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Abstract. We study the conditions under which the cotangent bundle
T ∗M of a Riemannian manifold (M, g), endowed with a Kählerian struc-
ture (G, J) of general natural lift type (see [4]), is Einstein. We first ob-
tain a general natural Kähler-Einstein structure on the cotangent bundle
T ∗M . In this case, a certain parameter, λ involved in the condition for
(T ∗M, G, J) to be a Kählerian manifold, is expressed as a rational function
of the other two, the value of the constant sectional curvature, c, of the
base manifold (M, g) and the constant ρ involved in the condition for the
structure of being Einstein. This expression of λ is just that involved in the
condition for the Kählerian manifold to have constant holomorphic sec-
tional curvature (see [5]). In the second case, we obtain a general natural
Kähler-Einstein structure only on T0M , the bundle of nonzero cotangent
vectors to M . For this structure, λ is expressed as another function of the
other two parameters, their derivatives, c and ρ.
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1 Introduction

A few natural lifted structures introduced on the cotangent bundle T ∗M of a Rie-
mannian manifold (M, g), have been studied in recent papers such as [1]–[5], [14],
[17], [18], [20]–[26]. The similitude between some results from the mentioned papers
and results from the geometry of the tangent bundle TM (e.g. [2], [6]-[8], [15], [16],
[27]-[29], [13]), may be explained by the duality cotangent bundle – tangent bundle.
The fundamental differences between the geometry of the cotangent bundle and that
of the tangent bundle of a Riemannian manifold, are due to the different construction
of lifts to T ∗M , which cannot be defined just like in the case of TM (see [30]).
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Briefly speaking, a natural operator (in the sense of [10]–[12]) is a fibred mani-
fold mapping, which is invariant with respect to the group of local diffeomorphisms
of the base manifold.

The results from [10] and [11] concerning the natural lifts, and the classification
of the natural vector fields on the tangent bundle of a pseudo-Riemannian manifold,
made by Janyška in [9], allowed the present author to introduce in the paper [4], a
general natural almost complex structure J of lifted type on the cotangent bundle
T ∗M , and a general natural lifted metric G defined by the Riemannian metric g on
T ∗M (see the paper [15] by Oproiu, for the case of the tangent bundle). The main
result from [4] is that the family of general natural Kähler structures on T ∗M depends
on three essential parameters (one is a certain proportionality factor obtained from the
condition for the structure to be almost Hermitian and the other two are coefficients
involved in the definition of the integrable almost complex structure J on T ∗M).

In the present paper we are interested in finding the conditions under which the
cotangent bundle T ∗M of a Riemannian manifold (M, g), endowed with a Kählerian
structure (G, J) of general natural lift type (see [4]), is an Einstein manifold. To this
aim, we have to study the vanishing conditions for the components of the difference
between the Ricci tensor of (T ∗M,G, J) and ρG, where ρ is a constant.

After some quite long computations with the RICCI package from the program
Mathematica, we obtain two cases in which a general natural Kählerian manifold
(T ∗M, G, J) is Einstein. In the first case, (T ∗M, G, J) is a Kähler-Einstein manifold if
the proportionality factor λ, involved in the condition for the manifold to be Kählerian,
is expressed as a rational function of the first two essential parameters, the value of
the constant sectional curvature of the base manifold (M, g), the constant ρ, from
the condition for the manifold to be Einstein, and the energy density. In this case
the expression of λ leads to the condition obtained in [5] for (T ∗M, G, J) to have
constant holomorphic sectional curvature. In the second case, (G, J) is a Kähler-
Einstein structure on the the bundle of nonzero cotangent vectors to M , T ∗0 M , if
and only if λ′ is expressed as a certain function of λ, the other two parameters, their
derivatives, the constant sectional curvature of the base manifold, and the energy
density. The similar problem on tangent bundle TM of a Riemannian manifold (M, g)
was treated by Oproiu and Papaghiuc in the paper [19].

In 2001, Chaki introduced in [3] the notion of generalized quasi-Eistein manifolds
(the most recent generalization for the Einstein manifolds), presented in the last years
in papers like [22].

The present work could be extended at the study of the generalized quasi-Einstein
Kähler manifolds of general natural lifted type on the tangent and cotangent bundles
of a Riemannian manifold.

The manifolds, tensor fields and other geometric objects considered in the present
paper are assumed to be differentiable of class C∞ (i.e. smooth). The Einstein summa-
tion convention is used throughout this paper, the range of the indices h, i, j, k, l, m,
r being always {1, . . . , n}.

2 Preliminary results

The cotangent bundle of a smooth n-dimensional Riemannian manifold may be en-
dowed with a structure of a 2n-dimensional smooth manifold, induced from the struc-
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ture of the base manifold. If (M, g) is a smooth Riemannian manifold of the dimension
n, we denote its cotangent bundle by π : T ∗M → M . From every local chart (U,ϕ) =
(U, x1, . . . , xn) on M , it is induced a local chart (π−1(U), Φ) = (π−1(U), q1, . . . , qn,
p1, . . . , pn), on T ∗M , as follows. For a cotangent vector p ∈ π−1(U) ⊂ T ∗M , the first
n local coordinates q1, . . . , qn are the local coordinates of its base point x = π(p) in
the local chart (U,ϕ) (in fact we have qi = π∗xi = xi ◦ π, i = 1, . . . n). The last n
local coordinates p1, . . . , pn of p ∈ π−1(U) are the vector space coordinates of p with
respect to the natural basis (dx1

π(p), . . . , dxn
π(p)), defined by the local chart (U,ϕ), i.e.

p = pidxi
π(p).

We recall the splitting of the tangent bundle to T ∗M into the vertical distribution
V T ∗M = Ker π∗ and the horizontal one determined by the Levi Civita connection ∇̇
of g:

TT ∗M = V T ∗M ⊕HT ∗M.(2.1)

If (π−1(U),Φ) = (π−1(U), q1, . . . , qn, p1, . . . , pn) is a local chart on T ∗M , induced from
the local chart (U,ϕ) = (U, x1, . . . , xn), the local vector fields ∂

∂p1
, . . . , ∂

∂pn
on π−1(U)

define a local frame for V T ∗M over π−1(U) and the local vector fields δ
δq1 , . . . , δ

δqn

define a local frame for HT ∗M over π−1(U), where

δ

δqi
=

∂

∂qi
+ Γ0

ih

∂

∂ph
, Γ0

ih = pkΓk
ih,

and Γk
ih(π(p)) are the Christoffel symbols of g.

The set of vector fields { ∂
∂p1

, . . . , ∂
∂pn

, δ
δq1 , . . . , δ

δqn } defines a local frame on T ∗M ,
adapted to the direct sum decomposition (2.1).

We consider

t =
1
2
‖p‖2 =

1
2
g−1

π(p)(p, p) =
1
2
gik(x)pipk, p ∈ π−1(U)

the energy density defined by g in the cotangent vector p. We have t ∈ [0,∞) for all
p ∈ T ∗M .

The computations will be done in local coordinates, using a local chart (U,ϕ) on
M and the induced local chart (π−1(U),Φ) on T ∗M .

We shall use the following lemma, which may be proved easily.
Lemma 2.1. If n > 1 and u, v are smooth functions on T ∗M such that

ugij + vpipj = 0, ugij + vg0ig0j = 0, or uδi
j + vg0ipj = 0, ∀i, j = 1, n,

on the domain of any induced local chart on T ∗M , then u = 0, v = 0.
In the paper [4], the present author considered the real valued smooth functions

a1, a2, a3, a4, b1, b2, b3, b4 on [0,∞) ⊂ R and studied a general natural tensor of
type (1, 1) on T ∗M , defined by the relations

(2.2)





JXH
p = a1(t)(gX)V

p + b1(t)p(X)pV
p + a4(t)XH

p + b4(t)p(X)(p])H
p ,

JθV
p = a3(t)θV

p + b3(t)g−1
π(p)(p, θ)pV

p − a2(t)(θ])H
p − b2(t)g−1

π(p)(p, θ)(p])H
p ,
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in every point p of the induced local card (π−1(U),Φ) on T ∗M , ∀ X ∈ X (M), ∀ θ ∈
Λ1(M), where gX is the 1-form on M defined by gX(Y ) = g(X, Y ), ∀Y ∈ X (M),
θ] = g−1

θ is a vector field on M defined by g(θ], Y ) = θ(Y ), ∀ Y ∈ X (M), the vector
p] is tangent to M in π(p), pV is the Liouville vector field on T ∗M , and (p])H is the
similar horizontal vector field on T ∗M .

The definition of the general natural lift given by (2.2), is based on the Janyška’s
classification of the natural vector fields on the tangent bundle, but the construction
is different, being specific for the cotangent bundle.

Theorem 2.1. ([4]) A natural tensor field J of type (1, 1) on T ∗M , given by (2.2),
defines an almost complex structure on T ∗M , if and only if a4 = −a3, b4 = −b3 and
the coefficients a1, a2, a3, b1, b2 and b3 are related by

a1a2 = 1 + a2
3 , (a1 + 2tb1)(a2 + 2tb2) = 1 + (a3 + 2tb3)2.

Studying the vanishing conditions for the Nijenhuis tensor field NJ , we may state:
Theorem 2.2. ([4]) Let (M, g) be an n(> 2)-dimensional connected Riemannian

manifold. The almost complex structure J defined by (2.2) on T ∗M is integrable if
and only if (M, g) has constant sectional curvature c and the coefficients b1, b2, b3

are given by:

b1 =
2c2ta2

2 + 2cta1a
′
2 + a1a

′
1 − c + 3ca2

3

a1 − 2ta′1 − 2cta2 − 4ct2a′2
, b2 =

2ta′23 − 2ta′1a
′
2 + ca2

2 + 2cta2a
′
2 + a1a

′
2

a1 − 2ta′1 − 2cta2 − 4ct2a′2
,

b3 =
a1a

′
3 + 2ca2a3 + 4cta′2a3 − 2cta2a

′
3

a1 − 2ta′1 − 2cta2 − 4ct2a′2
.

Remark 2.3. The integrability conditions for the almost complex structure J on
T ∗M , may be expressed in the equivalent form





a′1 = 1
a1+2tb1

(a1b1 + c− 3ca2
3 − 4cta3b3),

a′2 = 1
a1+2tb1

(2a3b3 − a2b1 − ca2
2),

a′3 = 1
a1+2tb1

(a1b3 − 2ca2a3 − 2cta2b3).
(2.3)

In the paper [4], the author defined a Riemannian metric G of general natural lift
type, given by the relations

(2.4)





Gp(XH , Y H) = c1(t)gπ(p)(X, Y ) + d1(t)p(X)p(Y ),

Gp(θV , ωV ) = c2(t)g−1
π(p)(θ, ω) + d2(t)g−1

π(p)(p, θ)g−1
π(p)(p, ω),

Gp(XH , θV ) = Gp(θV , XH) = c3(t)θ(X) + d3(t)p(X)g−1
π(p)(p, θ),

∀ X,Y ∈ X (M), ∀ θ, ω ∈ Λ1(M), ∀ p ∈ T ∗M .
The conditions for G to be positive definite are assured if

c1 + 2td1 > 0, c2 + 2td2 > 0, (c1 + 2td1)(c2 + 2td2)− (c3 + 2td3)2 > 0.

The author proved the following result:



34 Simona-Luiza Druţă

Theorem 2.3. ([4]) The family of Riemannian metrics G of general natural lifted
type on T ∗M such that (T ∗M, G, J) is an almost Hermitian manifold, is given by
(2.4), provided that the coefficients c1, c2, c3, d1, d2, and d3 are related to the coef-
ficients a1, a2, a3, b1, b2, and b3 by the following proportionality relations

c1

a1
=

c2

a2
=

c3

a3
= λ,

c1 + 2td1

a1 + 2tb1
=

c2 + 2td2

a2 + 2tb2
=

c3 + 2td3

a3 + 2tb3
= λ + 2tµ,

where the proportionality coefficients λ > 0 and λ + 2tµ > 0 are functions depending
on t.

Considering the two-form Ω defined by the almost Hermitian structure (G, J) on
T ∗M , given by Ω(X, Y ) = G(X,JY ), for any vector fields X, Y on T ∗M , we may
formulate the main results from [4]:

Theorem 2.4. ([4]) The almost Hermitian structure (T ∗M, G, J) is almost Kähle-
rian if and only if

µ = λ′.

Theorem 2.5. A general natural lifted almost Hermitian structure (G, J) on T ∗M
is Kählerian if and only if the almost complex structure J is integrable (see Theorem
2.2) and µ = λ′.

Examples of such structures may be found in [21], [24].

3 General natural Kähler-Einstein structures on
cotangent bundles

The Levi-Civita connection ∇ of the Riemannian manifold (T ∗M,G) is obtained from
the Koszul formula, and it is characterized by the conditions

∇G = 0, T = 0,

where T is the torsion tensor of ∇.

In the case of the cotangent bundle T ∗M we may obtain the explicit expression
of ∇.

The symmetric 2n× 2n matrix associated to the metric G in the adapted frame,
has the inverse H with the entries

Hkl
(1) = e1g

kl + f1g
0kg0l, H

(2)
kl = e2gkl + f2pkpl, H3k

l = e3δ
k
l + f3g

0kpl.

Here gkl are the components of the inverse of the matrix (gij), g0k = pig
ik, and

e1, f1, e2, f2, e3, f3 : [0,∞) → R, some real smooth functions. In the paper [5],
by using Lemma 2.1, we got e1, e2, e3 as functions of c1, c2, c3 and f1, f2, f3 as
functions of c1, c2, c3, d1, d2, d3, e1, e2, e3, and next we obtained the expression of
the Levi Civita connection of the Riemannian metric G on T ∗M .

Theorem 3.1. ([5]) The Levi-Civita connection ∇ of G has the following expres-
sion in the local adapted frame { δ

δqi ,
∂

∂pj
}i,j=1,...,n



Kahler-Einstein structures of general natural lifted type 35





∇ ∂
∂pi

∂

∂pj
= Qij

h

∂

∂ph
+ Q̃ijh δ

δqh
, ∇ δ

δqi

∂

∂pj
= (−Γj

ih + P̃ j
i h)

∂

∂ph
+ P jh

i

δ

δqh
,

∇ ∂
∂pi

δ

δqj
= P ih

j

δ

δqh
+ P̃ i

j h

∂

∂ph
, ∇ δ

δqi

δ

δqj
= (Γh

ij + S̃ h
ij )

δ

δph
+ Sijh

∂

∂ph
,

where Γh
ij are the Christoffel symbols of the Levi-Civita connection ∇̇ of g, and the

coefficients which appear in the right hand side are the M -tensor fields on T ∗M , whose
explicit expressions may be obtained from the Koszul formula for ∇.

The curvature tensor field K of the connection ∇ is defined by

K(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM).

By using the local adapted frame { δ
δqi ,

∂
∂pj
}i,j=1,...,n = {δi, ∂

j}i,j=1,...,n we ob-
tained in [5] the horizontal and vertical components of the curvature tensor field, for
example:

K(δi, δj)δk = QQQQijk
hδh + QQQPijkh∂h,

K(δi, δj)∂k = QQPQij
khδh + QQPP k

ij h∂h,

where the coefficients are the M -tensor fields denoted by sequences of Q and P , to
indicate horizontal or vertical argument on a certain position. Their expressions have
been given in [5], and they depend on the components of the Levi-Civita connection,
their first order partial derivatives with respect to the cotangential coordinates pi,
and the curvature of the base manifold.

In the following, we shall obtain the conditions under which the general natural
Kählerian manifold (T ∗M, G, J) is an Einstein manifold. The components of the Ricci
tensor Ric(Y, Z) = trace(X → K(X,Y )Z) of the Kälerian manifold (T ∗M,G, J) are
given by the formulas:

RicQQjk = Ric(δj , δk) = QQQQ h
hjk + PQQP h

jkh,

RicPP jk = Ric(∂j , ∂k) = PPPP hjk
h − PQPQj kh

h ,

RicQP k
j = Ric(δj , ∂

k) = RicPQk
j = Ric(∂k, δj) = PQPP h k

j h + QQPQ kh
hj .

The conditions for the general natural Kählerian manifold (T ∗M, G, J) to be Ein-
stein, are 




RicQQjk − ρG
(1)
jk = 0,

RicPP jk − ρGjk
(2) = 0,

RicQP k
j − ρG3k

j = 0,

where ρ is a constant.
After a straightforward computation, using the RICCI package from Mathematica,

the three differences which we have to study, become of the next forms:




RicQQjk − ρG
(1)
jk = (λ + 2λ′t)2[λ(λ + 2λ′t)α1gjk + β1pjpk],

RicPP jk − ρGjk
(2) = λ(λ + 2λ′t)2[(λ + 2λ′t)α2g

jk + 2λβ2g
0jg0k],

RicQP k
j − ρG3k

j = (λ + 2λ′t)2[λ(λ + 2λ′t)α3δ
k
j + β3pjg

0k],

where α1, α2, α3, β1, β2, β3 are rational functions depending on a1, a3, λ, their
derivatives of the first two orders, and ρ. We do not present here the explicit expres-
sions of the functions, since they are quite long.
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Using lemma 2.1, and taking into account that λ 6= 0, λ + 2λ′t 6= 0, we obtain
that α1, α2, α3, β1, β2, β3 must vanish.

Solving the equations α1 = 0, α2 = 0, α3 = 0 with respect to ρ we get the same
value of ρ, which is quite long and we shall not write here.

Next, from β1 = 0, β2 = 0, and β3 = 0, we obtain another three values for ρ,
which we denote respectively by ρ1, ρ2, and ρ3. This values must coincide with ρ.

When we impose the conditions ρ2 − ρ = 0, ρ3 − ρ = 0, we obtain two equations:

(a2
1 + a2

1a
2
3 − 4a1a

′
1t− 4a1a

′
1a

2
3t + 4a2

1a3a
′
3t + 4a′21 t2 + 4a′21 a2

3t
2−

−8a1a
′
1a3a

′
3t

2 + 4a2
1a
′2
3 t2)(An + B)/N1 = 0

(3.1)

(3.2)
(a3

1a3 − 2a2
1a
′
1a3t + 2a3

1a
′
3t + 2a1a3ct + 2a1a

3
3ct− 4a′1a3ct

2 − 4a′1a
3
3ct

2−
−4a1a

′
3ct

2 + 4a1a
2
3a
′
3ct

2)(An + B)/N2 = 0

where the expressions of A, B, N1, N2 are quite long, depending on a1, a3, λ, and
their derivatives.

Let us study the first parenthesis from (3.1) and (3.2), namely

E = a2
1 + a2

1a
2
3 − 4a1a

′
1t− 4a1a

′
1a

2
3t + 4a2

1a3a
′
3t+

+4a′21 t2 + 4a′21 a2
3t

2 − 8a1a
′
1a3a

′
3t

2 + 4a2
1a
′2
3 t2,

F = a3
1a3 − 2a2

1a
′
1a3t + 2a3

1a
′
3t + 2a1a3ct + 2a1a

3
3ct−

−4a′1a3ct
2 − 4a′1a

3
3ct

2 − 4a1a
′
3ct

2 + 4a1a
2
3a
′
3ct

2,

The sign of E may be studied thinking it as a second degree function of the variable
a′3. The associated equation has the discriminant ∆ = −(a2

1t
2(a1−2a′1t)

2) < 0,∀t > 0
and the coefficient of a′23 , 4a2

1t
2 > 0,∀t > 0. Thus, E > 0 for every t > 0. If t = 0, the

expression becomes a2
1(1 + a2

3) > 0. Hence we obtained that E is always positive.
Taking into account of the values of a′3 and a′1 from (2.3) and then multiplying by

a1+2b1t
a3+2b3t > 0, F = 0 becomes an equation of the second order with respect to a2

1

(3.3) (a2
1)

2 − 4a2
1(1− a2

3)ct + 4c2t2(1 + a2
3)

2 = 0,

with the discriminant ∆ = −64a2
3c

2t2 < 0, ∀t > 0. Thus F > 0,∀t > 0 and if t = 0,
F = a4

1 > 0.
Since E and F are always positive, the relations (3.1) and (3.2) are fulfilled if and

only if An + B = 0. The obtained equations does not depend on the dimension n of
the base manifold, so we get that both A and B must vanish.

From the conditions A = 0 and B = 0 we get two quite long expression of λ′′ and
λ′′′, respectively.

By doing some computations with RICCI, we prove that the differences ρ1 − ρ,
ρ2 − ρ and ρ3 − ρ vanish when we replace the obtained values for λ′′ and λ′′′. Hence
all the expressions obtained for the constant ρ coincide.

Next we have to find the conditions under which the derivative of λ′′ is equal to
λ′′′:

(λ′′)′ − λ′′′ = 0.

Computing the above difference, we obtain that its numerator decomposes into
three factors, the vanishing condition for third one, reducing to the expression (3.3),
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after replacing the values of a′1 and a′3 given by (2.3) and multiplying by the denom-
inator (a1 + 2b1t) > 0.

Since we have proved that the obtained expression is always positive, we have to
study only the next two cases, obtained from the vanishing conditions for the other
two factors of the numerator of the difference (λ′′)′ − λ′′′:

I) a2
1a
′
1λ + 2a1cλ + 2a1a

2
3cλ + a3

1λ
′ − 2a′1cλt− 2a′1a

2
3cλt + 4a1a3a

′
3cλt+

+2a1cλ
′t + 2a1a

2
3cλ

′t = 0,

II) a2
1t(a

4
1 − 4a2

1ct + 4a2
1a

2
3ct + 4c2t2 + 8a2

3c
2t2 + 4a4

3c
2t2)λ′

2
+ a2

1(a
4
1 − 4a2

1ct+

+4a2
1a

2
3ct + 4c2t2 + 8a2

3c
2t2 + 4a4

3c
2t2)λ′λ + (a5

1a
′
1 + 2a4

1a
2
3c− a4

1a
′
1
2
t− 4a3

1a
′
1ct−

−4a3
1a
′
1a

2
3ct + 4a4

1a3a
′
3ct + 4a2

1a
′
1
2
ct2 + 4a2

1a
′
1
2
a2
3ct

2 − 8a3
1a
′
1a3a

′
3ct

2+

+4a1a
′
1c

2t2 + 8a1a
′
1a

2
3c

2t2 + 4a1a
′
1a

4
3c

2t2 − 8a2
1a3a

′
3c

2t2 − 8a2
1a

3
3a
′
3c

2t2−
−4a′1

2
c2t3 − 8a′1

2
a2
3c

2t3 − 4a′1
2
a4
3c

2t3 + 16a1a
′
1a3a

′
3c

2t3 + 16a1a
′
1a

3
3a
′
3c

2t3−
−16a2

1a
2
3a
′
3
2
c2t3)λ2 = 0.

In the case I, we may obtain the following expression of λ′

λ′ = −λ
a1(a1a

′
1 + 2c(1 + a2

3))− 2ct(a′1 + 2a′1a
2
3 − 4a1a3a

′
3)

a1[a2
1 + 2ct(1 + a2

3)]
.

Replacing this expression of λ′ in the first value obtained for ρ, we get

(3.4) λ =
2a1c(n + 1)

ρ[a2
1 + 2ct(1 + a2

3)]
.

Now we may state:
Theorem 3.2. Let (M, g) be a smooth n-dimensional Riemannian manifold. If

(G, J) is a general natural Kählerian structure on the cotangent bundle T ∗M and the
parameter λ is expressed by (3.4), where ρ is a nonzero real constant, then (T ∗M,G, J)
is a Kähler-Einstein manifold, i.e. Ric = ρG.

Remark 3.1. Taking into account of a theorem from [5], the expression (3.4) of
λ implies that (T ∗M, G, J) is a Kählerian manifold of constant holomorphic sectional
curvature k = 2ρ

n+1 .
Example 3.1. The Kähler-Einstein structure on T ∗M , from the paper [21] by

Oproiu and Poroşniuc, may be obtained from the theorem 3.2, as a particular case.
If in the expression (3.4) we impose the condition a3 = 0, we get the same expression
of λ obtained in [21], in the case of the natural structure of diagonal lifted type on
the cotangent bundle T ∗M of a Riemannian manifold (M, g).

In the case II, we obtain a homogeneous equation of second order in λ′ and λ

which may be solved with respect to λ′
λ . Then we obtain two expressions for λ′

λ′ = λ(± 1

2t
+

a3
1 − 2a2

1a
′
1t− 2a1ct− 2a1a

2
3ct + 4a′1ct

2 + 4a′1a
2
3ct

2 − 8a1a3a
′
3ct

2

2a1t
√

a4
1 − 4a2

1ct + 4a2
1a

2
3ct + 4c2t2 + 8a2

3c
2t2 + 4a4

3c
2t2

).

When we replace this expression of λ′ and its derivative λ′′ in the first value of
ρ, we obtain that in this case λ is defined on the set T0M ⊂ TM of the nonzero
cotangent vectors to M , and it is given by
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(3.5) λ =
n(a2

1 + 2ct + 2a2
3ct±

√
a4
1 − 4a2

1ct + 4a2
1a

2
3ct + 4c2t2 + 8a2

3c
2t2 + 4a4

3c
2t2)

4a1ρt
.

Now we may formulate the next theorem:
Theorem 3.3. Let (G, J) be a general natural Kählerian structure on the cotan-

gent bundle T ∗M of a smooth n-dimensional Riemannian manifold. If the param-
eter λ is expressed by (3.5), where ρ is a nonzero real constant, then (G, J) is a
Kähler-Einstein structure on the bundle T ∗0 M , of nonzero cotangent vectors to M ,
i.e. Ric = ρG.
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