TANGENT BUNDLE OF ORDER TWO
AND BIHARMONICITY

H. ELHENDI, M. TERBECHE AND D. DJAA

ABSTRACT. The problem studied in this paper is related to the biharmonicity of a section from a Riemannian manifold \((M, g)\) to its tangent bundle \(T^2M\) of order two equipped with the diagonal metric \(g^D\). We show that a section on a compact manifold is biharmonic if and only if it is harmonic. We also investigate the curvature of \((T^2M, g^D)\) and the biharmonicity of section of \(M\) as a map from \((M, g)\) to \((T^2M, g^D)\).

1. Introduction

Harmonic (resp., biharmonic) maps are critical points of energy (resp., bienergy) functional defined on the space of smooth maps between Riemannian manifolds introduced by Eells and Sampson [4] (resp., Jiang [6]). In this paper, we present some properties for biharmonic section between a Riemannian manifold and its second tangent bundle which generalize the results of Ishihara [5], Konderak [7], Oproiu [9] and Djaa-Ouakkas [3].

Received February 24, 2013; revised January 28, 2014.
2010 Mathematics Subject Classification. Primary 53A45, 53C20, 58E20.
Key words and phrases. Diagonal metric; \(\lambda\)-lift; biharmonic section.
The authors was supported by LGACA and GMFAMI Laboratories.
The authors would like to thank the referee for his useful remarks and suggestions.
Consider a smooth map \(\phi: (M^n, g) \to (N^n, h) \) between two Riemannian manifolds, then the energy functional is defined by

\[
E(\phi) = \frac{1}{2} \int_M |d\phi|^2 dv_g
\]

(or over any compact subset \(K \subset M \)).

A map is called harmonic if it is a critical point of the energy functional \(E \) (or \(E(K) \) for all compact subsets \(K \subset M \)). For any smooth variation \(\{\phi_t\}_{t \in I} \) of \(\phi \) with \(\phi_0 = \phi \) and \(V = \frac{d\phi_t}{dt} |_{t=0} \), we have

\[
\frac{d}{dt} E(\phi_t)|_{t=0} = -\frac{1}{2} \int_M h(\tau(\phi), V) dv_g,
\]

where

\[
\tau(\phi) = \text{tr}_g \nabla d\phi
\]

is the tension field of \(\phi \). Then we have the following theorem.

Theorem 1.1. A smooth map \(\phi: (M^m, g) \to (N^n, h) \) is harmonic if and only if

\[
\tau(\phi) = 0.
\]

If \((x^i)_{1 \leq i \leq m}\) and \((y^\alpha)_{1 \leq \alpha \leq n}\) denote local coordinates on \(M \) and \(N \), respectively, then equation (4) takes the form

\[
\tau(\phi)^\alpha = \left(\Delta \phi^\alpha + g^{ij} \Gamma^\alpha_{\beta\gamma} \frac{\partial \phi^\beta}{\partial x^i} \frac{\partial \phi^\gamma}{\partial x^j} \right) = 0,
\]

where \(\Delta \phi^\alpha = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} (\sqrt{|g|} g^{ij} \frac{\partial \phi^\alpha}{\partial x^j}) \) is the Laplace operator on \((M^m, g)\) and \(\Gamma^\alpha_{\beta\gamma} \) are the Christoffel symbols on \(N \).
Definition 1.2. A map \(\phi: (M, g) \rightarrow (N, h) \) between Riemannian manifolds is called biharmonic if it is a critical point of bienergy functional

\[
E_2(\phi) = \frac{1}{2} \int_M |\tau(\phi)|^2 dv^g.
\]

The Euler-Lagrange equation attached to bienergy is given by vanishing of the bitension field

\[
\tau_2(\phi) = -J_\phi(\tau(\phi)) = -(\Delta^\phi \tau(\phi) + \text{tr}_g R^N(\tau(\phi), d\phi)d\phi),
\]

where \(J_\phi \) is the Jacobi operator defined by

\[
J_\phi: \Gamma(\phi^{-1}(TN)) \rightarrow \Gamma(\phi^{-1}(TN))
\]

\[
V \mapsto \Delta^\phi V + \text{tr}_g R^N(V, d\phi)d\phi.
\]

Theorem 1.3. A smooth map \(\phi: (M^m, g) \rightarrow (N^n, h) \) is biharmonic if and only if

\[
\tau_2(\phi) = 0.
\]

From Theorem 1.1 and formula (7), we have the following corollary.

Corollary 1.4. If \(\phi: (M^m, g) \rightarrow (N^n, h) \) is harmonic, then \(\phi \) is biharmonic.

(For more details see [6]).

2. Preliminary Notes

2.1. Horizontal and vertical lifts on \(TM \)

Let \((M, g) \) be an \(n \)-dimensional Riemannian manifold and \((TM, \pi, M) \) be its tangent bundle. A local chart \((U, x^i)_{i=1...n} \) on \(M \) induces a local chart \((\pi^{-1}(U), x^i, y^j)_{i,j=1,...,n} \) on \(TM \). Denote the Christoffel symbols of \(g \) by \(\Gamma^k_{ij} \) and the Levi-Civita connection of \(g \) by \(\nabla \).
We have two complementary distributions on TM, the vertical distribution \mathcal{V} and the horizontal distribution \mathcal{H} defined by

$$\mathcal{V}(x,u) = \text{Ker}(d\pi(x,u))$$

$$= \left\{ a^i \frac{\partial}{\partial y^i}(x,u) ; \ a^i \in \mathbb{R} \right\},$$

$$\mathcal{H}(x,u) = \left\{ a^i \frac{\partial}{\partial x^i}(x,u) - a^i u^j \Gamma_{ij}^k \frac{\partial}{\partial y^k}(x,u) ; \ a^i \in \mathbb{R} \right\},$$

where $(x, u) \in TM$, such that $T(x,u)TM = \mathcal{H}(x,u) \oplus \mathcal{V}(x,u)$.

Let $X = X^i \frac{\partial}{\partial x^i}$ be a local vector field on M. The vertical and the horizontal lifts of X are defined by

(10) $$X^V = X^i \frac{\partial}{\partial y^i}$$

(11) $$X^H = X^i \delta^i_{x^i} = X^i \left\{ \frac{\partial}{\partial x^i} - y^j \Gamma_{ij}^k \frac{\partial}{\partial y^k} \right\}.$$

For consequences, we have:

1. $\left(\frac{\partial}{\partial x^i} \right)^H = \delta^i_{x^i}$ and $\left(\frac{\partial}{\partial x^i} \right)^V = \frac{\partial}{\partial y^i}$.

2. $\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^j} \right)_{i,j=1,...,n}$ is a local frame on TM.

3. If $u = u^i \frac{\partial}{\partial x^i} \in T_x M$, then $u^H = u^i \left\{ \frac{\partial}{\partial x^i} - y^j \Gamma_{ij}^k \frac{\partial}{\partial y^k} \right\}$ and $u^V = u^i \frac{\partial}{\partial y^i}$.
Definition 2.1. Let \((M, g)\) be a Riemannian manifold and \(F : TM \to TM\) be a smooth bundle endomorphism of \(TM\). Then we define a vertical and horizontal vector fields \(VF, HF\) on \(TM\) by

\[
VF : TM \to TTM \quad (x, u) \mapsto (F(u))^V,
\]

\[
HF : TM \to TTM \quad (x, u) \mapsto (F(u))^H.
\]

Locally we have

\[
VF = y^i F^j_i \frac{\partial}{\partial y^j} = y^i \left(F(\frac{\partial}{\partial x^i}) \right)^V,
\]

\[
HF = y^i F^j_i \frac{\partial}{\partial x^j} - y^i y^k F^j_i \Gamma^s_{jk} \frac{\partial}{\partial y^s} = y^i \left(F(\frac{\partial}{\partial x^i}) \right)^H.
\]

Proposition 2.2 ([1]). Let \((M, g)\) be a Riemannian manifold and \(\nabla\) be the Levi-Civita connection of the tangent bundle \((TM, g^s)\) equipped with the Sasaki metric. If \(F\) is a tensor field of type \((1, 1)\) on \(M\), then

\[
(\nabla_X V F)(x, u) = (F(X))^V_{(x, u)},
\]

\[
(\nabla_X H F)(x, u) = (F(X))^H_{(x, u)} + \frac{1}{2} (R_x(u, X_x) F(u))^H,
\]

\[
(\nabla_X H V F)(x, u) = V(\nabla_X F)(x, u) + \frac{1}{2} (R_x(u, F_x(u)) X_x)^H,
\]

\[
(\nabla_X V H F)(x, u) = H(\nabla_X F)(x, u) - \frac{1}{2} (R_x(X_x, F_x(u)) u)^V.
\]
where \((x,u) \in TM\) and \(X \in \Gamma(TM)\).

2.2. Second Tangent Bundle

Let \(M\) be an \(n\)-dimensional smooth differentiable manifold and \((U_{\alpha}, \psi_{\alpha})_{\alpha \in I}\) a corresponding atlas. For each \(x \in M\), we define an equivalence relation on

\[C_x = \{ \gamma: (-\varepsilon, \varepsilon) \to M; \gamma \text{ is smooth and } \gamma(0) = x, \varepsilon > 0 \} \]

by

\[\gamma \approx_x h \iff \gamma'(0) = h'(0) \quad \text{and} \quad \gamma''(0) = h''(0), \]

where \(\gamma'\) and \(\gamma''\) denote the first and the second derivation of \(\gamma\), respectively,

\[\gamma': (-\varepsilon, \varepsilon) \to TM; \quad t \mapsto [d\gamma(t)](1) \]

\[\gamma'': (-\varepsilon, \varepsilon) \to T(TM); \quad t \mapsto [d\gamma'(t)](1). \]

Definition 2.3. We define the second tangent space of \(M\) at the point \(x\) to be the quotient \(T^2_xM = C_x / \approx_x\) and the second tangent bundle of \(M\) the union of all second tangent space, \(T^2M = \bigcup_{x \in M} T^2_xM\). We denote the equivalence class of \(\gamma\) by \(j^2_x\gamma\) with respect to \(\approx_x\), and by \(j^2\gamma\) an element of \(T^2M\).

In the general case, the structure of higher tangent bundle \(T^rM\) is considered in [8, Chapters 1–2] and [2].

Proposition 2.4 ([3]). Let \(M\) be an \(n\)-dimensional manifold, then \(TM\) is sub-bundle of \(T^2M\) and the map

\[i: TM \to T^2M \]

\[j^1_x f = j^2_x \tilde{f} \]
is an injective homomorphism of natural bundles (not of vector bundles), where
\[
\tilde{f}^i = \int_0^t f^i(s) ds - tf^i(0) + f^i(0) \quad i = 1 \ldots n.
\]

Theorem 2.5. Let \((M, g)\) be a Riemannian manifold and \(\nabla\) be the Levi-Civita connection. If \(TM \oplus TM\) denotes the Whitney sum, then
\[
S: T^2M \to TM \oplus TM
\]
\[
j^2\gamma(0) \mapsto (\dot{\gamma}(0), (\nabla_{\dot{\gamma}(0)}\dot{\gamma})(0))
\]
is a diffeomorphism of natural bundles. In the induced coordinate we have
\[
(x^i; y^i; z^i) \mapsto (x^i, y^i, z^i + y^j y^k \Gamma^i_{jk}).
\]

Remark 2.6. The diffeomorphism \(S\) determines a vector bundle structure on \(T^2M\) by
\[
\alpha.\Psi_1 + \beta.\Psi_2 = S^{-1}(\alpha S(\Psi_1) + \beta S(\Psi_2)),
\]
where \(\Psi_1, \Psi_2 \in T^2M\) and \(\alpha, \beta \in \mathbb{R}\), for which \(S\) is a linear isomorphism of vector bundles and \(i: TM \to T^2M\) is an injective linear homomorphism of vector bundles (for more details see [2]).

Definition 2.7 ([3]). Let \((M, g)\) be a Riemannian manifold and \(T^2M\) be its tangent bundle of order two endowed with the vectorial structure induced by the diffeomorphism \(S\). For any section \(\sigma \in \Gamma(T^2M)\), we define two vector fields on \(M\) by
\[
X_\sigma = P_1 \circ S \circ \sigma,
\]
\[
Y_\sigma = P_2 \circ S \circ \sigma,
\]
where \(P_1\) and \(P_2\) denote the first and the second projections from \(TM \oplus TM\) on \(TM\).

From Remark 2.6 and Definition 2.7, we deduce the following.
Proposition 2.8. For all sections \(\sigma, \varpi \in \Gamma(T^2M) \) and \(\alpha \in \mathbb{R} \), we have
\[
X_{\alpha \sigma + \varpi} = \alpha X_\sigma + X_\varpi,
\]
\[
Y_{\alpha \sigma + \varpi} = \alpha Y_\sigma + Y_\varpi,
\]
where \(\alpha \sigma + \varpi = S^{-1}(\alpha S(\sigma) + S(\varpi)) \).

Definition 2.9 ([3]). Let \((M, g)\) be a Riemannian manifold and \(T^2M\) be its tangent bundle of order two endowed with the vectorial structure induced by the diffeomorphism \(S\). We define a connection \(\hat{\nabla}\) on \(\Gamma(T^2M)\) by
\[
\hat{\nabla}: \Gamma(TM) \times \Gamma(T^2M) \to \Gamma(T^2M)
\]
\[(z, \sigma) \mapsto \hat{\nabla}_Z \sigma = S^{-1}(\nabla_Z X_\sigma, \nabla_Z Y_\sigma)\]
where \(\nabla\) is the Levi-Civita connection on \(M\).

Proposition 2.10. If \((U, x^i)\) is a chart on \(M\) and \((\sigma^i, \bar{\sigma}^i)\) are the components of section \(\sigma \in \Gamma(T^2M)\), then
\[
X_\sigma = \sigma^i \frac{\partial}{\partial x^i}
\]
(21)
\[
Y_\sigma = (\bar{\sigma}^k + \sigma^i \sigma^j \Gamma^k_{ij}) \frac{\partial}{\partial x^k}.
\]
(22)

Proposition 2.11. Let \((M, g)\) be a Riemannian manifold and \(T^2M\) be its tangent bundle of order two, then
\[
J: \Gamma(TM) \to \Gamma(T^2M)
\]
\[Z \mapsto S^{-1}(Z, 0)\]
(23)
is an injective homomorphism of vector bundles.
Locally if \((U; x^i)\) is a chart on \(M\) and \((U; x^i; y^i)\) and \((U; x^i; y^i; z^i)\) are the induced charts on \(TM\) and \(T^2M\). respectively, then we have

\[
J: (x^i, y^i) \mapsto (x^i, y^i, -y^j y^k \Gamma^i_{jk}).
\]

Definition 2.12. Let \((M, g)\) be a Riemannian manifold and \(X \in \Gamma(TM)\) be a vector field on \(M\). For \(\lambda = 0, 1, 2\), the \(\lambda\)-lift of \(X\) to \(T^2M\) is defined by

\[
\begin{align*}
X^0 &= S^{-1}_*(X^H, X^H) \\
X^1 &= S^{-1}_*(X^V, 0) \\
X^2 &= S^{-1}_*(0, X^V).
\end{align*}
\]

Theorem 2.13 ([2]). Let \((M, g)\) be a Riemannian manifold and \(R\) its tensor curvature, then for all vector fields \(X, Y \in \Gamma(TM)\) and \(p \in T^2M\), we have:

1. \([X^0, Y^0]_p = [X, Y]_p^0 - (R(X, Y)u)^1 - (R(X, Y)w)^2\),
2. \([X^0, Y^i] = (\nabla_X Y)^i\),
3. \([X^i, Y^j] = 0\),

where \((u, w) = S(p)\) and \(i, j = 1, 2\).

Definition 2.14. Let \((M, g)\) be a Riemannian manifold. For any section \(\sigma \in \Gamma(T^2M)\), we define the vertical lift of \(\sigma\) to \(T^2M\) by

\[
\sigma^V = S^{-1}_*(X^V, Y^V) \in \Gamma(T(T^2M)).
\]
Remark 2.15. From Definition 2.7 and the formulae (14), (23) and (28), we obtain

\[\sigma^V = X^1_\sigma + Y^2_\sigma,\]

\[(\tilde{\nabla}_Z \sigma)^V = (\nabla_Z X_\sigma)^1 + (\nabla_Z Y_\sigma)^2,\]

\[Z^1 = J(Z)^V,\]

\[Z^2 = i(Z)^V\]

for all \(\sigma \in \Gamma(T^2M)\) and \(Z \in \Gamma(TM)\).

2.3. Diagonal metric

Theorem 2.16 ([3]). Let \((M, g)\) be a Riemannian manifold and \(TM\) its tangent bundle equipped with the Sasakian metric \(g^s\), then

\[g^D = S_{-1}^{-1}(\tilde{g}, \tilde{g})\]

is the only metric that satisfies the following formulae

(29)

\[g^D(X^i, Y^j) = \delta_{ij} \cdot g(X, Y) \circ \pi_2\]

for all vector fields \(X, Y \in \Gamma(TM)\) and \(i, j = 0, \ldots, 2\), where \(\tilde{g}\) is the metric defined by

\[\tilde{g}(X^H, Y^H) = \frac{1}{2} g^s(X^H, Y^H),\]

\[\tilde{g}(X^H, Y^V) = g^s(X^H, Y^V),\]

\[\tilde{g}(X^V, Y^V) = g^s(X^V, Y^V).\]

\(g^D\) is called the diagonal lift of \(g\) to \(T^2M\).

Proposition 2.17. Let \((M, g)\) be a Riemannian manifold and \(\tilde{\nabla}\) be the Levi-Civita connection of the tangent bundle of order two equipped with the diagonal metric \(g^D\). Then:
1. \((\tilde{\nabla}_X^0 Y^0)_p = (\nabla_X Y)^0 - \frac{1}{2}(R(X, Y)u)^1 - \frac{1}{2}(R(X, Y)w)^2, \)
2. \((\tilde{\nabla}_X^1 Y^1)_p = (\nabla_X Y)^1 + \frac{1}{2}(R(u, Y)X)^0, \)
3. \((\tilde{\nabla}_X^2 Y^2)_p = (\nabla_X Y)^2 + \frac{1}{2}(R(w, Y)X)^0, \)
4. \((\tilde{\nabla}_X^1 Y^0)_p = \frac{1}{2}(R_x(u, X)Y)^0, \)
5. \((\tilde{\nabla}_X^2 Y^0)_p = \frac{1}{2}(R_x(w, X)Y)^0, \)
6. \((\tilde{\nabla}_X Y^j)_p = 0 \)

for all vector fields \(X, Y \in \Gamma(TM) \) and \(p \in \Gamma(T^2M) \), where \(i, j = 1, 2 \) and \((u, w) = S(p)\).

3. Biharmonicity Of section

3.1. The Curvature Tensor

Definition 3.1. Let \((M, g)\) be a Riemannian manifold and \(F : TM \to TM \) be a smooth bundle endomorphism of \(TM \). For \(\lambda = 0, 1, 2 \), the \(\lambda \)-lift of \(F \) to \(T^2M \) is defined by

\[
F^0 = S_*^{-1}(HF, HF),
F^1 = S_*^{-1}(VF, 0),
F^2 = S_*^{-1}(0, VF).
\]

From Proposition 2.17, we obtain the following lemma.
Lemma 3.2. Let \(F : TM \to TM \) be a smooth bundle endomorphism of \(TM \), then we have

\[
\begin{align*}
(\tilde{\nabla}_X F^0)_p &= F(X)_p^0 + \frac{1}{2}(R(u, X)F(u))_p^0, \\
(\tilde{\nabla}_X F^0)_p &= F(X)_p^0 + \frac{1}{2}(R(w, X)F(w))_p^0, \\
(\tilde{\nabla}_X F^i)_p &= F(X)_p^i, \quad i, j = 1, 2, \\
(\tilde{\nabla}_X F^1)_p &= (\nabla_X F)_p^1 + \frac{1}{2}(R(u, F_x(u))X)_p^1, \\
(\tilde{\nabla}_X F^2)_p &= (\nabla_X F)_p^2 + \frac{1}{2}(R(w, F_x(w))X)_p^2, \\
(\tilde{\nabla}_X F^0)_p &= (\nabla_X F)_p^0 - \frac{1}{2}(R(X_x, F_x(u))u)_p^1 - \frac{1}{2}(R(X_x, F_x(w))w)_p^2
\end{align*}
\]

for any \(p \in T^2 M, \quad i, j = 1, 2 \) and \(X \in \Gamma(TM) \).

Using the formula of curvature and Lemma 3.2, we have the following.

Proposition 3.3. Let \(R \) be a curvature tensor of \((M, g)\), and \(\tilde{R} \) be curvature tensor of \((T^2 M, g^D)\) equipped with the diagonal lift of \(g \). Then we have the following

1. \[
\tilde{R}(X^0, Y^0)Z^0 &= \left(R(X, Y)Z + \frac{1}{4}R(u, R(Z, Y)u)X + \frac{1}{4}R(w, R(Z, Y)w)X \right)_p^0 \\
&\quad + \left(\frac{1}{4}R(u, R(X, Z)u)Y + \frac{1}{4}R(w, R(X, Z)w)Y \right)_p^0 \\
&\quad + \left(\frac{1}{2}R(u, R(X, Y)u)Z + \frac{1}{2}R(w, R(X, Y)w)Z \right)_p^0 \\
&\quad + \frac{1}{2} \left(\nabla_Z R)(X, Y)u \right)_p^1 + \frac{1}{2} \left(\nabla_Z R)(X, Y)w \right)_p^2,
\]
2. \(\tilde{R}(X^0, Y^0)Z^i = \left(R(X, Y)Z + \frac{1}{4}R(R(u, Z)Y, X)u + \frac{1}{4}R(R(w, Z)Y, X)w \\
- \frac{1}{4}R(R(u, Z)X, Y)u - \frac{1}{4}R(R(w, Z)X, Y)w \right)^i \\
+ \frac{1}{2}\left((\nabla_X R)(u, Z)Y + (\nabla_X R)(w, Z)Y - (\nabla_Y R)(u, Z)X \\
- (\nabla_Y R)(w, Z)X \right)^0, \)

3. \(\tilde{R}(X^1, Y^1)Z^0 = \left(R(X, Y)Z + \frac{1}{4}R(u, X)R(u, Y)Z + \frac{1}{4}R(w, X)R(w, Y)Z \\
- \frac{1}{4}R(u, Y)R(u, X)Z - \frac{1}{4}R(w, Y)R(w, X)Z \right)^0, \)

4. \(\tilde{R}(X^i, Y^2)Z^0 = \left(R(X, Y)Z + \frac{1}{4}R(u, X)R(u, Y)Z + \frac{1}{4}R(w, X)R(w, Y)Z \\
- \frac{1}{4}R(u, Y)R(u, X)Z - \frac{1}{4}R(w, Y)R(w, X)Z \right)^0, \)

5. \(\tilde{R}(X^i, Y^0)Z^0 = -\left(\frac{1}{4}R(u, Y)Z, X)u + \frac{1}{4}R(w, Y)Z, X)w + \frac{1}{2}R(X, Z)Y \right)^i \\
+ \frac{1}{2}\left((\nabla_X R)(u, Y)Z + (\nabla_X R)(w, Y)Z \right)^0, \)

6. \(\tilde{R}(X^i, Y^0)Z^j = \left(\frac{1}{2}R(Y, Z)X + \frac{1}{4}R(u, Y)R(u, X)Z + \frac{1}{4}R(w, Y)R(w, X)Z \right)^0 \)

7. \(\tilde{R}(X^1, Y^1)Z^i = \tilde{R}(X^2, Y^2)Z^i = 0 \)

for any \(\xi = (p, u, w) \in T^2M, \quad i, j = 1, 2 \quad \text{and} \quad X, Y, Z \in \Gamma(TM). \)
Lemma 3.4. Let \((M, g)\) be a Riemannian manifold and \(T^2M\) be the tangent bundle equipped with the diagonal metric. If \(Z \in \Gamma(TM)\) and \(\sigma \in \Gamma(T^2M)\), then
\[
d_x \sigma(Z_x) = Z_p^0 + (\nabla_{Z} \sigma)_p^V,
\]
where \(p = \sigma(x)\).

Proposition 3.5 ([3]). Let \((M, g)\) be a Riemannian manifold and \(T^2M\) be its tangent bundle of order two equipped with the diagonal metric. Then the tension field associated with \(\sigma \in \Gamma(T^2M)\) is
\[
\tau(\sigma) = (\text{trace}_g \nabla^2 X_{\sigma})^1 + (\text{trace}_g \nabla^2 Y_{\sigma})^2 \\
+ \left(\text{trace}_g (R(X_{\sigma}, \nabla_X X_{\sigma}) + R(Y_{\sigma}, \nabla_Y Y_{\sigma})\right)^0 \\
= (\text{trace}_g \hat{\nabla}^2 \sigma)^V + \left(\text{trace}_g (R(X_{\sigma}, \nabla_X X_{\sigma}) + R(Y_{\sigma}, \nabla_Y Y_{\sigma})\right)^0,
\]
where \(-\text{trace}_g \nabla^2\) (resp., \(-\text{trace}_g \hat{\nabla}^2\)) denotes the Laplacian attached to \(\nabla\) (resp., \(\hat{\nabla}\)).

4. Biharmonicity of Section \(\sigma : (M, g) \to (T^2M, g^D)\)

For a section \(\sigma \in \Gamma(T^2M)\), we denote
\[
\tau^0(\sigma) = \tau^0(X_{\sigma}) + \tau^0(Y_{\sigma}),
\]
\[
\tau^V(\sigma) = \tau^1(X_{\sigma}) + \tau^2(Y_{\sigma}),
\]
\[
\overline{\tau}^0(\sigma) = \left(\tau^0(X_{\sigma}) + \tau^0(Y_{\sigma}) \right)^0,
\]
\[
\overline{\tau}^V(\sigma) = \left(\tau^1(X_{\sigma}) \right)^1 + \left(\tau^2(Y_{\sigma}) \right)^2.
\]
where
\[\tau^0(X_\sigma) = \text{trace}_g(R(X_\sigma, \nabla X_\sigma)\ast), \]
\[\tau^0(Y_\sigma) = \text{trace}_g(R(Y_\sigma, \nabla Y_\sigma)\ast), \]
\[\tau^1(X_\sigma) = \text{trace}_g \nabla^2 X_\sigma, \]
\[\tau^2(Y_\sigma) = \text{trace}_g \nabla^2 Y_\sigma. \]

From these notations, we have
\[(36) \quad \tau(\sigma) = \tau^V + \tau^0. \]

Theorem 4.1. Let \((M, g)\) be a Riemannian compact manifold and \((T^2 M, g^D)\) be its tangent bundle of order two equipped with the diagonal metric and a vector bundle structure via the diffeomorphism \(S\) between \(T^2\) and \(TM \oplus TM\). Then \(\sigma: M \to T^2 M\) is a biharmonic section if and only if \(\sigma\) is harmonic.

Proof. First, if \(\sigma\) is harmonic, then from Corollary 1.4, we deduce that \(\sigma\) is biharmonic.

Conversely, assuming that \(\sigma\) is biharmonic. Let \(\sigma_t\) be a compactly supported variation of \(\sigma\) defined by \(\sigma_t = (1 + t)\sigma\). Using Proposition 2.8, we have
\[(37) \quad X_{\sigma_t} = (1 + t)X_\sigma \quad \text{and} \quad Y_{\sigma_t} = (1 + t)Y_\sigma. \]

Substituting (37) in (32) to (35), we obtain
\[(38) \quad \tau^0(\sigma_t) = (1 + t)^2 \tau^0(\sigma) \quad \text{and} \quad \tau^V(\sigma_t) = (1 + t)\tau^V(\sigma) \]
\[(39) \quad \tau^0(\sigma_t) = (1 + t)^2 \tau^0(\sigma) \quad \text{and} \quad \tau^V(\sigma_t) = (1 + t)\tau^V(\sigma). \]

Then
\[E_2(\sigma_t) = \frac{1}{2} \int |\tau(\sigma_t)|^2_{g_D} v_g = \frac{1}{2} \int |\bar{\tau}^0(\sigma_t)|^2_{g_D} v_g + \frac{1}{2} \int |\bar{\tau}^V(\sigma_t)|^2_{g_D} v_g \]
\[= \frac{(1 + t)^4}{2} \int |\bar{\tau}^0(\sigma)|^2_{g_D} v_g + \frac{(1 + t)^2}{2} \int |\bar{\tau}^V(\sigma)|^2_{g_D} v_g. \]

Since the section \(\sigma \) is biharmonic, then for the variation \(\sigma_t \), we have

\[0 = \frac{d}{dt} E_2(\sigma_t)|_{t=0} = 2 \int |\bar{\tau}^0(\sigma)|^2_{g_D} v_g + \int |\bar{\tau}^V(\sigma)|^2_{g_D} v_g. \]

Hence

\[\bar{\tau}^0(\sigma) = 0 \quad \text{and} \quad \bar{\tau}^V(\sigma) = 0, \quad \text{then} \quad \tau(\sigma) = 0. \]

\[\square \]

In the case where \(M \) is not compact, the characterization of biharmonic sections requires the following two lemmas.

Lemma 4.2. Let \((M, g)\) be a Riemannian manifold and \((T^2M, g^D)\) be its tangent bundle of order two equipped with the diagonal metric. If \(\sigma \in \Gamma(T^2M) \) is a smooth section, then the Jacobi tensor \(J_\sigma(\tau^V(\sigma)) \) is given by

\[J_\sigma(\bar{\tau}^V(\sigma)) = \left\{ \begin{array}{l} \text{trace}_g \nabla^2(\tau^V(\sigma)) \\ + \left\{ \text{trace}_g \left(R(u, \nabla_* \tau^1(X_\sigma)) * + R(w, \nabla_* \tau^2(Y_\sigma)) * + R(\tau^V(\sigma), \nabla_* \sigma) * \\ + \frac{1}{2} R(u, \tau^1(X_\sigma)) R(u, \nabla_* X_\sigma) * + \frac{1}{2} R(w, \tau^2(Y_\sigma)) R(w, \nabla_* Y_\sigma) * \right\} \end{array} \right\}^0. \]
Proof. Let $p \in T^2M$ and $\{e_i\}_{i=1}^m$ be a local orthonormal frame on M such that $(\nabla e_i e_i)_x = 0$. If we denote $F_i(x, u, w) = \frac{1}{2} R(u, \tau^1(X_\sigma))e_i + \frac{1}{2} R(w, \tau^2(Y_\sigma))e_i$, then we have

$$\tilde{\nabla}_e^\sigma \tilde{\nabla}^V(\sigma)_p = (\tilde{\nabla}_e^\sigma + (\nabla_e X_\sigma)^1 + (\nabla e Y_\sigma)^2)(\tau^1(X_\sigma))^1 + (\tau^2(Y_\sigma))^2)_p$$

$$= (\nabla e_i(\tau^V(\sigma))_p + \frac{1}{2}(R(u, \tau^1(X_\sigma))e_i + R(w, \tau^2(Y_\sigma))e_i)^0 = (\nabla e_i(\tau^V(\sigma))_p + (F_i(x, u, w))^0,$$

hence

$$(\text{trace}_g \tilde{\nabla}^2 \tilde{\nabla}^V(\sigma))_p = \sum_{i=1}^m \left\{ \tilde{\nabla}_e^\sigma \tilde{\nabla}_e^\sigma (\tilde{\nabla}^V(\sigma)) \right\}_p = \sum_{i=1}^m \left\{ \tilde{\nabla}_e^\sigma_0 + (\nabla e X_\sigma)^1 + (\nabla e Y_\sigma)^2)((\nabla e_i(\tau^V(\sigma))^1 + (F_i)^0) \right\}_p$$

$$= \sum_{i=1}^m \left\{ \tilde{\nabla}_e^\sigma(\nabla e_i^1(X_\sigma))^1 + \tilde{\nabla}_e^\sigma(\nabla e_i^1(Y_\sigma))^2 + \tilde{\nabla}_e^0 F_i^0 + \tilde{\nabla}(\nabla e_i X_\sigma)^1 F_i^0 + \tilde{\nabla}(\nabla e_i Y_\sigma)^2 F_i^0 \right\}_p.$$

Using Proposition 2.17, we obtain

$$(\text{trace}_g \tilde{\nabla}^2 \tilde{\nabla}^V(\sigma))_p = \sum_{i=1}^m \left\{ (\nabla e_i \nabla e_i^1(X_\sigma)) - \frac{1}{4} R(e_i, R(u, \tau^1(X_\sigma))e_i)u \right\}_p$$

$$+ \sum_{i=1}^m \left\{ (\nabla e_i \nabla e_i^1(Y_\sigma)) - \frac{1}{4} R(e_i, R(w, \tau^2(Y_\sigma))e_i)w \right\}_p + \sum_{i=1}^m \left\{ \frac{1}{2} R(u, \nabla e_i^1(X_\sigma))e_i \right.$$

$$+ \frac{1}{2} R(w, \nabla e_i^1(Y_\sigma))e_i + \frac{1}{2} (\nabla e_i R(u, \tau^1(X_\sigma))e_i) + \frac{1}{2} (\nabla e_i R(w, \tau^2(Y_\sigma))e_i)$$

$$+ \frac{1}{2} R(\tau^1(X_\sigma), \nabla e_i u)e_i + \frac{1}{2} R(\tau^2(Y_\sigma), \nabla e_i w)e_i + \frac{1}{4} R(u, \nabla e_i X_\sigma)R(u, \tau^1(X_\sigma))e_i$$

$$+ \frac{1}{4} R(w, \nabla e_i X_\sigma)R(w, \tau^2(Y_\sigma))e_i + \frac{1}{2} R(\nabla e_i X_\sigma, \tau^1(X_\sigma))e_i + \frac{1}{2} R(\nabla e_i X_\sigma, \tau^2(Y_\sigma))e_i \right\}_p.$$
From proposition 3.3, we have

\[
\text{trace}_g(\tilde{R}(\nabla^V(\sigma), d\sigma)d\sigma) = \sum_{i=1}^{m} \left\{ \tilde{R}(\nabla^1(\tau_i(\tau_1(\sigma)))^1, e_i^0e_i^0 + \tilde{R}(\nabla^1(\tau_1(\sigma)))^1, (\nabla_{e_i}X_\sigma)^1)e_i^0 \\
+ \tilde{R}(\nabla^1(\tau_1(\sigma)))^1, (\nabla_{e_i}Y_\sigma)^2)e_i^0 + \tilde{R}(\nabla^1(\tau_1(\sigma)))^1, (\nabla_{e_i}X_\sigma)^1 + \tilde{R}(\nabla^1(\tau_1(\sigma)))^1, (\nabla_{e_i}Y_\sigma)^2 \\
+ \tilde{R}(\nabla^2(Y_\sigma))^2, e_i^0e_i^0 + \tilde{R}(\nabla^2(Y_\sigma))^2, (\nabla_{e_i}X_\sigma)^1)e_i^0 + \tilde{R}(\nabla^2(Y_\sigma))^2, (\nabla_{e_i}Y_\sigma)^2)e_i^0 \\
+ \tilde{R}(\nabla^2(Y_\sigma))^2, e_i^0)(\nabla_{e_i}X_\sigma)^1 + \tilde{R}(\nabla^2(Y_\sigma))^2, e_i^0)(\nabla_{e_i}Y_\sigma)^2 \right\}.
\]

By calculating at point \(p \in T^2M \), we obtain

\[
\text{trace}_g(\tilde{R}(\nabla^V(\sigma), d\sigma)d\sigma)_p = \sum_{i=1}^{m} \left\{ -\frac{1}{4}R(u, \tau^1(X_\sigma)e_i, e_i)u \right\}^1 - \left\{ \frac{1}{4}R(R(u, \tau^2(Y_\sigma)e_i), e_i)w \right\}^2 \\
+ \sum_{i=1}^{m} \left\{ R(\tau^1(X_\sigma), \nabla_{e_i}X_\sigma)e_i + R(\tau^2(Y_\sigma), \nabla_{e_i}Y_\sigma)e_i \\
+ \frac{1}{4}R(u, \tau^1(X_\sigma))R(u, \nabla_{e_i}X_\sigma)e_i - \frac{1}{4}R(u, \nabla_{e_i}Y_\sigma)R(w, \tau^2(Y_\sigma))e_i \\
+ \frac{1}{4}R(u, \tau^2(Y_\sigma))R(u, \nabla_{e_i}Y_\sigma)e_i - \frac{1}{4}R(u, \nabla_{e_i}X_\sigma)R(u, \tau^1(X_\sigma))e_i \\
+ \frac{1}{2}R(\tau^1(X_\sigma), \nabla_{e_i}X_\sigma)e_i + \frac{1}{2}R(\tau^2(Y_\sigma), \nabla_{e_i}Y_\sigma)e_i \\
+ \frac{1}{4}R(u, \tau^1(X_\sigma))R(u, \nabla_{e_i}X_\sigma)e_i + \frac{1}{4}R(u, \tau^2(Y_\sigma))R(w, \nabla_{e_i}Y_\sigma)e_i \\
- \frac{1}{2}(\nabla_{e_i}R(u, \tau^1(X_\sigma)e_i - \frac{1}{2}(\nabla_{e_i}R(u, \tau^2(Y_\sigma)e_i))^0. \right\}
\]
Considering the formula (8), we deduce

$$J_\sigma(\tau^V(\sigma)) = \left\{ \begin{array}{l} \text{trace}_g \nabla^2(\tau^V(\sigma)) \end{array} \right\}^V + \left\{ \begin{array}{l} \text{trace}_g(R(u, \nabla_* \tau^1(X_\sigma)^*) \\
+ R(w, \nabla_* \tau^2(Y_\sigma))^* + R(\tau^V(\sigma), \nabla_* \sigma)^* \\
+ \frac{1}{2} R(u, \tau^1(X_\sigma)) R(u, \nabla_* X_\sigma)^* + \frac{1}{2} R(w, \tau^2(Y_\sigma)) R(w, \nabla_* Y_\sigma)^*) \end{array} \right\}^0. \quad \square$$

Lemma 4.3. Let (M, g) be a Riemannian manifold and (T^2M, g^D) be its tangent bundle of order two equipped with the diagonal metric. If $\sigma \in \Gamma(T^2M)$ is a smooth section, then the Jacobi tensor $J_\sigma(\tau^0(\sigma))$ is given by

$$J_\sigma(\tau^0(\sigma))_p = \text{trace}_g \left\{ \begin{array}{l} 2R(\tau^0(X_\sigma), *) \nabla_* X_\sigma - R(*, \nabla_* \tau^0(X_\sigma)) u + \frac{1}{2} R(u, \nabla_* X_\sigma)^*, \tau^0(X_\sigma) \end{array} \right\}^1 + \text{trace}_g \left\{ \begin{array}{l} 2R(\tau^0(Y_\sigma), *) \nabla_* Y_\sigma - R(*, \nabla_* \tau^0(Y_\sigma)) w + \frac{1}{2} R(w, \nabla_* Y_\sigma)^*, \tau^0(Y_\sigma) \end{array} \right\}^2 + \text{trace}_g \left\{ \begin{array}{l} \nabla_* \nabla_* \tau^0(\sigma) + R(u, \nabla_* X_\sigma) \nabla_* \tau^0(X_\sigma) + R(w, \nabla_* Y_\sigma) \nabla_* \tau^0(Y_\sigma) \\
+ \frac{1}{2} R(u, \nabla_* \nabla_* X_\sigma) \tau^0(X_\sigma) + \frac{1}{2} R(w, \nabla_* \nabla_* Y_\sigma) \tau^0(Y_\sigma) + R(u, R(\tau^0(X_\sigma), *)) u^* \\
+ R(w, R(\tau^0(Y_\sigma), *) w)^* + R(\tau^0(\sigma), *) + (\nabla_{\tau^0(X_\sigma)} R)(u, \nabla_* X_\sigma)^* \\
+ (\nabla_{\tau^0(Y_\sigma)} R)(w, \nabla_* Y_\sigma)^* \end{array} \right\}^0_p$$

for all $p = (x, u, w) \in T^2M$.
Proof. Let \(p = (x, u, w) \in T^2M \) and \(\{e_i\}_{i=1}^m \) be a local orthonormal frame on \(M \) such that \((\nabla e_i e_i)_x = 0 \), denoted by

\[
F_i = F_iX + F_iY = \frac{1}{2} R(e_i, \tau^0(X_\sigma)) + \frac{1}{2} R(e_i, \tau^0(Y_\sigma))
\]

(40)

\[
G = G_X + G_Y = \frac{1}{2} R(\ast, \nabla_\ast X_\sigma) \tau^0(X_\sigma) + \frac{1}{2} R(\ast, \nabla_\ast Y_\sigma) \tau^0(Y_\sigma).
\]

(41)

First, using Lemma 3.4 and Proposition 2.17, we calculate

\[
\text{trace}_g \tilde{\nabla}^2(\tau^0(\sigma))_p = \sum_{i=1}^m \left\{ \tilde{\nabla}_e_i \tilde{\nabla}_e_i (\tau^0(\sigma))^0 \right\} = \sum_{i=1}^m \left\{ (\tilde{\nabla}_e_i - (\nabla e_i X_\sigma) + (\nabla e_i Y_\sigma)^2 (\nabla e_i \tau(\sigma))^0 - F_i^1 X - F_i^2 Y + G_i^0) \right\}_p.
\]

(42)

From Proposition 2.17, we have

\[
\text{trace}_g \tilde{\nabla}^2(\tau^0(\sigma))_p = \sum_{i=1}^m \left\{ (\nabla e_i \nabla e_i \tau^0(\sigma))^0 + \left(\frac{1}{2} R(u, \nabla e_i X_\sigma) \nabla e_i \tau^0(X_\sigma) \right) \right\}
\]

\[
+ \frac{1}{2} R(w, \nabla e_i Y_\sigma) \nabla e_i \tau^0(Y_\sigma) - (\nabla e_i F_i X)^1 - (\nabla e_i F_i Y)^2 - \left(\frac{1}{2} R(e_i, \nabla e_i \tau^0(X_\sigma)) u \right)^1
\]

\[
- (F_i X (\nabla e_i)_X \sigma)^1 - (F_i Y (\nabla e_i)_Y \sigma)^2 + (\nabla e_i G)^0 - \left(\frac{1}{2} R(e_i, G_X(u)) u \right)^1 - \left(\frac{1}{2} R(e_i, G_Y(u)) w \right)^2
\]

\[
+ (G_X(\nabla e_i X_\sigma))^0 + (G_Y(\nabla e_i Y_\sigma))^0 + \left(\frac{1}{2} R(u, \nabla e_i X_\sigma) G_X(u) \right)^0 + \left(\frac{1}{2} R(w, \nabla e_i Y_\sigma) G_Y(u) \right)^0 \right\}_p.
\]
Substituting (40) and (41) in (42), we arrive at

\[
\text{trace}_g \tilde{\nabla}^2(\tau^0(\sigma))_p = \sum_{i=1}^{m} \left\{ (\nabla e_i \nabla e_i \tau^0(\sigma) + R(u, \nabla e_i X_{\sigma}) \nabla e_i \tau^0(X_{\sigma}) + R(w, \nabla e_i Y_{\sigma} \nabla e_i Y_{\sigma}) \tau^0(Y_{\sigma}) + \frac{1}{2} R(u, \nabla e_i \nabla e_i X_{\sigma}) \tau^0(X_{\sigma})
\right.
\]

\[
+ \frac{1}{2} R(w, \nabla e_i \nabla e_i Y_{\sigma}) \tau^0(Y_{\sigma}) + \frac{1}{2} (\nabla e_i R)(u, \nabla e_i X_{\sigma}) \tau^0(X_{\sigma})
\]

\[
+ \frac{1}{2} (\nabla e_i R)(w, \nabla e_i Y_{\sigma}) \tau^0(Y_{\sigma}) + \frac{1}{4} R(u, \nabla e_i X_{\sigma}) R(u, \nabla e_i X_{\sigma}) \tau^0(X_{\sigma})
\]

\[
+ \frac{1}{4} R(w, \nabla e_i Y_{\sigma}) R(w, \nabla e_i Y_{\sigma}) \tau^0(Y_{\sigma}) - \frac{1}{4} R(u, R(e_i, \tau^0(X_{\sigma})) u) e_i - \sum_{i=1}^{m} \left\{ \frac{1}{2} R(e_i, \nabla e_i X_{\sigma}) \nabla e_i X_{\sigma}
\right.
\]

\[
+ R(e_i, \nabla e_i \tau^0(X_{\sigma})) u + \frac{1}{2} (\nabla e_i R)(e_i, \tau^0(X_{\sigma})) u
\]

\[
+ \frac{1}{4} R(e_i, R(u, \nabla e_i X_{\sigma}) \tau^0(X_{\sigma})) u \right\}_p
\]

\[
- \sum_{i=1}^{m} \left\{ \frac{1}{2} R(e_i, \tau^0(Y_{\sigma})) \nabla e_i Y_{\sigma} + R(e_i, \nabla e_i \tau^0(Y_{\sigma})) w
\right.
\]

\[
+ \frac{1}{2} (\nabla e_i R)(e_i, \tau^0(Y_{\sigma})) w + \frac{1}{4} R(e_i, R(w, \nabla e_i Y_{\sigma}) \tau^0(Y_{\sigma})) w \right\}_p.
\]
On the other hand, we have

$$\text{trace}_g \left\{ \widetilde{R}(\tau^0(\sigma), d\sigma) d\sigma \right\}_p$$

$$= \sum_{i=1}^{m} \left\{ R(\tau^0(\sigma), e_i) e_i + \frac{3}{4} R(u, R(\tau^0(X_{\sigma}), e_i) u) e_i
ight. \\
+ \frac{3}{4} R(w, R(\tau^0(Y_{\sigma}), e_i) w) e_i + \nabla_{\tau^0}(X_{\sigma} R)(u, \nabla_{e_i} X_{\sigma}) e_i \\
+ \nabla_{\tau^0}(Y_{\sigma} R)(w, \nabla_{e_i} Y_{\sigma}) e_i - \frac{1}{2} (\nabla_{e_i} R)(u, \nabla_{e_i} X_{\sigma}) \tau^0(X_{\sigma}) \\
- \frac{1}{2} (\nabla_{e_i} R)(w, \nabla_{e_i} Y_{\sigma}) \tau^0(Y_{\sigma}) - \frac{1}{4} R(u, \nabla_{e_i} X_{\sigma}) R(u, \nabla_{e_i} X_{\sigma}) \tau^0(X_{\sigma}) \\
- \frac{1}{4} R(w, \nabla_{e_i} Y_{\sigma}) R(w, \nabla_{e_i} Y_{\sigma}) \tau^0(Y_{\sigma}) \right\}^0 \\
+ \sum_{i=1}^{m} \left\{ \frac{1}{2} (\nabla_{e_i} R) \tau^0(X_{\sigma}, e_i) u + \frac{1}{2} R(R(u, \nabla_{e_i} X_{\sigma}) e_i, \tau^0(X_{\sigma})) u
ight. \\
+ \frac{3}{2} R(\tau^0(X_{\sigma}), e_i) \nabla_{e_i} X_{\sigma} - \frac{1}{4} R(R(u, \nabla_{e_i} X_{\sigma}) \tau^0(X_{\sigma}), e_i) u \right\}^1 \\
+ \sum_{i=1}^{m} \left\{ \frac{1}{2} (\nabla_{e_i} R) \tau^0(Y_{\sigma}, e_i) w + \frac{1}{2} R(R(w, \nabla_{e_i} Y_{\sigma}) e_i, \tau^0(Y_{\sigma})) w
ight. \\
+ \frac{3}{2} R(\tau^0(Y_{\sigma}), e_i) \nabla_{e_i} Y_{\sigma} - \frac{1}{4} R(R(w, \nabla_{e_i} Y_{\sigma}) \tau^0(Y_{\sigma}), e_i) w \right\}^2.$$ \hspace{1cm} (44)

By summing (43) and (44), the proof of Lemma 4.3 is completed. \hfill \Box
From Lemma 4.2 and 4.3, we deduce the following theorems

Theorem 4.4. Let \((M, g)\) be a Riemannian manifold and \(\left(T^2 M, g^D\right)\) be its tangent bundle of order two equipped with the diagonal metric. If \(\sigma: M \to T^2 M\) is a smooth section, then the bitension field of \(\sigma\) is given by

\[
\tau_2(\sigma)_p = \text{trace}_g \left\{ \nabla^2 \tau^1(X_\sigma) + 2R(\tau^0(X_\sigma), *)\nabla_* X_\sigma - R(\ast, \nabla_* \tau^0(X_\sigma)) u \\
+ \frac{1}{2} R(R(u, \nabla_* \ast, \tau^0(X_\sigma))) u \right\}
\]

\[
+ \text{trace}_g \left\{ \nabla^2 \tau^2(Y_\sigma) + 2R(\tau^0(Y_\sigma), *)\nabla_* Y_\sigma \\
- R(\ast, \nabla_* \tau^0(Y_\sigma)) w + \frac{1}{2} R(R(w, \nabla_* \ast, \tau^0(Y_\sigma))) w \right\}
\]

\[
+ \text{trace}_g \left\{ R(u, \nabla_* \tau^1(X_\sigma)) \ast + R(w, \nabla_* \tau^2(Y_\sigma)) \ast + R(\tau^1(X_\sigma), \nabla_* X_\sigma) \ast \\
+ R(\tau^2(Y_\sigma), \nabla_* Y_\sigma) \ast + \frac{1}{2} R(u, \tau^1(X_\sigma)) R(u, \nabla_* X_\sigma) \ast \\
+ \frac{1}{2} R(w, \tau^2(Y_\sigma)) R(w, \nabla_* Y_\sigma) \ast + \nabla_* \nabla_* \tau^0(\sigma) + R(u, \nabla_* X_\sigma) \nabla_* \tau^0(X_\sigma) \\
+ R(w, \nabla_* Y_\sigma) \nabla_* \tau^0(Y_\sigma) + R(\tau^0(\sigma), \ast) \ast + \frac{1}{2} R(u, \nabla_* \nabla_* X_\sigma) \tau^0(X_\sigma) \\
+ \frac{1}{2} R(w, \nabla_* \nabla_* Y_\sigma) \tau^0(Y_\sigma) + R(u, R(\tau^0(X_\sigma), \ast) u) \ast \\
+ R(w, R(\tau^0(Y_\sigma), \ast) w) \ast + (\nabla_{\tau^0(X_\sigma)} R)(u, \nabla_* X_\sigma) \ast \\
+ (\nabla_{\tau^0(Y_\sigma)} R)(w, \nabla_* Y_\sigma) \ast \right\}_p
\]
for all \(p \in T^2M \).

Theorem 4.5. Let \((M, g)\) be a Riemannian manifold and \((T^2M, g^D)\) be its tangent bundle of order two equipped with the diagonal metric. A section \(\sigma: M \to T^2M \) is biharmonic if and only if the following conditions are verified:

1) \[0 = \text{trace}_g \left\{ \nabla^2 \tau^1(X_\sigma) + 2R(\tau^0(X_\sigma), *)\nabla_\sigma X_\sigma - R(*, \nabla_\sigma \tau^0(X_\sigma))u \\
+ \frac{1}{2}R(u, \nabla_\sigma *)_*, \tau^0(X_\sigma))u \right\}_p , \]

2) \[0 = \text{trace}_g \left\{ \nabla^2 \tau^2(Y_\sigma) + 2R(\tau^0(Y_\sigma), *)\nabla_\sigma Y_\sigma - R(*, \nabla_\sigma \tau^0(Y_\sigma))w \\
+ \frac{1}{2}R(w, \nabla_\sigma *)_*, \tau^0(Y_\sigma))w \right\}_p , \]

3) \[0 = \text{trace}_g \left\{ R(u, \nabla_\sigma \tau^1(X_\sigma)) + R(w, \nabla_\sigma \tau^2(Y_\sigma)) \\
+ R(\tau^1(X_\sigma), \nabla_\sigma X_\sigma) + R(\tau^2(Y_\sigma), \nabla_\sigma Y_\sigma) \\
+ \frac{1}{2}R(u, \nabla^2(X_\sigma))R(u, \nabla_\sigma X_\sigma) + \frac{1}{2}R(w, \nabla^2(Y_\sigma))R(w, \nabla_\sigma Y_\sigma) \\
+ \nabla_\sigma \nabla_\sigma \tau^0(\sigma) + R(u, \nabla_\sigma X_\sigma)\nabla_\sigma \tau^0(X_\sigma) + R(w, \nabla_\sigma Y_\sigma)\nabla_\sigma \tau^0(Y_\sigma) \\
+ \frac{1}{2}R(u, \nabla_\sigma \nabla_\sigma X_\sigma)\tau^0(X_\sigma) + \frac{1}{2}R(w, \nabla_\sigma \nabla_\sigma Y_\sigma)\tau^0(Y_\sigma) \\
+ R(u, R(\tau^0(X_\sigma), *)u) + R(w, R(\tau^0(Y_\sigma), *)w) \\
+ R(\tau^0(\sigma), *) + (\nabla_{\tau^0(\sigma)}R)(u, \nabla_\sigma X_\sigma) \\
+ (\nabla_{\tau^0(Y_\sigma)}R)(w, \nabla_\sigma Y_\sigma) \right\}_p \]

for all \(p = S^{-1}(x, u, w) \in T^2M \).
Corollary 4.6. Let \((M,g)\) be a Riemannian manifold and \((T^2M,g^D)\) be its tangent bundle of order two equipped with the diagonal metric. If \(\sigma: M \to T^2M\) is a section such that \(X_\sigma\) and \(Y_\sigma\) are biharmonic vector fields, then \(\sigma\) is biharmonic.

(For biharmonic vector see [1]).