DIHEDRAL COVERS OF THE COMPLETE GRAPH K_5

M. GHASEMI

Abstract. A regular cover of a connected graph is called dihedral if its transformation group is dihedral. In this paper, the author classifies all dihedral coverings of the complete graph K_5 whose fibre-preserving automorphism subgroups act arc-transitively.

1. Introduction

Throughout this paper, we consider finite connected graphs without loops or multiple edges. For a graph X, every edge of X gives rise to a pair of opposite arcs. By $V(X)$, $E(X)$, $A(X)$ and $\text{Aut}(X)$, we denote the vertex set, the edge set, the arc set and the automorphism group of the graph X, respectively. The neighborhood of a vertex $v \in V(X)$ denoted by $N(v)$ is the set of vertices adjacent to v in X. Let a group G act on a set Ω and let $\alpha \in \Omega$. We denote by G_α the stabilizer of α in G, that is, the subgroup of G fixing α. The group G is said to be semiregular if $G_\alpha = 1$ for each $\alpha \in \Omega$, and regular if G is semiregular and transitive on Ω. A graph \tilde{X} is called a covering of a graph X with projection $p: \tilde{X} \to X$ if there is a surjection $p: V(\tilde{X}) \to V(X)$ such that $p|_{N(\tilde{v})}: N(\tilde{v}) \to N(v)$ is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$. The graph \tilde{X} is called the covering graph and X is the base graph. A covering \tilde{X} of X with a projection p is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group $\text{Aut}(\tilde{X})$ such that graph X is isomorphic to the quotient graph \tilde{X}/K, say by h, and the

Received May 6, 2013; revised January 23, 2014.

2010 Mathematics Subject Classification. Primary 05C25, 20B25.

Key words and phrases. symmetric graphs; s-regular graphs; regular coverings.
quotient map $\tilde{X} \to \tilde{X}/K$ is the composition ph of p and h (for the purpose of this paper, all functions are composed from left to right). If K is cyclic, elementary abelian or dihedral then \tilde{X} is called a cyclic, elementary abelian or dihedral covering of X, respectively. If \tilde{X} is connected, K is the covering transformation group. The fibre of an edge or a vertex is its preimage under p. An automorphism of \tilde{X} is said to be fibre-preserving if it maps a fibre to a fibre while an element of the covering transformation group fixes each fibre setwise. All of fibre-preserving automorphisms form a group called the fibre-preserving group.

An s-arc in a graph X is an ordered $(s+1)$-tuple (v_0, v_1, \ldots, v_s) of vertices of X such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i < s$; in other words, a directed walk of length s which never includes a backtracking. A graph X is said to be s-arc-transitive if $\text{Aut}(X)$ is transitive on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. An s-arc-transitive graph is said to be s-transitive if it is not $(s+1)$-arc-transitive. In particular, a subgroup of the automorphism group of a graph X is said to be s-regular if it acts regularly on the set of s-arcs of X. Also if the subgroup is the full automorphism group $\text{Aut}(X)$ of X, then X is said to be s-regular. Thus, if a graph X is s-regular, then $\text{Aut}(X)$ is transitive on the set of s-arcs and the only automorphism fixing an s-arc is the identity automorphism of X.

Regular coverings of a graph have received considerable attention. For example, for a graph X which is the complete graph K_4, the complete bipartite graph $K_{3,3}$, hypercube Q_3 or Petersen graph O_3, the s-regular cyclic or elementary abelian coverings of X, whose fibre-preserving groups are arc-transitive, classified for each $1 \leq s \leq 5$ [3, 4, 6, 7]. As an application of these classifications, all s-regular cubic graphs of order $4p$, $4p^2$, $6p$, $6p^2$, $8p$, $8p^2$, $10p$, and $10p^2$ constructed for each $1 \leq s \leq 5$ and each prime p [3, 4, 6]. In [14], it was shown that all cubic graphs admitting a solvable edge-transitive group of automorphisms arise as regular covers of one of the following basic graphs: the complete graph K_4, the dipole Dip3 with two vertices and three parallel edges,
the complete bipartite graph $K_{3,3}$, the Pappus graph of order 18, and the Gray graph of order 54. Also all dihedral coverings of the complete graph K_4 and cubic symmetric graphs of order $2p$ were classified in [5, 8]. But apart from the octahedron graph [11], graphs of higher valencies have not received much attention. For more results see [1, 2, 13, 15]. In a series of reductions of this kind, the final, irreducible graph is often a complete graph. Thus studying K_5 is the obvious next choice in order to establish a base of examples for further investigation. All pairwise non-isomorphic connected arc-transitive p-elementary abelian covers of the complete graph K_5 are constructed in [10]. In this paper all dihedral coverings of the complete graph K_5 whose fibre-preserving automorphism subgroups act arc-transitively are determined. Also we give a family of 2-arc-transitive graphs.

Let n be a non-negative integer. Let Z_n denote the cyclic group of order n and D_{2n} the dihedral group of order $2n$. Set

$$D_{2n} = \langle a, b \mid a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle.$$

By $\{0, 1, 2, 3, 4\}$ denote the vertex set of K_5. For $n \geq 3$, the graph $DK(2n)$ is defined to have vertex set

$$V(DK(2n)) = \{0, 1, 2, 3, 4\} \times D_{2n}$$

and edge set

$$E(DK(2n)) = \{(0, c)(3, c), (1, c)(3, c), (1, c)(4, c), (2, c)(4, c), (0, c)(1, bc), (0, c)(2, a^{-1}bc), (0, c)(4, ac), (1, c)(2, bc), (2, c)(3, ac), (3, c)(4, a^{-2}bc), (4, c)(0, a^{-1}c) \mid c \in D_{2n} \}.$$

Note that the first four edges in the edge set $E(DK(2n))$ correspond with the tree edges in the spanning tree T as depicted by the dashed lines in Fig. 1 and these four edges have the common c as the second coordinates. In fact, the graph $DK(2n)$ is the covering graph derived from a
T-reduced voltage assignment $\phi: A(K_5) \to D_{2n}$ which assigns the six values $b, a^{-1}b, a, b, a^{-2}b, a^{-1}$ to the six cotree edges in K_5.

The following theorem is the main result of this paper.

Theorem 1.1. Let \tilde{X} be a connected D_{2n}-covering ($n \geq 3$) of the complete graph K_5 whose fibre-preserving subgroup is arc-transitive. Then \tilde{X} is arc-transitive if and only if \tilde{X} is isomorphic to $DK(2n)$ for $n \geq 3$.

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a^{-1}, we mean the reverse arc to an arc a. A voltage assignment (or K-voltage assignment) of X is a function $\phi: A(X) \to K$ with the property that $\phi(a^{-1}) = \phi(a)^{-1}$ for each arc $a \in A(X)$. The values of ϕ are called voltages and K is the voltage group. The graph $X \times_\phi K$ derived from a voltage assignment $\phi: A(X) \to K$ has a vertex set $V(X) \times K$ and an edge set $E(X) \times K$, so that an edge (e, g) of $X \times_\phi K$ joins a vertex (u, g) to $(v, \phi(a)g)$ for $a = (u, v) \in A(X)$ and $g \in K$, where $e = uv$.

Clearly, the derived graph $X \times_\phi K$ is a covering of X with the first coordinate projection $p: X \times_\phi K \to X$ which is called the natural projection. By defining $(u, g')g := (u, g'g)$ for any $g \in K$ and $(u, g') \in V(X \times_\phi K)$, K becomes a subgroup of Aut$(X \times_\phi K)$ which acts semiregularly on $V(X \times_\phi K)$. Therefore, $X \times_\phi K$ can be viewed as a K-covering. For each $u \in V(X)$ and $uv \in E(X)$, the vertex set $\{u, g \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g)(v, \phi(a)g) \mid g \in K\}$ is the fibre of uv, where $a = (u, v)$. Conversely, each regular covering \tilde{X} of X with a covering transformation group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph X, a voltage assignment ϕ is said to be T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [9] showed that every regular covering \tilde{X} of a graph X can be derived from a T-reduced voltage assignment ϕ with respect to an arbitrary fixed spanning tree T of X. It is
clear that if ϕ is reduced, the derived graph $X \times_\phi K$ is connected if and only if the voltages on the cotree arcs generate the voltage group K.

Let \tilde{X} be a K-covering of X with a projection p. If $\alpha \in \text{Aut}(X)$ and $\tilde{\alpha} \in \text{Aut}(\tilde{X})$ satisfy $\tilde{\alpha}p = p\alpha$, we call $\tilde{\alpha}$ a lift of α, and α the projection of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of $\text{Aut}(X)$ and the projection of a subgroup of $\text{Aut}(\tilde{X})$ are self-explanatory. The lifts and the projections of such subgroups are of course subgroups in $\text{Aut}(\tilde{X})$ and $\text{Aut}(X)$, respectively. In particular, if the covering graph \tilde{X} is connected, then the covering transformation group K is the lift of the trivial group, that is $K = \{\tilde{\alpha} \in \text{Aut}(\tilde{X}) : p = \tilde{\alpha}p\}$. Clearly, if $\tilde{\alpha}$ is a lift of α, then $K\tilde{\alpha}$ consists of all the lifts of α.

Figure 1. A choice of the six cotree arcs in K_5.
Let $X \times_{\phi} K \rightarrow X$ be a connected K-covering derived from a T-reduced voltage assignment ϕ. The problem whether an automorphism α of X lifts or not can be grasped in terms of voltages as follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a natural way. Given $\alpha \in \text{Aut}(X)$, we define a function $\bar{\alpha}$ from the set of voltages on fundamental closed walks based at a fixed vertex $v \in V(X)$ to the voltage group K by

$$(\phi(C))^\bar{\alpha} = \phi(C^\alpha),$$

where C ranges over all fundamental closed walks at v, and $\phi(C)$ and $\phi(C^\alpha)$ are the voltages on C and C^α, respectively. Note that if K is abelian, $\bar{\alpha}$ does not depend on the choice of the base vertex, and the fundamental closed walks at v can be substituted by the fundamental cycles generated by the cotree arcs of X.

The next proposition is a special case of [12, Theorem 3.5].

Proposition 2.1. Let $X \times_{\phi} K \rightarrow X$ be a connected K-covering derived from a T-reduced voltage assignment ϕ. Then, an automorphism α of X lifts if and only if $\bar{\alpha}$ extends to an automorphism of K.

Two coverings \tilde{X}_1 and \tilde{X}_2 of X with projections p_1 and p_2, respectively, are said to be equivalent if there exists a graph isomorphism $\tilde{\alpha}: \tilde{X}_1 \rightarrow \tilde{X}_2$ such that $\tilde{\alpha}p_2 = p_1$. We quote the following proposition.

Proposition 2.2 ([16]). Two connected regular coverings $X \times_{\phi} K$ and $X \times_{\psi} K$, where ϕ and ψ are T-reduced, are equivalent if and only if there exists an automorphism $\sigma \in \text{Aut}(K)$ such that $\phi(u, v)^\sigma = \psi(u, v)$ for any cotree arc (u, v) of X.
3. Proof of Theorem 1.1

Suppose that $D_{2n} = \langle a, b \mid a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. If $n = 2$, then $D_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Now since elementary abelian coverings of the complete graph K_5 were classified by Kuzman [10], we only consider $n \geq 3$.

By K_5, we denote the complete graph with vertex set \{0, 1, 2, 3, 4\}. Let T be a spanning tree of K_5 as shown by dashed lines in Figure 2. Let ϕ be such a voltage assignment defined by $\phi = 1$ on T and $\phi = a_0, a_1, a_2, a_3, a_4$, and b_0 on the cotree arcs (0, 1), (1, 2), (2, 3), (3, 4), (4, 0), and (0, 2), respectively. Let $\rho = (01234), \tau = (0132)$ and $\sigma = (024)$. Then ρ, τ, σ are automorphisms of K_5.

By $i_1i_2\ldots i_s$ denote a directed cycle which has vertices i_1, i_2, \ldots, i_s in a consecutive order. There are six fundamental cycles 130, 124, 1423, 134, 1403, and 13024 in K_5 which are generated by the six cotree arcs (0, 1), (1, 2), (2, 3), (3, 4), (4, 0) and (0, 2), respectively. Each cycle is mapped to a cycle of the same length under the actions of ρ, τ, σ. We list all these cycles and their voltages in Table 1 in which C denotes a fundamental cycle of K_5 and $\phi(C)$ denotes the voltage of C.

Let $\tilde{X} = K_5 \times \phi D_{2n}$ be a covering graph of the graph K_5 satisfying the hypotheses in the theorem, where $\phi = 1$ on the spanning tree T which is depicted by the dashed lines in Figure 2. Note that the vertices of K_5 are labeled by 0, 1, 2, 3, and 4. By the hypotheses, the fibre-preserving group, say \tilde{L}, of the covering graph $K_5 \times \phi D_{2n}$ acts arc-transitively on $K_5 \times \phi D_{2n}$. Hence, the projection of \tilde{L}, say L, is arc-transitive on the base graph K_5. Thus L is isomorphic to $AGL(1, 5) = \langle \rho, \tau \rangle$, $A_5 = \langle \rho, \sigma \rangle$, or $S_5 = \langle \rho, \sigma, \tau \rangle$. Consider the mapping $\bar{\rho}$ from the set \{a_0, a_1, a_2, a_3, a_4, b_0\} of the voltages of the six fundamental cycles of K_5 to the group D_{2n}, defined by $(\phi(C))^{\bar{\rho}} = \phi(C^\rho)$, where C ranges over the six fundamental cycles. From Table 1, one can see that $a_0^{\bar{\rho}} = a_1, a_1^{\bar{\rho}} = a_2b_0, a_2^{\bar{\rho}} = b_0^{-1}a_3, a_3^{\bar{\rho}} = a_4b_0, a_4^{\bar{\rho}} = b_0^{-1}a_0$ and $b_0^{\bar{\rho}} = b_0$. Similarly, we can define $\bar{\sigma}$ and $\bar{\tau}$.
Here we make the following general assumption.

(I) Let \(\tilde{X} \) be a connected \(D_{2n} \)-covering \((n \geq 3)\) of the complete graph \(K_5 \) whose fibre-preserving subgroup is arc-transitive.

For the three following lemmas we suppose that \(n \) is an odd number.

Lemma 3.1. Suppose that the subgroup of \(\text{Aut}(\tilde{X}) \) generated by \(\rho \) and \(\sigma \), say \(L \), lifts. Under the assumption (I), \(\tilde{X} \) is arc-transitive if and only if \(\tilde{X} \) is isomorphic to \(DK(6) \).

Proof. Since \(\rho, \sigma \in L \), Proposition 2.1 implies that \(\bar{\rho} \) and \(\bar{\sigma} \) can be extended to automorphisms of \(D_{2n} \). We denote by \(\rho^* \) and \(\sigma^* \) these extended automorphisms, respectively. In this case \(o(a_0) = o(a_1) = o(a_3) \). Now we consider the following two subcases:

Table 1. Fundamental cycles and their images with corresponding voltages.

<table>
<thead>
<tr>
<th>(C)</th>
<th>(\phi(C))</th>
<th>(C^\rho)</th>
<th>(\phi(C^\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>(a_0)</td>
<td>241</td>
<td>(a_1)</td>
</tr>
<tr>
<td>124</td>
<td>(a_1)</td>
<td>230</td>
<td>(a_2 b_0)</td>
</tr>
<tr>
<td>1423</td>
<td>(a_2)</td>
<td>2034</td>
<td>(b_0^{-1} a_3)</td>
</tr>
<tr>
<td>134</td>
<td>(a_3)</td>
<td>240</td>
<td>(a_4 b_0)</td>
</tr>
<tr>
<td>1403</td>
<td>(a_4)</td>
<td>2014</td>
<td>(b_0^{-1} a_0)</td>
</tr>
<tr>
<td>13024</td>
<td>(b_0)</td>
<td>24130</td>
<td>(b_0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C^\sigma)</th>
<th>(\phi(C^\sigma))</th>
<th>(C^\tau)</th>
<th>(\phi(C^\tau))</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>(a_2^{-1} a_1^{-1})</td>
<td>321</td>
<td>(a_2^{-1} a_1^{-1})</td>
</tr>
<tr>
<td>140</td>
<td>(a_4 a_0)</td>
<td>304</td>
<td>(a_4^{-1} a_3^{-1})</td>
</tr>
<tr>
<td>1043</td>
<td>(a_0^{-1} a_4^{-1} a_3^{-1})</td>
<td>3402</td>
<td>(a_3 a_4 b_0 a_2)</td>
</tr>
<tr>
<td>130</td>
<td>(a_0)</td>
<td>324</td>
<td>(a_2^{-1} a_3^{-1})</td>
</tr>
<tr>
<td>1023</td>
<td>(a_0^{-1} b_0 a_2)</td>
<td>3412</td>
<td>(a_3 a_1 a_2)</td>
</tr>
<tr>
<td>13240</td>
<td>(a_2^{-1} a_4 a_0)</td>
<td>32104</td>
<td>(a_2^{-1} a_1^{-1} a_0^{-1} a_4^{-1} a_3^{-1})</td>
</tr>
</tbody>
</table>
Subcase I. $o(a_0) = o(a_1) = o(a_3) = 2$.

By considering $a_1^* = a_4a_0$, we have $o(a_4a_0) = 2$. It follows that $o(a_4) \neq 2$. Since $a_4^* = b_0^{-1}a_0$, we have $o(b_0^{-1}a_0) \neq 2$. So $o(b_0^{-1}) = 2$, and hence $o(a_2) \neq 2$, by $a_2^* = b_0^{-1}a_3$. Now we may assume that $a_0 = a^ib, a_1 = a^jb, a_3 = a^kb, a_2 = a^r, a_4 = a^s$ and $b_0 = a^t$, where $0 \leq i, j, k, l \leq n - 1$ and $0 < r, s \leq n - 1$. Since Aut(D_{2n}) acts transitively on involutions, by Proposition 2.2 we may assume that $a_0 = b, a_1 = a^ib, a_3 = a^kb, a_2 = a^r, a_4 = a^s$ and $b_0 = a^t$, where $0 \leq i, j, k, l \leq n - 1$ and $0 < r, s \leq n - 1$. Also since $K_5 \times \phi D_{2n}$ is assumed to be connected, $D_{2n} = \langle a_0, a_1, a_2, a_3, a_4, b_0 \rangle$. Thus we may assume that $(t, n) = 1$, where $t \in \{ i, j, k, r, s \}$. Without loss of generality, we may assume that $(i, n) = 1$ or $(r, n) = 1$. In fact, with the same arguments as in other cases we get the same results. First suppose that $(i, n) = 1$. Since $\sigma: a \mapsto a^i, b \mapsto b$ is an automorphism of D_{2n}, by Proposition 2.2, we may assume that $a_0 = b, a_1 = ab, a_3 = a^ib, a_2 = a^r, a_4 = a^s$, and $b_0 = a^j$, where $0 \leq i, j \leq n - 1$ and $0 < r, s \leq n - 1$. From Table 1, one can see that $a_0^* = b_0^* = ab, a_1^* = (ab)^* = a^rb^* = a^rj$. Thus $a^r = a^{r+j-1}$. By considering the image of $a_2 = a^r, a_4 = a^s$ and $b_0 = a^j$ under ρ^*, we conclude that $a^{r+j-1} = a^r, a^{s(r+j-1)} = a^j$ and $a^{j(r+j-1)}ab = a^j$. Also $a_0^* = b_0^* = a^r+jb$ and $a_1^* = (ab)^* = a^srb^* = a^sb$. Thus $a^s = a^{n+r+1}.

Now by considering the image of $a_2 = a^r, a_4 = a^s$ and $b_0 = a^j$ under σ^*, we conclude that $a^{r+s-1} = a^{s-i}, a^{s(r+s-1)} = a^{s^{-}r+b}$ and $a^{j(s+r-1)}a^{-r+1}b = a^{s-r}b$.

Therefore, we have the following:

\begin{align*}
(1) \quad r(r+j-1) &= j-i, \\
(2) \quad s(r+j-1) &= j, \\
(3) \quad j(r+j-1) &= j-1, \\
(4) \quad j(s+r-1) &= s-1, \\
(5) \quad r(s+r-1) &= s-i, \\
(6) \quad s(s+r-1) &= -j+r.
\end{align*}

By (1) and (3), $rj(r+j-1) = j^2 - ij$ and $rj(r+j-1) = rj - r$. Thus $j^2 - ji = rj - r$. Also by (4) and (5), $rj(s+r-1) = sr - r$ and $rj(s+r-1) = sj - ij$. Thus $sj - ij = sr - r$. So $j^2 - rj = sj - sr$, and hence $(j - r)(j - s) = 0$. Also by (2) and (3), $sj(r+j-1) = j^2$ and $sj(r+j-1) = sj - s$. Thus $j^2 = sj - s$. By $(j - r)(j - s) = 0$, we have $j = r$ or $j = s$. If $j = r$,
then \(s^2 + sr - s = 0 \), by (6). Thus \(s = 0 \) or \(s = -r + 1 \). If \(s = 0 \), then \(j = 0 \) by (2). Thus \(r = 0 \), a contradiction. If \(s = -r + 1 \), then \(s = 1 \) by \(j(s + r - 1) = s - 1 \). So \(r = 0 \), a contradiction. If \(j = s \), then by \(j^2 = sj - s \), we have \(s = 0 \), a contradiction.

Now suppose that \((r,n) = 1\). Since \(\sigma : a \mapsto a^r, b \mapsto b \) is an automorphism of \(D_{2n} \), by Proposition 2.2, we may assume that \(a_0 = b \), \(a_1 = aib \), \(a_3 = a^{j}b \), \(a_2 = a \), \(a_4 = a^r \) and \(b_0 = a^kb \), where \(0 \leq i, j, k \leq n - 1 \) and \(0 < r \leq n - 1 \). From Table 1, one can see that \(a_0^\sigma = b^{\sigma^*} = a^ib \), \(a_2^\sigma = (a)^{\rho^*} = a^{k-j} \). By considering the image of \(a_1 = a^ib \), \(a_3 = a^j, a_4 = a^r \) and \(b_0 = a^kb \) under \(\rho^* \), we conclude that \(a_{i(k-j)}a^ib = a^{k+1}b \), \(a_{i(k-j)}a^{j}b = a^{r+k}b \), \(a_{r(k-j)} = a^k \) and \(a_{(k-j)}a^ib = a^kb \). Also \(a_{0}^\sigma = b^{\sigma^*} = a^{i-1}b \) and \(a_{2}^\sigma = (a)^{\sigma^*} = a^{r-j} \). Now by considering the image of \(a_1 = a^ib \), \(a_3 = a^j \), \(a_4 = a^r \) and \(b_0 = a^kb \) under \(\sigma^* \), we conclude that \(a_{i(r-j)}a^{j}b = a^rb \), \(a_{j(r-j)}a^{i-1}b = b \), \(a_{i(r-j)}a^{i-1}b = a^{r-1}b \).

Therefore, we have the following:

1. \(i(k-j) + i = k + 1 \),
2. \(j(k-j) + i = r + k \),
3. \(r(k-j) = k \),
4. \(k(k-j) + i = k \),
5. \(i(r-j) + i - 1 = r \),
6. \(j(r-j) + i - 1 = 0 \),
7. \(r(r-j) = -k + 1 \),
8. \(k(r-j) = r - i \).

By (2) and (3), \(rj(k-j) = r^2 + rk - ir \) and \(rj(k-j) = kj \). Thus \(r^2 + rk - ir = kj \). Also by (7) and (8), \(rk(r-j) = -k^2 + k \) and \(rk(r-j) = r^2 - ir \). Thus \(-k^2 + k = r^2 - ir \). So \(kj - rk = -k^2 + k \), and hence \(k(j - r + k - 1) = 0 \). Thus \(k = 0 \) or \(j = r - k + 1 \). If \(k = 0 \), then \(i = 0 \) by (4). Thus by \(-k^2 + k = r^2 - ir \), we have \(r = 0 \), a contradiction. If \(j = r - k + 1 \), then \((k - 1)(r + 1) = 0 \) by (7). Hence \(k = 1 \) or \(r = -1 \). If \(k = 1 \), then \(j = r \). Now by (6), \(i = 1 \), and so by (8), we have \(r = 1 \). So by (5), \(1 = 0 \), a contradiction. If \(r = -1 \), then \(j = -k \). Also by (5), \(i(r - j + 1) = 0 \), and so \(i = 0 \) or \(r = j - 1 \). If \(i = 0 \), then by (1), \(k = -1 \). Thus \(j = 1 \), and so by (3), \(2 = -1 \). Therefore, \(n = 3 \) and

\[
\begin{align*}
a_0 &= b, & a_1 &= b, & a_3 &= ab, & a_2 &= a, & a_4 &= a^{-1}, & b_0 &= a^{-1}b.
\end{align*}
\]
From Table 1, it is easy to check that $\tilde{\rho}$, $\tilde{\sigma}$ and $\tilde{\tau}$ can be extended to automorphisms of D_{2n}. Thus by Proposition 2.1, ρ, σ and τ lift. Since $S_5 = \langle \rho, \sigma, \tau \rangle$ is 2-arc-transitive, it follows that $\text{Aut}(\tilde{X})$ contains a 2-arc-transitive subgroup lifted by $\langle \rho, \sigma, \tau \rangle$. Therefore, \tilde{X} is 2-arc-transitive.

Finally, if $r = j - 1$, then by $r = -1$, we have $j = 0$. So by (6), $i = 1$. Also by (7), $k = 0$. Now by (2), $1 = -1$, and so $n = 2$, a contradiction.

Subcase II. $o(a_0) = o(a_1) = o(a_3) \neq 2$.

By considering $a_0^* = a_4a_0$, we have $o(a_4a_0) \neq 2$. It follows that $o(a_4) \neq 2$. Since $a_4^* = b_0^{-1}a_0$, we have $o(b_0^{-1}a_0) \neq 2$. So $o(b_0^{-1}) \neq 2$, and hence $o(a_2) \neq 2$ by $a_2^* = b_0^{-1}a_3$. Now we may assume that $a_0 = a^i$, $a_1 = a^j$, $a_2 = a^k$, $a_3 = a^l$, $a_4 = a^m$ and $b_0 = a^n$, where $0 \leq i, j, k, l, m, n \leq n - 1$. Since $K_5 \times \phi D_{2n}$ is connected, we have a contradiction. \hfill \Box

Lemma 3.2. Suppose that the subgroup of $\text{Aut}(\tilde{X})$ generated by ρ and τ, say L, lifts. Under the assumption (I), \tilde{X} is arc-transitive if and only if \tilde{X} is isomorphic to $DK(2n)$ for $n \geq 3$.

Proof. Since $\rho, \tau \in L$, Proposition 2.1 implies that $\tilde{\rho}$ and $\tilde{\tau}$ can be extended to automorphisms of D_{2n}. We denote these extended automorphisms by ρ^* and τ^*, respectively. In this case $o(a_0) = o(a_1)$. Now we consider the following two subcases:

Subcase I. $o(a_0) = o(a_1) = 2$.

By considering $a_0^* = a_2^{-1}a_1^{-1}$, we have $o(a_2^{-1}a_1^{-1}) = 2$. It follows that $o(a_2) \neq 2$. Since $a_2^* = b_0^{-1}a_3$, we have either $o(b_0) = o(a_3) = 2$ or $o(b_0) \neq 2$ and $o(a_3) \neq 2$. First suppose that $o(b_0) \neq 2$ and $o(a_3) \neq 2$. Since $a_3^* = a_4b_0$, we have $o(a_4) \neq 2$. Also since $a_4^* = b_0^{-1}a_0$, it follows that $o(a_0) \neq 2$, a contradiction.

Now suppose that $o(b_0) = o(a_3) = 2$. Since $a_3^* = a_4b_0$, it implies that $o(a_4) \neq 2$. Now we may assume that $a_0 = a^ib$, $a_1 = a^jb$, $a_3 = a^kb$, $a_2 = a^r$, $a_4 = a^s$ and $b_0 = a^lb$, where $0 \leq i, j, k, l \leq n - 1$ and $0 < r, s \leq n - 1$. Since $\text{Aut}(D_{2n})$ acts transitively on involutions, we may
assume that \(a_0 = b, a_1 = a^ib, a_3 = a^jb, a_2 = a^r, a_4 = a^s\) and \(b_0 = a^kb\), where \(0 \leq i, j, k \leq n - 1\) and \(0 < r, s \leq n - 1\). Since \(K_5 \times_b D_{2n}\) is assumed to be connected, \(D_{2n} = \langle a_0, a_1, a_2, a_3, a_4, b_0 \rangle\). Thus we may assume that \((t, n) = 1\), where \(t \in \{i, j, k, r, s\}\). Without loss of generality, we may assume that \((i, n) = 1\) or \((r, n) = 1\). In fact, with the same arguments as in other cases we get the same results. First suppose that \((i, n) = 1\). Since \(\sigma: a \mapsto a^i, b \mapsto b\) is an automorphism of \(D_{2n}\), by Proposition 2.2, we may assume that \(a_0 = b, a_1 = ab, a_3 = a^jb, a_2 = a^r, a_4 = a^s\) and \(b_0 = a^j b\), where \(0 \leq i, j \leq n - 1\) and \(0 < r, s \leq n - 1\). From Table 1, one can see that \(a_0^ρ^* = bρ^* = ab, a_1^ρ^* = (ab)^ρ^* = a^ρ^* b^ρ^* = a^{r+j}b\). Thus \(a^ρ^* = a^{r+j-1}\). By considering the image of \(a_2 = a^r, a_3 = a^ib\) and \(b_0 = a^j b\) under \(\rho^*\), we conclude that \(a^{r(r+j-1)} = a^{j-i}, a^{i(r+j-1)}ab = a^{s+j}b\) and \(a^{j(r+j-1)}ab = a^j b\). Also \(a_0^{τ^*} = b^{τ^*} = a^{-r+1}b, a_1^{τ^*} = (ab)^{τ^*} = a^{r+b}τ^* = a^{i-s}b\). Thus \(a^{τ^*} = a^{i-s+r-1}\). By considering the image of \(a_2 = a^r\) and \(b_0 = a^j b\) under \(τ^*\), we conclude that \(a^{r(i-s+r-1)} = a^{i-s-j+r}\) and \(a^{j(i-s+r-1)}a^{-r+1} = a^{r+1-s+i}\).

Therefore, we have the following:

\[
\begin{align*}
(1) & \quad r(r+j-1) = j - i, \\
(2) & \quad i(r+j-1) + 1 = s + j, \\
(3) & \quad j(r+j-1) + 1 = j, \\
(4) & \quad r(i-s+r-1) = i-s-j+r, \\
(5) & \quad j(i-s+r-1) = i-s.
\end{align*}
\]

By (4) and (5), \((j-r)(i-s+r-2) = 0\). Thus \(j = r\) or \(i - s + r = 2\). If \(i - s + r = 2\), then by (4) \(j = i - s\). Now by (1), \(r(i-s+1) = -s\). So by considering (4) \(i + r = j\). Thus \(r = -s\) by \(j = i - s\). So \(i = 2s + 2\), and hence \(j = s + 2\). Now by (2), \(1 = 0\), a contradiction. If \(j = r\), then \(r(2r-1) = r - i\) by (1). Also by (3), \(r(2r-1) = r - 1\). So \(i = 1\), and hence by (2), \(s = r\). Now by (5), \(s = r = j = 1\). Thus by (1), \(1 = 0\), a contradiction.

Now suppose that \((r, n) = 1\). Since \(\sigma: a \mapsto a^r, b \mapsto b\) is an automorphism of \(D_{2n}\), by Proposition 2.2, we may assume that \(a_0 = b, a_1 = a^ib, a_3 = a^jb, a_2 = a, a_4 = a^r\) and \(b_0 = a^kb\), where \(0 \leq i, j, k \leq n - 1\) and \(0 < r \leq n - 1\). From Table 1, one can see that \(a_0^ρ^* = bρ^* = a^ib, a_2^ρ^* = (a)^ρ^* = a^{k-j}\). By considering the image of \(a_1 = a^ib, a_3 = a^jb, a_4 = a^r\) and \(b_0 = a^kb\) under
ρ*, we conclude that $a^{i(k-j)}a^ib = a^{k+1}b$, $a^{j(k-j)}a^ib = a^{k+r}b$, $a^{r(k-j)} = a^k$ and $a^{k(k-j)}a^ib = a^{k}b$. Also $a_0^{\tau^*} = b^{\tau^*} = a_1^{i-1}b$, $a_2^{\tau^*} = a^{i-r-k+1}$. By considering the image of $a_1 = a^ib$, $a_3 = a^jb$ and $b_0 = a^{k}b$ under τ^*, we conclude that $a^{i(j-r-k+1)}a^{i-1}b = a^{j-r}b$, $a^{j(r-k+1)}a^{i-1}b = a^{j-1}b$ and $a^{k(j-r-k+1)}a^{i-1}b = a^{i-1-r+j}b$.

Therefore, we have the following:

(1) $\ i k - i j + i = k + 1$, \quad (2) \ $j k - j^2 + i = r + k$,
(3) \ $r k - r j = k$, \quad (4) \ $k^2 - k j + i = k$,
(5) \ $i(j - r - k + 1) + i - 1 = -r + j$, \quad (6) \ $j(j - r - k + 1) = j - i$,
(7) \ $k(j - r - k + 1) = j - r$.

By (6), $j^2 - j r + j k + i = 0$. Also by (6) and (7), we have $k j(j - r - k + 1) = k j - k i$ and $k j(j - r - k + 1) = j^2 - r j$. Thus $j^2 - j r = k j - k i$. Thus $i(k - 1) = 0$, and so $i = 0$ or $k = 1$. If $i = 0$, then by (1), we have $k = -1$. Also by (4), $j = -2$. Now by (2), $r = -1$. Therefore,

$a_0 = b$, \quad $a_1 = b$, \quad $a_3 = a^{-2}b$, \quad $a_2 = a$, \quad $a_4 = a^{-1}$, \quad $b_0 = a^{-1}b$.

From Table 1, it is easy to check that $\bar{\rho}$ and $\bar{\tau}$ can be extended to automorphisms of D_{2n}. By Proposition 2.1, ρ and τ lift. Clearly, $AGL(1, 5) = \langle \rho, \tau \rangle$ is 1-regular. Thus $Aut(X)$ contains a 1-regular subgroup lifted by $\langle \rho, \tau \rangle$.

Now if $k = 1$, then by (3) and (4), $r - r j = 1$ and $i - j = 0$. Since $i = j$, it follows that $i(i - r) = -r + 1$ by (5). So $i^2 - i r = -r + 1 = -1 - r j + 1$. Thus $i = j = 0$, and so $r = 1$. Now by (2), $2 = 0$, a contradiction.

Subcase II. $o(a_0) = o(a_1) \neq 2$.

By considering $a_0^{\tau^*} = a_2^{-1}a_1^{-1}$, we have $o(a_2^{-1}a_1^{-1}) \neq 2$. It follows that $o(a_2) \neq 2$. Since $a_2^{\tau^*} = b_0^{-1}a_3$, we have either $o(b_0) = o(a_3) = 2$ or $o(b_0) \neq 2$ and $o(a_3) \neq 2$. First suppose that $o(b_0) = o(a_3) = 2$. Since $a_3^{\tau^*} = a_4b_0$, it follows that $o(a_4) \neq 2$. Now by considering $a_4^{\tau^*} = b_0^{-1}a_0$, we have $o(b_0^{-1}a_0) \neq 2$ a contradiction.
Now suppose that $o(b_0) \neq 2$ and $o(a_3) \neq 2$. Since $a_3^\ast = a_4b_0$, we have $o(a_4) \neq 2$. Therefore, $K_5 \times \phi D_{2n}$ is not connected, a contradiction.

□

Lemma 3.3. Suppose that the subgroup of $\text{Aut}(\tilde{X})$ generated by ρ, σ and τ, say L, lifts. Under the assumption (I), \tilde{X} is arc-transitive if and only if \tilde{X} is isomorphic to $DK(2n)$ for $n \geq 3$.

Proof. ρ and σ lift. With the same arguments as in Cubcase I, we have $n = 3$ and

\[
a_0 = b, \quad a_1 = b, \quad a_3 = ab, \quad a_2 = a, \quad a_4 = a^{-1}, \quad b_0 = a^{-1}b.
\]

From Table 1, it is easy to check that $\tilde{\rho} \tilde{\sigma}$ can be extended to automorphisms of D_{2n}. By Proposition 2.1, ρ, σ and τ lift. Also $S_5 = \langle \rho, \sigma, \tau \rangle$ is 2-arc-transitive. Thus $\text{Aut}(\tilde{X})$ contains a 2-arc-transitive subgroup lifted by $\langle \rho, \sigma, \tau \rangle$. Thus \tilde{X} is 2-arc-transitive. Moreover, ρ and τ lift. With the same arguments as in Subcase II, we have

\[
a_0 = b, \quad a_1 = b, \quad a_3 = a^{-2}b, \quad a_2 = a, \quad a_4 = a^{-1}, \quad b_0 = a^{-1}b.
\]

From Table 1, it is easy to check that $\tilde{\sigma}$ can be extended to automorphisms of D_{2n} whenever $n = 3$. Now if $n = 3$, then by Proposition 2.1, σ lift. Now with the same arguments as above, \tilde{X} is 2-arc-transitive. □

Now suppose that n is even.

Lemma 3.4. Suppose that the subgroup of $\text{Aut}(\tilde{X})$ generated by ρ and σ, say L, lifts. Then there is no connected regular covering of the complete graph K_5 whose fibre-preserving group is arc-transitive.

Proof. Since $\rho, \sigma \in L$, Proposition 2.1 implies that $\tilde{\rho}$ and $\tilde{\sigma}$ can be extended to automorphisms of D_{2n}. We denote these extended automorphisms by ρ^\ast and σ^\ast, respectively. In this case $o(a_0) = o(a_1) = o(a_3)$. Now we consider the following two subcases:
Subcase I. \(o(a_0) = o(a_1) = o(a_3) = 2. \)

Since \(o(a_0) = 2 \), we may assume that \(a_0 = a^{n/2} \) or \(a_0 \neq a^{n/2} \) and \(a_0 = a^i b \) \((0 \leq i < n)\). If \(a_0 = a^{n/2} \), then \(a_1 = a_3 = a^{n/2} \). By Table 1, \(a_1^\ast = a_4 a_0 \) and \(a_3^\ast = a_0 \). Thus \(a_4 = 1 \) and so by
\[a_4^\ast = b_0^{-1} a_0, \]
we have \(b_0 = a^{n/2} \). Also by \(a_2^\ast = b_0^{-1} a_3 \), we have \(a_2 = 1 \). Therefore \(K_5 \times_\phi D_{2n} \) is not connected, a contradiction.

Thus we may assume that \(a_0 \neq a^{n/2} \). So \(a_1 \neq a^{n/2} \) and \(a_3 \neq a^{n/2} \). Thus we may assume that \(a_0 = a^i b, a_1 = a^j b \) and \(a_3 = a^k b \), where \(0 \leq i, j, k < n \). By considering \(a_1^\ast = a_2 b_0 \), we have one of the following cases:

i) \(a_2 = a^l b, b_0 = a^t \) \((0 \leq l < n, 0 < t < n)\);

ii) \(a_2 = a^l, b_0 = a^t b \) \((0 < l < n, 0 \leq t < n)\).

First suppose that \(a_2 = a^l b, b_0 = a^t \) \((0 \leq l < n, 0 < t < n)\). Since \(a_4^\ast = b_0^{-1} a_0 \), we may suppose that \(a_4 = a^s b \), where \(0 \leq s < n \). Now since \(b_0^\ast = a_2^{-1} a_4 a_0 \), we have a contradiction. Now suppose that \(a_2 = a^l, b_0 = a^t b \) \((0 < l < n, 0 \leq t < n)\). Since \(a_4^\ast = b_0^{-1} a_0 \), we have \(o(a_4) \neq 2 \) or \(a_4 = a^{n/2} \). First suppose that \(o(a_4) \neq 2 \). Now by Proposition 2.2, we may assume that \(a_0 = a^i b, a_1 = a^j b, a_3 = a^k b, a_2 = a^l, a_4 = a^k \) and \(b_0 = a^t b \), where \(0 \leq i, j, k, t \leq n - 1 \) and \(0 < l, k \leq n - 1 \). Now with the same arguments as in Subcase I, when \(n \) is odd, we have

\[a_0 = b, \quad a_1 = b, \quad a_3 = ab, \quad a_2 = a, \quad a_4 = a^{-1}, \quad b_0 = a^{-1} b. \]

From Table 1, it is easy to check that \(\bar{\rho} \) and \(\bar{\sigma} \) can be extended to automorphisms of \(D_{2n} \) when \(n = 3 \), a contradiction.

Now suppose that \(a_4 = a^{n/2} \). Now we may assume that \(a_0 = a^i b, a_1 = a^j b, a_3 = a^k b, a_2 = a^r, a_4 = a^{n/2} \), and \(b_0 = a^t b \), where \(0 \leq i, j, k, l \leq n - 1 \) and \(0 < r \leq n - 1 \). Since \(\text{Aut}(D_{2n}) \) acts transitively on involutions, by Proposition 2.2, we may assume that \(a_0 = b, a_1 = a^i b, a_3 = a^j b, a_2 = a^r, a_4 = a^{n/2} \) and \(b_0 = a^k b \), where \(0 \leq i, j, k \leq n - 1 \) and \(0 < r \leq n - 1 \). Since \(K_5 \times_\phi D_{2n} \) is assumed to be connected, \(D_{2n} = \langle a_0, a_1, a_2, a_3, a_4, b_0 \rangle \). Thus we may assume that \((t, n) = 1 \), where
$t \in \{i, j, k, r\}$. Without loss of generality, we may assume that $(i, n) = 1$ or $(r, n) = 1$. In fact, with the same arguments as in other cases we get same results. First suppose that $(i, n) = 1$. Since $\sigma: a \mapsto a^i, b \mapsto b$ is an automorphism of D_{2n}, by Proposition 2.2, we may assume that $a_0 = b, a_1 = ab, a_3 = a^ib, a_2 = a^r, a_4 = a^{(n/2)}$ and $b_0 = a^rb, where 0 \leq i, j \leq n - 1 and 0 < r \leq n - 1$. Now with the same arguments as in Subcase I, when n is odd (by replacing s with $(n/2)$), we have a contradiction.

Now suppose that $(r, n) = 1$. Since $\sigma: a \mapsto a^r, b \mapsto b$ is an automorphism of D_{2n}, by Proposition 2.2, we may assume that $a_0 = b, a_1 = a^ib, a_3 = a^jb, a_2 = a, a_4 = a^{(n/2)}$ and $b_0 = a^kb, where 0 \leq i, j, k \leq n - 1$. Now by replacing r with $(n/2)$ in Case I, when n is odd, we have $(n/2)(k - j) = k$ and $(n/2)((n/2) - j) = -k + 1$ (see Equations (3) and (7) in Subcase I). So $n = 2$, a contradiction.

Subcase II. $o(a_0) = o(a_1) = o(a_3) \neq 2$.

By considering $a_1^\ast = a_4a_0$, we have $o(a_4a_0) \neq 2$. So we have $o(a_4) \neq 2$ or $o(a_4) = 2$ and $a_4 = a^{n/2}$. If $o(a_4) \neq 2$, then $o(b_0^{-1}a_0) \neq 2$ by $a_4^\ast = b_0^{-1}a_0$. Now we have $o(b_0) \neq 2$ or $o(b_0) = 2$ and $b_0 = a^{n/2}$. If $b_0 = a^{n/2}$, then $o(a_2) \neq 2$ by $a_2^\ast = b_0^{-1}a_3$. Therefore, $K_5 \times_\phi D_{2n}$ is not connected, a contradiction. If $o(b_0) \neq 2$, then by $a_2^\ast = b_0^{-1}a_3$, we have $o(a_2) \neq 2$ or $o(a_2) = 2$ and $a_2 = a^{n/2}$. Thus $K_5 \times_\phi D_{2n}$ is not connected, a contradiction. Finally, if $a_4 = a^{n/2}$, then by considering $a_3^\ast = a_4b_0$, we have $o(b_0) \neq 2$ or $o(b_0) = 2$ and $b_0 = a^{n/2}$. Clearly, $b_0 \neq a^{n/2}$ by $a_3^\ast = a_4b_0$. Thus $o(b_0) \neq 2$, and so by $a_2^\ast = b_0^{-1}a_3$, we have $o(a_2) \neq 2$ or $o(a_2) = 2$ and $a_2 = a^{n/2}$. Therefore, $K_5 \times_\phi D_{2n}$ is not connected, a contradiction.

Lemma 3.5. Suppose that the subgroup of Aut(\tilde{X}) generated by ρ and τ, say L, lifts. Under the assumption (I), \tilde{X} is arc-transitive if and only if \tilde{X} is isomorphic to $DK(2n)$ for $n > 3$.

Proof. Since \(\rho, \tau \in L \), Proposition 2.1 implies that \(\bar{\rho} \) and \(\bar{\tau} \) can be extended to automorphisms of \(D_{2n} \). We denote these extended automorphisms by \(\rho^* \) and \(\tau^* \), respectively. In this case \(o(a_0) = o(a_1) \). Now we consider the following two subcases:

Subcase I. \(o(a_0) = o(a_1) = 2 \).

Since \(o(a_0) = 2 \), we may assume that \(a_0 = a^{n/2} \) or \(a_0 \neq a^{n/2} \) and \(a_0 = a^ib \) (0 ≤ \(i < n \)). If \(a_0 = a^{n/2} \), then \(a_1 = a^{n/2} \). By Table 1, we have \(a_0^* = a_2^{-1}a_1^{-1} \) and \(a_1^* = a_2b_0 \). Therefore, \(a_2 = 1 \) and \(b_0 = a^{n/2} \). Also by \(a_2^* = b_0^{-1}a_3 \), we have \(a_3 = a^{n/2} \). Now by \(a_3^* = a_4b_0 \), we have \(a_4 = 1 \). Thus \(\bar{X} \) is not connected, a contradiction. Thus we may assume that \(a_0 \neq a^{n/2} \) and \(a_0 = a^ib \). So \(a_1 \neq a^{n/2} \) and so we may assume that \(a_0 = a^ib, a_1 = a^jb, \) where 0 ≤ \(i, j < n \). By considering \(a_0^* = a_2^{-1}a_1^{-1} \), we have \(o(a_2) \neq 2 \) or \(a_2 = a^{n/2} \). First assume that \(o(a_2) \neq 2 \). Thus \(b_0 = a^kb \) (0 ≤ \(k < n \)) by \(a_1^* = a_2b_0 \). Also since \(a_2^* = b_0^{-1}a_3 \), we have \(o(a_3) = 2 \) and \(a_3 = a^lb \) (0 ≤ \(l < n \)). Finally, since \(a_4^* = b_0^{-1}a_0 \), we have \(o(a_4) \neq 2 \) or \(a_4 = a^{n/2} \). First suppose that \(a_4 = a^{n/2} \). We have \(a_0 = a^ib, a_1 = a^jb, a_3 = a^kb, a_2 = a^r, a_4 = a^{n/2} \) and \(b_0 = a^l \), where 0 ≤ \(i, j, k, l < n - 1 \) and 0 < \(r \leq n - 1 \). Since \(\text{Aut}(D_{2n}) \) acts transitively on involutions, by Proposition 2.2, we may assume that \(a_0 = b, a_1 = a^ib, a_3 = a^jb, a_2 = a^r, a_4 = a^{n/2} \) and \(b_0 = a^k \), where 0 ≤ \(i, j, k, l \leq n - 1 \) and 0 < \(r \leq n - 1 \). Since \(a_4^* = b_0^{-1}a_0 \), we have \(k = n/2 \). Now \(a_4a_0 = b_0 \), and so \((a_4a_0)^* = b_0^* \). Thus \(a_0 = a_1 \), and so \(i = 0 \). We have \(a_0^* = a_1^* \). So \(a_1 = a_2b_0 \), and hence \(r = n/2 \). Now \(a_2 = a_4 \), and so \(a_2^* = a_4^* \). Therefore, \(a_0 = a_3 \), and hence \(a_3 = b \). Now \(K_5 \times \phi D_{2n} \) is not connected a contradiction.

Now suppose that \(o(a_4) \neq 2 \). With the same arguments as in Subcase II, when \(n \) is odd, we have

\[
a_0 = b, a_1 = b, a_3 = a^{-2}b, a_2 = a, a_4 = a^{-1}, b_0 = a^{-1}b.
\]
From Table 1, it is easy to check that $\bar{\rho}$ and $\bar{\tau}$ can be extended to automorphisms of D_{2n}. By Proposition 2.1, ρ and τ lift. Also $AGL(1, 5) = \langle \rho, \tau \rangle$ is 1-regular. Thus $\text{Aut}(\bar{X})$ contains a 1-regular subgroup lifted by $\langle \rho, \tau \rangle$.

Now assume that $a_2 = a^{n/2}$. Thus $b_0 = a^k b$ ($0 \leq k < n$) by $a_1^{\rho^*} = a_2 b_0$. Also since $a_2^{\rho^*} = b_0^{-1} a_3$, we have $o(a_3) = 2$ and $a_3 = a^l b$ ($0 \leq l < n$). Finally, since $a_4^{\rho^*} = b_0^{-1} a_0$, we have $o(a_4) \neq 2$ or $a_4 = a^{n/2}$. First suppose that $a_4 = a^{n/2}$. We have $a_0 = a^i b, a_1 = a^j b, a_3 = a^k b$, $a_2 = a_4 = a^{n/2}$ and $b_0 = a^l b$, where $0 \leq i, j, k, l \leq n - 1$. Since $a_4^{-1} = a_3 a_1 a_2$, we have $k = j$. Also since $a_2^{-1} = a_3 a_4 b_0 a_2$, we have $l = k = j$. Since $\text{Aut}(D_{2n})$ acts transitively on involutions, by Proposition 2.2, we may assume that $a_0 = b, a_1 = a^i b, a_3 = a^i b, a_2 = a_4 = a^{n/2}$, and $b_0 = a^i b$, where $0 \leq i, j, k \leq n - 1$. Since $a_4^{-1} = b_0^{-1} a_0$, we have $i = n/2$, a contradiction.

Now suppose that $a_0 = a^i b, a_1 = a^j b, a_3 = a^k b, a_2 = a^{n/2}, a_4 = a^s$ and $b_0 = a^l b$, where $0 \leq i, j, k, l \leq n - 1$ and $0 < s \leq n - 1$. Since $\text{Aut}(D_{2n})$ acts transitively on involutions, we may assume that $a_0 = b, a_1 = a^i b, a_3 = a^j b, a_2 = a^{n/2}, a_4 = a^s$ and $b_0 = a^k b$, where $0 \leq i, j, k \leq n - 1$ and $0 < s \leq n - 1$. Since $K_5 \times \phi D_{2n}$ is assumed to be connected, $D_{2n} = \langle a_0, a_1, a_2, a_3, a_4, b_0 \rangle$. Thus we may assume that $(t, n) = 1$, where $t \in \{i, j, k, s\}$. Without loss of generality we may assume that $(i, n) = 1$ or $(s, n) = 1$. In fact, with the same arguments the in other cases we get the same results. First suppose that $(i, n) = 1$. Therefore, we may assume that $a_0 = b, a_1 = a b, a_3 = a^i b, a_2 = a^{(n/2)}$, $a_4 = a^s$, and $b_0 = a^l b$, where $0 \leq i, j \leq n - 1$ and $0 < s \leq n - 1$. Now with the same arguments as in Case II, when n is odd we get a contradiction. Now suppose that $(s, n) = 1$. Therefore, we may assume that $a_0 = b, a_1 = a^i b, a_3 = a^j b, a_2 = a^{n/2}, a_4 = a^s$ and $b_0 = a^k b$, where $0 \leq i, j, k \leq n - 1$. From Table 1, one can see that $a_0^{\rho^*} = b_0^{\rho^*} = a_1^{\rho^*}, a_4^{\rho^*} = (a)^{\rho^*} = a^k$. By considering the image of $a_1 = a^i b, a_3 = a^j b$ and $a_2 = a^{n/2}$ under ρ^*, we conclude that $a^{ik+i} b = a^{(n/2) + k} b, a^{jk+i} b = a^{k+1} b$ and $a^{(n/2) k} = a^{k-j}$. Thus, we have $ik + i = n/2 + k, jk + i = k + 1$ and $(n/2) k = k - j$. By $(n/2) k = k - j$, we have $nk = 2k - 2j$. It follows that $2j = 2k$. Also $a^{\tau^*} = a^j b a^i b a^{(n/2)} = a^j - i + (n/2)$.

Thus $a^*_2 = a^{n/2(j-i+(n/2))} = a^j b a a^n ba^{(n/2)} = a^{j-1-k+(n/2)}$. So, $2j - 2k - 2 = 0$ and so $2 = 0$, a contradiction.

Subcase II. $o(a_0) = o(a_1) \neq 2$.

By considering $a^*_0 = a^{-1}_2 a_1^{-1}$, we have $o(a^{-1}_2 a_1^{-1}) \neq 2$. Thus $o(a_2) \neq 2$ or $a_2 = a^{n/2}$. First suppose that $o(a_2) \neq 2$. By considering $a^*_2 = b^{-1}_0 a_3$, we have one of the following cases:

i) $a_3 = a^i b$, $b_0 = a^j b$ ($0 \leq i, j < n$);

ii) $a_3 = a^i$, $b_0 = a^{n/2}$ ($0 < i < n$);

iii) $a_3 = a^{n/2}$, $b_0 = a^i$ ($0 < i < n$).

By $a^*_1 = a_2 b_0$, we have a contradiction in the first case. Now consider the second case. Since $a^*_3 = a_4 b_0$, we have $o(a_4) \neq 2$. Now $K_5 \times \phi D_{2n}$ is not connected, a contradiction. Now consider the last case. Since $a^*_3 = a_4 b_0$, we have $o(a_4) \neq 2$. Thus $K_5 \times \phi D_{2n}$ is not connected, a contradiction.

Now suppose that $a_2 = a^{n/2}$. By $a^*_1 = a_2 b_0$, we have $o(b_0) \neq 2$. Also since $a^*_2 = b^{-1}_0 a_3$, we have $o(a_3) \neq 2$. Finally, since $a^*_3 = a_4 b_0$, we have $o(a_4) \neq 2$ or $a_4 = a^{n/2}$. Thus $K_5 \times \phi D_{2n}$ is not connected, a contradiction.

□

Lemma 3.6. Suppose that the subgroup of Aut(\tilde{X}) generated by ρ, σ and τ, say L, lifts. Then there is no connected regular covering of the complete graph K_5 whose fibre-preserving group is arc-transitive.

Proof. ρ and σ lift. With the same arguments as in Case I, we have a contradiction. Also ρ and τ lift. With the same arguments as in Subcase II, we have

$$a_0 = b, \quad a_1 = b, \quad a_3 = a^{-2} b, \quad a_2 = a, \quad a_4 = a^{-1}, \quad b_0 = a^{-1} b.$$

From Table 1, it is easy to check that $\tilde{\sigma}$ can be extended to automorphisms of D_{2n} whenever $n = 3$, a contradiction. □
Proof of Theorem 1.1. This follows from Lemmas 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6.

4. ______, Classifying cubic symmetric graphs of order 10p or 10p², Science in China (A) 49(3) (2006), 300–319.

M. Ghasemi, Department of Mathematics, University of Urmia, Urmia 57135, Iran, *e-mail*: m.ghasemi@urmia.ac.ir