

Suppose that there exists a continuous control û(t) defined over the parallelepiped
Ω0,t0 with û(t) ∈ IntU which is an optimum point in the previous problem. Now
consider a variation u(t, ε) = û(t) + εh(t), where h is an arbitrary continuous vector
function. Since û(t) ∈ IntU and a continuous function over a compact set Ω0,t0 is
bounded, there exists εh > 0 such that u(t, ε) = û(t) + εh(t) ∈ IntU , ∀|ε| < εh. This
ε is used in our variational arguments.

Define x(t, ε) as the m-sheet of the state variable corresponding to the control
variable u(t, ε), i.e.,

∂xi

∂tα
(t, ε) = Xi

α(t, x(t, ε), u(t, ε)), ∀t ∈ Ω0,t0

and x(0, ε) = x0. For |ε| < εh, we define the function

I(ε) =
∫

Ω0,t0

X(t, x(t, ε), u(t, ε))dt.

Since the function u(t, ε) is admissible, it follows that the function x(t, ε) is admissible.
On the other hand, the control û(t) must be optimal. Therefore I(ε) ≤ I(0), ∀|ε| < εh.

For any continuous vector function p = (pα
i ) : Ω0,t0 → Rnm, we have

∫

Ω0,t0

pα
i (t)[Xi

α(t, x(t, ε), u(t, ε))− ∂xi

∂tα
(t, ε)]dt = 0.

Necessarily, we must use the Lagrange function which includes the variations

L(t, x(t, ε), u(t, ε), p(t)) = X(t, x(t, ε), u(t, ε))

+pα
i (t)[Xi

α(t, x(t, ε), u(t, ε))− ∂xi

∂tα
(t, ε)]

and the associated function

I(ε) =
∫

Ω0,t0

L(t, x(t, ε), u(t, ε), p(t))dt.

Suppose that the costate variable p is of class C1. Also we introduce the control
Hamiltonian

H(t, x(t, ε), u(t, ε), p(t)) = X(t, x(t, ε), u(t, ε)) + pα
i (t)Xi

α(t, x(t, ε), u(t, ε))

corresponding to the variation. Then we rewrite

I(ε) =
∫

Ω0,t0

[H(t, x(t, ε), u(t, ε), p(t))− pα
i (t)

∂xi

∂tα
(t, ε)]dt.
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To evaluate the multiple integral
∫

Ω0,t0

pα
i (t)

∂xi

∂tα
(t, ε)dt,

we integrate by parts, via the divergence formula

∂

∂tα
(pα

i xi) =
∂pα

i

∂tα
xi + pα

i

∂xi

∂tα
,

obtaining
∫

Ω0,t0

pα
i (t)

∂xi

∂tα
(t, ε)dt =

∫

Ω0,t0

∂

∂tα
(pα

i (t)xi(t, ε))dt−
∫

Ω0,t0

∂pα
i

∂tα
(t)xi(t, ε)dt.

Now we apply the divergence integral formula
∫

Ω0,t0

∂

∂tα
(pα

i (t)xi(t, ε))dt =
∫

∂Ω0,t0

δαβpα
i (t)xi(t, ε)nβ(t)dσ,

where (nβ(t)) is the unit normal vector to the boundary ∂Ω0,t0 . Substituting, we find

I(ε) =
∫

Ω0,t0

[H(t, x(t, ε), u(t, ε), p(t)) +
∂pα

j

∂tα
(t)xj(t, ε)]dt

−
∫

∂Ω0,t0

δαβpα
i (t)xi(t, ε)nβ(t)dσ.

Differentiating with respect to ε, it follows

I ′(ε) =
∫

Ω0,t0

[Hxj (t, x(t, ε), u(t, ε), p(t)) +
∂pα

j

∂tα
(t)]xj

ε(t, ε)dt

+
∫

Ω0,t0

Hua(t, x(t, ε), u(t, ε), p(t))ha(t)dt−
∫

∂Ω0,t0

δαβpα
i (t)xi

ε(t, ε)n
β(t)dσ.

Evaluating at ε = 0, we find

I ′(0) =
∫

Ω0,t0

[Hxj (t, x(t), û(t), p(t)) +
∂pα

j

∂tα
(t)]xj

ε(t, 0)dt

+
∫

Ω0,t0

Hua(t, x(t), û(t), p(t))ha(t)dt−
∫

∂Ω0,t0

δαβpα
i (t)xi

ε(t, 0)nβ(t)dσ.

where x(t) is the m-sheet of the state variable corresponding to the optimal control
û(t).

We need I ′(0) = 0 for all h(t) = (ha(t)). On the other hand, the functions xi
ε(t, 0)

are the components of the solution of the Cauchy problem

∇tx
i
ε(t, 0) = Xx(t, x(t, 0), u(t)) · xε(t, 0) + Xu(t, x(t, 0), u(t)) · h(t),
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t ∈ Ω0,t0 , xε(0, 0) = 0

and hence they depend on h(t). To overpass this difficulty, we define P as the set of
solutions of the boundary value problem

∂pα
j

∂tα
(t) = − ∂H

∂xj
(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 , (4)

δαβpα
j (t)nβ(t)|

∂Ω0,t0
= 0, (orthogonality or tangency).

Therefore
Hua(t, x(t), û(t), p(t)) = 0, ∀t ∈ Ω0,t0 . (5)

Moreover
∂xj

∂tα
(t) =

∂H

∂pα
j

(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 , x(0) = x0. (6)

Remarks. (i) The algebraic system (5) describes the critical points of the Hamilto-
nian with respect to the control variable. (ii) The PDEs (4) and (6) and the condition
(5) are Euler-Lagrange PDEs associated to the new Lagrangian.

Summarizing, we obtain a multitime maximum principle similar to the single-time
Pontryaguin maximum principle.

Theorem 1. (Simplified multitime maximum principle; necessary con-
ditions ) Suppose that the problem of maximizing the functional (1) subject to the
PDE constraints (2) and to the conditions (3), with X, Xi

α of class C1, has an inte-
rior solution û(t) ∈ U which determines the m-sheet of state variable x(t). Then there
exists a C1 costate p(t) = (pα

i (t)) defined over Ω0,t0 such that the relations (4), (5),
(6) hold.

Theorem 2. (Sufficient conditions) Consider the problem of maximizing the
functional (1) subject to the PDE constraints (2) and to the conditions (3), with
X, Xi

α of class C1. Suppose that an interior solution û(t) ∈ U and the corresponding
m-sheet of state variable x(t) satisfy the relations (4), (5), (6). If for the resulting
costate variable p(t) = (pα

i (t)) the control Hamiltonian H(t, x, u, p) is jointly concave
in (x, u) for all t ∈ Ω0,t0 , then û(t) and the corresponding x(t) achieve the unique
global maximum of (1).

Proof. Let us have in mind that we must maximize the functional (1) subject to
the evolution system (2) and the conditions (3). We fix a pair (x̂, û), where û is a
candidate optimal m-sheet of the controls and x̂ is a candidate optimal m-sheet of
the states. Calling Î the values of the functional for (x̂, û), let us prove that

Î − I =
∫

Ω0,t0

(X̂ −X)dt ≥ 0,

where the strict inequality holds under strict concavity. Denoting Ĥ = H(x̂, p̂, û) and
H = H(x, p̂, u), we find

Î − I =
∫

Ω0,t0

(
(Ĥ − p̂α

i

∂x̂i

∂tα
)− (H − p̂α

i

∂xi

∂tα
)
)

dt.
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Integrating by parts, we obtain

Î − I =
∫

Ω0,t0

(
(Ĥ + x̂i ∂p̂α

i

∂tα
)− (H + xi ∂p̂α

i

∂tα
)
)

dt

+
∫

∂Ω0,t0

(δαβ p̂α
i (t)xi(t)nβ(t)− δαβ p̂α

i (t)x̂i(t)nβ(t))dσ.

Taking into account that any admissible m-sheet has the same initial and terminal
conditions as the optimal m-sheet, we derive

Î − I =
∫

Ω0,t0

(
(Ĥ −H) +

∂p̂α
i

∂tα
(x̂i − xi)

)
dt.

The definition of concavity and the maximum principle imply
∫

Ω0,t0

(
(Ĥ −H) +

∂p̂α
i

∂tα
(x̂i − xi)

)
dt

≥
∫

Ω0,t0

(
(x̂i − xi)(

∂Ĥ

∂xi
+

∂p̂α
i

∂tα
) + (ûa − ua)

∂Ĥ

∂ua

)
dt = 0.

This last equality is true since all ”̂ ” functions satisfy the multitime maximum prin-
ciple. In this way, Î − I ≥ 0.

Theorem 3. (Sufficient conditions) Consider the problem of maximizing the
functional (1) subject to the PDE constraints (2) and to the conditions (3), with
X, Xi

α of class C1. Suppose that an interior solution û(t) ∈ U and the corresponding
m-sheet of state variable x(t) satisfy the relations (4), (5), (6). Giving the resulting
costate variable p(t) = (pα

i (t)), we define M(t, x, p) = H(t, x, û(t), p). If M(t, x, p) is
concave in x for all t ∈ Ω0,t0 , then û(t) and the corresponding x(t) achieve the unique
global maximum of (1).

Remark. The Theorems 2 and 3 can be extended immediately to incave func-
tionals.

Examples. 1) We consider the problem

max
u(·),x1

I(u(·)) = −
∫

Ω0,1

(x(t) + u1(t)2 + u2(t)2)dt1dt2

subject to

∂x

∂tα
(t) = uα(t), α = 1, 2, x(0, 0) = 0, x(1, 1) = x1 = free.

This problem means to find an optimal control u = (u1, u2) to bring the (PDE)
dynamical system from the origin x(0, 0) = 0 at two-time t1 = 0, t2 = 0 to a terminal
point x(1, 1) = x1, which is unspecified, at two-time t1 = 1, t2 = 1, such as to
maximize the objective functional. Also the complete integrability condition imposes
∂u1

∂t2
=

∂u2

∂t1
. The control Hamiltonian is

H(x(t), u(t), p(t)) = −(x(t) + u1(t)2 + u2(t)2) + p1(t)u1(t) + p2(t)u2(t).
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Since
∂H

∂uα
= −2uα + pα,

∂2H

∂u2
α

= −2 < 0,
∂2H

∂uα∂uβ
= 0,

the critical point pα = 2uα is a maximum point. Then the PDE
∂pα

∂tα
= −∂H

∂x
reduces

to
∂p1

∂t1
+

∂p2

∂t2
= 1. Also, since the point x(1, 1) = x1 is unspecified, the transversality

conditions imply p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1
= 0.

We continue by solving the boundary value problem

∂p1

∂t1
+

∂p2

∂t2
= 1,

∂p1

∂t2
=

∂p2

∂t1
, p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1

= 0.

Consequently the components of the optimal control u(t) = (u1(t), u2(t)) are harmonic
functions satisfying the boundary conditions u1(0, t2) = u1(1, t2) = 0, u2(t1, 0) =
u2(t1, 1) = 0. Also the dynamical system dx = u1(t)dt1 + u2(t)dt2 gives x(t)− x(0) =∫

Γ0,t

u1(s)ds1 + u2(s)ds2.

2) We consider the problem

max
u(·),x1

I(u(·)) = −1
2
x(1, 1)2 − 1

2

∫

Ω0,1

(u1(t)2 + u2(t)2)dt1dt2

subject to

∂x

∂tα
(t) = −uα(t), α = 1, 2, x(0, 0) = 1.

This problem means to find an optimal control u = (u1, u2) to bring the (PDE)
dynamical system from the point x(0, 0) = 1 at two-time t1 = 0, t2 = 0 to a terminal
point x(1, 1) = x1, at two-time t1 = 1, t2 = 1, such as to maximize the objective

functional. Also the complete integrability condition imposes
∂u1

∂t2
=

∂u2

∂t1
. The control

Hamiltonian is

H(x(t), u(t), p(t)) = −1
2
(u1(t)2 + u2(t)2)− pα(t)uα(t).

Since
∂H

∂uα
= −uα − pα,

∂2H

∂u2
α

= −1 < 0,
∂2H

∂uα∂uβ
= 0,

the critical point pα = −uα is a maximum point. Then the PDE
∂pα

∂tα
= −∂H

∂x
= 0

reduces to
∂p1

∂t1
+

∂p2

∂t2
= 0. The transversality condition implies

p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1
= 0.

We continue by solving the Dirichlet problem

∂p1

∂t1
+

∂p2

∂t2
= 0,

∂p1

∂t2
=

∂p2

∂t1
, p1(t)n1(t) + p2(t)n2(t)|∂Ω0,1

= 0.
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Consequently the components of the optimal control u(t) = (u1(t), u2(t)) are harmonic
functions satisfying suitable boundary conditions. Also the dynamical system dx =
−u1(t)dt1 − u2(t)dt2 gives the corresponding evolution

x(t)− x(0) = −
∫

Γ0,t

u1(s)ds1 + u2(s)ds2.

3) Transport PDEs for Air Traffic Flow (see also [4]). The flow of aircraft
can be analyzed and controlled using an Eulerian viewpoint of the airspace. In our
formulation we use two parameters of evolution: s=position, t=time. The variable of
the state is the density of aircraft ρ(s, t), which represents the number of aircraft per
unit length of jetway. The control variable is the speed v(s, t) which the air traffic
controller can prescribe to the aircraft located at position s and time t.

Given a speed field v(s, t), the density of aircraft ρ(s, t) satisfies the continuity

PDE
∂ρ

∂t
(s, t) +

∂(ρv)
∂s

(s, t) = 0. We would like to determine the speed field which
maximizes the number of aircraft landing at the destination airport under the con-
straint that the density does not exceed the safety density ρmax. Mathematically,

max
v(·)

I(v(·)) =
∫

Ω0,A

ρ(s, t)v(s, t)dsdt

subject to

∂ρ

∂t
(s, t) +

∂(ρv)
∂s

(s, t) = 0, ρ ≤ ρmax, vmin ≤ v ≤ vmax,

where A = (L, T ), L = value of s for final destination, T = final time, I(v(·))= total
number of aircraft landing, vmin, vmax = bounds of authorized aircraft speed. The
new Lagrangian

L = ρ(s, t)v(s, t) + p(s, t)
(

∂ρ

∂t
(s, t) +

∂(ρv)
∂s

(s, t)
)

+ µ1(s, t)(ρmax − ρ(s, t))

+µ2(s, t)(v(s, t)− vmin) + µ3(s, t)(vmax − v(s, t))

produces the Hamiltonian

H =
(−ρ(s, t)− µ2(s, t) + µ3(s, t)

)
v(s, t)− µ1(s, t)(ρmax − ρ(s, t))

+µ2(s, t)vmin − µ3(s, t)vmax,

of degree one with respect to the control v. The sign of the switching function σ =
−ρ(s, t)−µ2(s, t) + µ3(s, t) decides an optimal control. The adjoint PDEs (obtained
from I ′(0) = 0) are

∂p

∂t
+ v

∂p

∂s
= v − µ1, ρ

∂p

∂s
= ρ + µ2 − µ3.

Open problem: Study optimal control problems subject to

PDE : Xα
β (x(t), u(t))

∂fβ

∂tα
(x(t), u(t)) = 0.
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Bibliographical note. For strong contributions to optimal control problems,
which have influenced our point of view, see [1]-[4], [6]-[11].

3 m-Flow type constrained optimization problem
with curvilinear integral cost functional

The cost functionals of mechanical work type are very important for applications
(see our papers [12]-[22]). This is the reason to analyze a multitime optimal control
problem based on a path independent curvilinear integral as cost functional and on
PDE constraints of m-flow type :

max
u(·),xt0

J(u(·)) =
∫

Γ0,t0

X0
α(t, x(t), u(t))dtα (7)

subject to

∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n; α = 1, ...,m, (8)

u(t) ∈ U , t ∈ Ω0,t0 ;x(0) = x0, x(t0) = xt0 . (9)

Ingredients: t = (tα) ∈ Rm
+ is the multitime (multi-parameter of evolution);

Γ0,t0 is an arbitrary C1 curve joining the diagonal opposite points 0 = (0, ..., 0)
and t0 = (t10, ..., t

m
0 ) in Ω0,t0 ; x : Ω0,t0 → Rn, x(t) = (xi(t)) is a C2 state vector;

u : Ω0,t0 → U ⊂ Rk, u(t) = (ua(t)), a = 1, ..., k is a C1 control vector; the run-
ning cost X0

α(t, x(t), u(t))dtα is a nonautonomous closed (completely integrable) La-
grangian 1-form , i.e., it satisfies DβX0

α = DαX0
β (Dα is the total derivative operator)

or (
∂X0

α

∂ua
δγ
β −

∂X0
β

∂ua
δγ
α

)
∂ua

∂tγ
= Xi

α

∂X0
β

∂xi
−Xi

β

∂X0
α

∂xi
+

∂X0
β

∂tα
− ∂X0

α

∂tβ
;

the vector fields Xα(t, x(t), u(t)) = (Xi
α(t, x(t), u(t))) are of class C1 and satisfy the

complete integrability conditions (m-flow type problem) , i.e., DβXα = DαXβ or
(

∂Xα

∂ua
δγ
β −

∂Xβ

∂ua
δγ
α

)
∂ua

∂tγ
= [Xα, Xβ ] +

∂Xβ

∂tα
− ∂Xα

∂tβ
,

where [Xα, Xβ ] means the bracket of vector fields. This hypothesis selects the set of
all admissible controls (satisfying the complete integrability conditions)

U =
{

u : Rm
+ → U

∣∣ DβX0
α = DαX0

β , DβXα = DαXβ

}

and the set of admissible states.
We introduce a costate variable or Lagrange multiplier function p = (pi) such that

the new Lagrange 1-form

Lα(t, x(t), u(t), p(t)) = X0
α(t, x(t), u(t)) + pi(t)[Xi

α(t, x(t), u(t))− ∂xi

∂tα
(t)]
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be closed. The PDE constrained optimization problem (7)-(9) is replaced by another
optimization problem

max
u(·),xt0

∫

Γ0,t0

Lα(t, x(t), u(t), p(t))dtα

subject to

u(t) ∈ U , p(t) ∈ P, t ∈ Ω0,t0 , x(0) = x0, x(t0) = xt0 ,

where the set P will be defined later. If we use the control Hamiltonian 1-form

Hα(t, x(t), u(t), p(t)) = X0
α(t, x(t), u(t)) + pi(t)Xi

α(t, x(t), u(t)),

Hα = Lα + pi
∂xi

∂tα
(nonstandard duality),

we can rewrite

max
u(·),xt0

∫

Γ0,t0

[Hα(t, x(t), u(t), p(t))− pi(t)
∂xi

∂tα
(t)]dtα

subject to

u(t) ∈ U , p(t) ∈ P, t ∈ Ω0,t0 , x(0) = x0, x(t0) = xt0 .

Suppose that there exists a continuous control û(t) defined over Ω0,t0 with û(t) ∈
IntU which is optimum in the previous problem. Now consider a variation u(t, ε) =
û(t)+εh(t), where h is an arbitrary continuous vector function. Since û(t) ∈ IntU and
a continuous function over a compact set Ω0,t0 is bounded, there exists εh > 0 such
that u(t, ε) = û(t) + εh(t) ∈ IntU , ∀|ε| < εh. This ε is used in the next variational
arguments.

Let us consider an arbitrary vector function h(t) and define x(t, ε) as the m-sheet
of the state variable corresponding to the control variable u(t, ε), i.e.,

∂xi

∂tα
(t, ε) = Xi

α(t, x(t, ε), u(t, ε)), ∀t ∈ Ω0,t0 , x(0, ε) = x0.

For |ε| < εh, we define the function

J(ε) =
∫

Γ0,t0

X0
α(t, x(t, ε), u(t, ε))dtα.

Since the control function u(t, ε) is admissible, it follows that the evolution function
x(t, ε) is admissible. On the other hand, the control û(t) is supposed to be optimal.
Therefore J(ε) ≤ J(0), ∀|ε| < εh.

For any continuous function p = (pi) : Ω0,t0 → Rn, we have

∫

Γ0,t0

pi(t)[Xi
α(t, x(t, ε), u(t, ε))− ∂xi

∂tα
(t, ε)]dtα = 0.

The variations determine the closed Lagrange 1-form
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Lα(t, x(t, ε), u(t, ε), p(t)) = X0
α(t, x(t, ε), u(t, ε))+pi(t)[Xi

α(t, x(t, ε), u(t, ε))− ∂xi

∂tα
(t, ε)]

and the function
J(ε) =

∫

Γ0,t0

Lα(t, x(t, ε), u(t, ε), p(t))dtα.

Suppose that the costate p is of class C1. Also we introduce the control Hamilto-
nian 1-form

Hα(t, x(t, ε), u(t, ε), p(t)) = X0
α(t, x(t, ε), u(t, ε)) + pi(t)Xi

α(t, x(t, ε), u(t, ε)).

Then we rewrite

J(ε) =
∫

Γ0,t0

[Hα(t, x(t, ε), u(t, ε), p(t))− pi(t)
∂xi

∂tα
(t, ε)]dtα.

To evaluate the curvilinear integral
∫

Γ0,t0

pi(t)
∂xi

∂tα
(t, ε)dtα,

we integrate by parts, via

∂

∂tα
(pix

i) =
∂pi

∂tα
xi + pi

∂xi

∂tα
,

obtaining
∫

Γ0,t0

pi(t)
∂xi

∂tα
(t, ε)dtα = (pi(t)xi(t, ε))|t00 −

∫

Γ0,t0

∂pi

∂tα
(t)xi(t, ε)dtα.

Substituting, we get the function

J(ε) =
∫

Γ0,t0

[Hα(t, x(t, ε), u(t, ε), p(t))+
∂pj

∂tα
(t)xj(t, ε)]dtα−pi(t0)xi(t0, ε)+pi(0)xi(0, ε).

It follows

J ′(ε) =
∫

Γ0,t0

[Hαxj (t, x(t, ε), u(t, ε), p(t)) +
∂pj

∂tα
(t)]xj

ε(t, ε)dtα

+
∫

Γ0,t0

Hαua(t, x(t, ε), u(t, ε), p(t))ha(t)dtα − pi(t0)xi
ε(t0, ε) + pi(0)xi

ε(0, ε).

Evaluating at ε = 0, we find

J ′(0) =
∫

Γ0,t0

[Hαxj (t, x(t), û(t), p(t)) +
∂pj

∂tα
(t)]xj

ε(t, 0)dtα

+
∫

Γ0,t0

Hαua(t, x(t), û(t), p(t))ha(t)dtα − pi(t0)xi
ε(t0, 0),



114 Constantin Udrişte

where x(t) is the m-sheet of the state variable corresponding to the optimal control
û(t). We need J ′(0) = 0 for all h(t) = (ha(t)). This is possible if we define P as the
set of solutions of the terminal value problem

∂pj

∂tα
(t) = −∂Hα

∂xj
(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 ; pj(t0) = 0. (10)

Therefore

Hαua(t, x(t), û(t), p(t)) = 0, ∀t ∈ Ω0,t0 . (11)

Moreover
∂xj

∂tα
(t) =

∂Hα

∂pj
(t, x(t), û(t), p(t)), ∀t ∈ Ω0,t0 ; x(0) = x0. (12)

Remarks. (i) The algebraic system (11) describes the common critical points of
the functions Hα with respect to the control variable u. (ii) The PDEs (10) and (12)
and the relation (11) are Euler-Lagrange PDEs associated to the new Lagrangian
1-form.

Summarizing, we obtain a new variant of multitime maximum principle.

Theorem 4. (Simplified multitime maximum principle; necessary condi-
tions) Suppose that the problem of maximizing the functional (7) subject to the PDE
constraints (8) and to the conditions (9), with X0

α, Xi
α of class C1, has an interior

solution û(t) ∈ U which determines the m-sheet of state variable x(t). Then there
exists a C1 costate p(t) = (pi(t)) defined over Ω0,t0 such that the relations (10), (11),
(12) hold.

Theorem 5. (Sufficient conditions) Consider the problem of maximizing the
functional (7) subject to the PDE constraints (8) and to the conditions (9), with
X0

α, Xi
α of class C1. Suppose that an interior solution û(t) ∈ U and the corresponding

m-sheet of state variable x(t) satisfy the relations (10), (11), (12). If, for the resulting
costate variable p(t) = (pi(t)), the control Hamiltonian 1-form Hα(t, x, u, p) is jointly
concave in (x, u) for all t ∈ Ω0,t0 , then û(t) and the corresponding x(t) achieve the
unique global maximum of (7).

Theorem 6. (Sufficient conditions) Consider the problem of maximizing the
functional (7) subject to the PDE constraints (8) and to the conditions (9), with
X0

α, Xi
α of class C1. Suppose that an interior solution û(t) ∈ U and the corresponding

m-sheet of state variable x(t) satisfy the relations (10), (11), (12). Giving the resulting
costate variable p(t) = (pi(t)), we define the 1-form Mα(t, x, p) = Hα(t, x, û(t), p). If
the 1-form Mα(t, x, p) is concave in x for all t ∈ Ω0,t0 , then û(t) and the corresponding
x(t) achieve the unique global maximum of (7).

Remark. The Theorems 5 and 6 can be extended immediately to incave func-
tionals.

Example. Let t = (t1, t2) ∈ Ω0,1, where 0 = (0, 0), 1 = (1, 1) are diagonal opposite
points in Ω0,1. Denote by Γ0,1 an arbitrary C1 curve joining the points 0 and 1. We
consider the problem
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max
u(·),x1

J(u(·)) = −
∫

Γ0,1

(x(t) + uβ(t)2)dtβ

subject to

∂x

∂tα
(t) = uα(t), α = 1, 2, x(0, 0) = 0, x(1, 1) = x1 = free.

This problem means to find an optimal control u = (u1, u2) to bring the (PDE)
dynamical system from the origin x(0, 0) = 0 at two-time t1 = 0, t2 = 0 to a terminal
point x(1, 1) = x1, which is unspecified, at two-time t1 = 1, t2 = 1, such as to
maximize the objective functional. Also the complete integrability conditions impose

∂x

∂t1
+ 2u2

∂u2

∂t1
=

∂x

∂t2
+ 2u1

∂u1

∂t2
,

∂u1

∂t2
=

∂u2

∂t1
.

The control Hamiltonian 1-form is

Hβ(x(t), u(t), p(t)) = −(x(t) + uβ(t)2) + p(t)uβ(t).

Since
∂Hβ

∂uβ
= −2uβ + p,

∂2Hβ

∂u2
β

= −2 < 0,

the critical point u1 = u2 =
p

2
is a maximum point. The PDEs

∂p

∂tα
= −∂Hα

∂x

reduces to
∂p

∂tα
= 1. Also, since the point x(1, 1) = x1 is unspecified, the transversality

condition implies p(1) = 0. It follows the costate p(t) = t1 +t2−2, the optimal control

û1(t) = û2(t) =
1
2
(t1 + t2− 2) and the corresponding evolution x(t) =

(t1)2 + (t2)2

4
+

t1t2

2
− (t1 + t2).

4 Equivalence between multiple and curvilinear in-
tegral functionals

A multitime evolution system can be used as a constraint in a problem of extremizing
a multitime cost functional. On the other hand, the multitime cost functionals can be
introduced at least in two ways:

- either using a path independent curvilinear integral,

P (u(·)) =
∫

Γ0,t0

X0
β(x(t), u(t))dtβ + g(x(t0)),

where Γ0,t0 is an arbitrary C1 curve joining the points 0 and t0, the running cost
ω = X0

β(x(t), u(t))dtβ is an autonomous closed (completely integrable) Lagrangian
1-form, and g is the terminal cost;

- or using a multiple integral,

Q(u(·)) =
∫

Ω0,t0

X(x(t), u(t))dt + g(x(t0)),
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where the running cost X(x(t), u(t)) is an autonomous continuous Lagrangian, and g
is the terminal cost.

Let us show that the functional P is equivalent to the functional Q. This means
that in a multitime optimal control problem we can choose the appropriate functional
based on geometrical-physical meaning or other criteria.

Theorem 7 [23]. The multiple integral

I(t0) =
∫

Ω0,t0

X(x(t), u(t))dt,

with X as continuous function, is equivalent to the curvilinear integral

J(t0) =
∫

Γ0,t0

X0
β(x(t), u(t))dtβ ,

where ω = X0
β(x(t), u(t))dtβ is a closed (completely integrable) Lagrangian 1-form

and the functions X0
β have partial derivatives of the form

∂

∂tα
,

∂

∂tα∂tβ
(α < β), ...,

∂m−1

∂t1... ˆ∂tα...∂tm
,

where the symbol ”ˆ” posed over ∂tα designates that ∂tα is omitted.

5 Multitime maximum principle approach of varia-
tional calculus

It is well known that the single-time Pontryaguin’s maximum principle is a general-
ization of the Lagrange problem in the single-time variational calculus and that these
problems are equivalent when the control domain is open [1], [7], [10]. Does this prop-
erty survive for simplified multitime maximum principle? The aim of this Section is
to formulate an answer to this question.

In fact we show that the simplified multitime maximum principle motivates the
multitime Euler-Lagrange or Hamilton PDEs. For that, suppose that the evolution
system is reduced to a completely integrable system

∂xi

∂tα
(t) = ui

α(t), x(0) = x0, t ∈ Ω0,t0 ⊂ Rm
+ , (PDE)

and the functional is a path independent curvilinear integral

J(u(·)) =
∫

Γ0,t0

X0
β(x(t), u(t))dtβ , u = (ui

α), (J)

where Γ0,t0 is an arbitrary piecewise C1 curve joining the points 0 and t0, the running
cost ω = X0

β(x(t), u(t))dtβ is a closed (completely integrable) Lagrangian 1-form.
The associated basic control problem leads necessarily to the multitime maximum

principle. Therefore, to solve it we need the control Hamiltonian 1-form

Hβ(x, p0, p, u) = X0
β(x, u) + piu

i
β
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and the adjoint PDEs
∂pi

∂tβ
(t) = −∂X0

β

∂xi
(x(t), u(t)). (ADJ)

Suppose the simplified multitime maximum principle is applicable (see the relation
(10))

∂Hβ

∂ui
γ

=
∂X0

β

∂ui
γ

+ piδ
γ
β = 0, piδ

γ
β = −∂X0

β

∂ui
γ

, ui
γ = xi

γ . (13)

Suppose the functions X0
β are dependent on x (a strong condition!). Then (ADJ)

shows that

pi(t) = pi(0)−
∫

Γ0,t

∂X0
β

∂xi
(x(s), u(s))dsβ , (14)

where Γ0,t is an arbitrary piecewise C1 curve joining the points 0, t ∈ Ω0,t0 .

5.1 Multitime Euler-Lagrange PDEs

From the relations (13) and (14), it follows

−∂X0
β

∂xi
γ

(x(t), u(t)) = δγ
βpi(0)− δγ

β

∫

Γ0,t

∂X0
λ

∂xi
(x(s), u(s))dsλ.

Suppose that X0
β are functions of class C2. Applying the divergence operator Dγ =

∂

∂tγ
we find the multitime Euler-Lagrange PDEs

∂X0
β

∂xi
−Dγ

∂X0
β

∂xi
γ

= 0.

5.2 Conversion to multitime Hamilton PDEs (canonical vari-
ables)

Let u(·) be an optimal control, x(·) the optimal evolution m-sheet, and p(·) be the
solution of (ADJ) which corresponds to u(·) and x(·). Suppose that the critical point

condition admits a unique solution ui
γ(t) = ui

γ(x(t), p(t)) =
∂xi

∂tγ
(t). Then, using a

path independent curvilinear integral, we can write

xi(t) = xi(0) +
∫

Γ0,t

ui
γ(x(s), p(s))dsγ .

The control Hamiltonian 1-form Hβ = X0
β + pju

j
β must satisfy

∂Hβ

∂ui
γ

= 0. This last

relation, piδ
γ
β +

∂X0
β

∂ui
γ

= 0, defines the costate p as a moment. On the other hand

∂Hβ

∂pi
=

∂X0
β

∂uj
γ

∂uj
γ

∂pi
+ ui

β + pj

∂uj
β

∂pi
= ui

β or
∂xi

∂tβ
(t) =

∂Hβ

∂pi
(x(t), p(t), u(t)).

Now, the relation
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−∂Hβ

∂xi
= −

(
∂X0

β

∂xi
+

∂X0
β

∂uj
γ

∂uj
γ

∂xi

)
− pj

∂uj
β

∂xi

and (ADJ) show
∂pi

∂tβ
(t) = −∂Hβ

∂xi
(x(t), p(t), u(t)).

In this way we find the canonical variables x, p and the multitime Hamilton PDEs

∂xi

∂tβ
(t) =

∂Hβ

∂pi
(x(t), p(t)),

∂pi

∂tβ
(t) = −∂Hβ

∂xi
(x(t), p(t)).

Remark. To make a computer aided study of PDE-constrained optimization
problems we can perform symbolic computations via Maple (see also [5]).
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